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Abstract  

Space-time manifold plays an important role to express the concepts of Relativity properly. Causality and space-time topology 
make easier the geometrical explanation of Minkowski space-time manifold. The Minkowski metric is the simplest empty space-
time manifold in General Relativity, and is in fact the space-time of the Special Relativity. Hence it is the entrance of the General 
Relativity and Relativistic Cosmology. No material particle can travel faster than light. So that null space is the boundary of the 
space-time manifold. Einstein equation plays an important role in Relativity. Some related definitions and related discussions are 
given before explaining the Minkowski geometry. In this paper an attempt has been taken to elucidate the Minkowski geometry in 
some details with easier mathematical calculations and diagrams where necessary. 
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1 Introduction 1 

A manifold is essentially a space which is locally 
similar to Euclidean space in that it can be covered by 
coordinate patches but which need not be Euclidean 
globally. Minkowski space-time manifold plays an 
important role in both Special and General Relativity. To 
explain Minkowski geometry we need proper knowledge in 
differential manifold and causal properties of space-time. A 
brief discussion of manifold and causality has been given 
before discussing the Minkowski metric.  

We cannot imagine relativistic problems without 
Einstein equations. Einstein equation in the presence of 
matter is given by [1]; 
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Minkowski metric is on the basis of empty space 

solution of Einstein equation. It is a flat space-time 
manifold M = 4ℜ  and is given by; 
 

22222 dzdydxdtds +++−= . 

 
  We have discussed its geometrical properties in 

section–5. 
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2 Manifold in Differential Geometry 
Any point p contained in a set S can be surrounded by 

an open sphere or ball rpx <− , all of whose points lie 

entirely in S, where 0>r ; usually it is denoted by; 
 

( ) ( ){ }rxpdxrpS <= ,: , . 

 
Let p be a point in a topological space (defined later in 

section 2.2) M. A subset N of M is a neighborhood of p iff 
N is a superset of an open set O containing p, i.e., 

NOp ⊂∈ . 

 
  A function f : A→ B is a subset of A× B, such that i) if 
Ax∈ , there is a set y∈B   such that  (x, y) ∈ f    ii) such an 

element  y is unique , that is , if  x ∈A,  y, z∈B   such that 

( ) fyx ∈, , ( ) fzx ∈,   then y = z . If BAf →:  is a 

function, then the image of ( )Aff , , is the subset of B 

defined as follows: ( ) ( ){ }AxxfAf ∈= / , that is, ( )Af  

consists of elements of B of the form ( )xf , where x is 

some element of A. Here f is a map from A to B.  A function 
f: A→ B    is one-one if each element of B is the image of 
some element of A. The function f is onto if for all x, y∈ A, 

( ) ( )yfxf =  implies x = y. The function is one-one and 

onto if it is both one-one and onto. 

Let nR  be the set of n-tuples ( )nxx ,...,1

 
of real 

numbers. A set of points M is defined to be a manifold if 
each point of M has an open neighborhood which is 

continuous one-one map onto an open set of nR  for some n. 
A manifold is essentially a space which is locally 

similar to Euclidean space in that it can be covered by 
coordinate patches but which need not be Euclidean 
globally. Map OO ′→:φ  where nRO ⊂  and mRO ⊂′  is 
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said to be a class ( )0≥rCr  if the following conditions are 

satisfied. If we choose a point p of coordinates ( )nxx ,...,1  

on O and its image ( )pφ  of coordinates  ( )nxx ′′ ,...,1

 
on 

O′  then by rC  map we mean that the function φ  is r-

times differential and continuous. If a map is rC for all 

0≥r  then we denote it by ∞C ; also by 0C  map we mean 

that the map is continuous. An n-dimensional, rC , real 
differentiable manifold M is defined as follows: Manifold 

M has a rC altas { }αα φ, U  where αU  are subsets of M 

and αφ  are one-one maps of the corresponding αU  to open 

sets in nR  such that;  
 
1. 

αU  cover M i.e., M
 

αα
U∪= , 

2. If φβα ≠∩UU  then the map 

( ) ( )βααβαββα φφφφ UUUU ∩→∩− :1
o  is 

a rC  
map of an open subset of  nR  to an open 

subset of nR . 

Condition (2) is very important for overlapping of two 
local coordinate neighborhoods (figure–1). Now suppose 

αU  and βU  overlap and there is a point p in 
βα UU ∩ . 

Now choose a point q in ( )ααφ U  and a point r in ( )ββφ U . 

                 

                                           
nℜ  

                                                         ( )ααφ U  

                                                                             •       q 

     M 

            αU  

                  •         p                   1−
αβ φφ o

              
1−

βα φφ o  

             βU  

 

                                                                  • 

      βα UU ∩                                                               r  

                                                           ( )ββφ U  

Figure 1: The smooth maps 
1−

βα φφ o  on the n-dimensional Euclidean 

space nℜ  

Now ( ) pr =−1
βφ , ( ) ( )( ) qrp == −  1

βαα φφφ o . Let 

coordinates of q be ( )nxx ,...,1

 
and those of r be 

( )nyy ,...,1 . At this stage we obtain a coordinate 

transformation; 
 

( )nxxyy ,...,111 =  

 

( )nxxyy ,...,122 =  
 

…         …         … 
  

 ( )nnn xxyy ,...,1= . 

 

The open sets αU , βU  and maps  1−
βα φφ o  and 1−

αβ φφ o  

are all n-dimensional, so that rC  
manifold M is r-times 

differentiable and continuous i.e., M is a differentiable 
manifold. 
 
2.1 Space-time Manifold 

General Relativity models the physical universe as a 
four-dimensional ∞C  Hausdorff differentiable space-time 
manifold M with a Lorentzian metric g of signature 

( )+++− ,,,  which is topologically connected, paracompact 

and space-time orientable. These properties are suitable 
when we consider for local physics. As soon as we 
investigate global features then we face various 
pathological difficulties such as, the violation of time 
orientation, possible non-Hausdorff or non-
papacompactness, disconnected components of space-time 
etc. Such pathologies are to be ruled out by means of 
reasonable topological assumptions only. However, we like 
to ensure that the space-time is causally well-behaved. We 
will consider the space-time Manifold (M,g) which has no 
boundary. By the word “boundary’ we mean the ‘edge’ of 
the universe which is not detected by any astronomical 
observations. It is common to have manifolds without 
boundary; for example, for two-spheres S2 in 3ℜ  no point 
in S2 is a boundary point in the induced topology on the 
same implied by the natural topology on 3ℜ . All the 

neighborhoods of any 2Sp∈  will be contained within S2 

in this induced topology. We shall assume M to be 

connected i.e., one cannot have M YX ∪= , where X and Y 
are two open sets such that ϕ≠∩YX . This is because 

disconnected components of the universe cannot interact by 
means of any signal and the observations are confined to 
the connected component wherein the observer is situated. 
It is not known if M is simply connected or multiply 
connected. M assumed to be Hausdorff, which ensures the 
uniqueness of limits of convergent sequences and 
incorporates our intuitive notion of distinct space-time 
events. 
 
2.2 Topology and Tangent Space 

A topological space in a manifold is defined as follows:  
Let S be a non-empty set. A class T of subsets of S is a 
topology on S if T satisfies the following three axioms [3]: 

i. S and φ  belong to T, 

ii. the union of any number of open sets in T belongs 
to T, and 

iii.  the intersection of any two sets in T belongs to T. 
   The members of T are open sets and the space (S, T) 

is called topological space. 
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A kC -curve in M is a map from an interval of ℜ  in to 

M (figure–2). A vector ( )
( )0tt λ∂

∂  which is tangent to a 

1C -curve ( )tλ  at a point ( )0tλ  is an operator from the 

space of all smooth functions on M into ℜ  and is denoted 
by [2]; 
 

( )
( )

( )
( )

( )[ ] ( )[ ]
s

tfstf
Limt

fft stt

λλ
λλ

−+=






∂
∂=∂

∂
→0

0
0

. 

 
 
                                              

                                              • ( )bλ  

                         ( )tλ   • 

                                  • ( )aλ  

 
                                                                                     

                                λ  
  

                        •         •        •  
                             a              t             b 

Figure 2: A curve in a differential manifold. 
 

If { }ix   are local coordinates in a neighborhood of 

( )0tp λ=  then we get;  

                      

( ) ( )0
0

.
t

i

i

t x

f

dt

dx
t

f

λλ ∂
∂=







∂
∂ . 

 
Thus every tangent vector at ∈p M can be expressed as 

a linear combination of the coordinates derivates, 

( ) ( )
p

n
p xx ∂

∂
∂

∂ ,...,1
. Thus the vectors ( )ix∂

∂   span the 

vector space 
pT . Then the vector space structure is defined 

by ( ) ( ) ( )YfXffYX βαβα +=+ . The vector space 
pT is 

also called the tangent space at the point p. A metric is 
defined as; 
 

νµ
µν dxdxgds =2 ; 4,3,2,1, =νµ   (1) 

 
where 

µνg  is an indefinite metric in the sense that the 

magnitude of non-zero vector could be either positive, 
negative or zero. Then any vector 

pTX ∈  is called 

timelike, null or spacelike if; 
 

( ) ( ) ( ) 0,  ,0,  ,0, >=< XXgXXgXXg .  (2) 

 
An indefinite metric divides the vectors in 

pT  into three 

disjoint classes, namely the timelike, null or spacelike 

vectors. The null vectors form a cone in the tangent space 

pT  which separates the timelike vectors from spaelike 

vectors (figure–3). When the manifold has dimension four 
then it is called a space-time manifold and signature of the 
metric of the manifold is +2. The tangent vector for a 
particle travelling with a constant velocity less than that of 
light through a point p in such a space-time is represented 
by a timelike vector at p. 
 
3 Causality and Space-time Topology  

Given an event p in M, the lines at 450 to the time axis 
through that event give null geodesics in M. Such null 
geodesics form the boundary of the chronological future or 
past ( )pI ±  of an event p which contains all possible 

timelike material particle trajectories through p including 
timelike geodesics [1, 2]. The causal future ( )pJ+  is the 

closure of ( )pI + , which includes all the events in M, which 

are either timelike or null related to p by means of future 
directed non-spacelike curves from p. An event p 
chronologically precedes another event q, denoted by p << 
q, if there is a smooth future directed timelike curve from p 
to q. If such a curve is non-spacelike then p causally 
precedes q i.e., p < q. The chronological future ( )pI +  and 

past ( )pI −
  of a point p are defined as (figure–3).   

 

( ) { }qpMqpI <<∈=+ / , and 

 

( ) { }pqMqpI <<∈=− / . 

 
The causal future (past) of p can be defined as; 
 

( ) { }qpMqpJ <∈=+ / , and 

 

 ( ) { }pqMqpJ <∈=− / . 

 
                                Chronological future 
                                                   t     q 
Causal future ( )pJ +

         I 
+(p)       

 

Null geodesic through p       •   p                  S       

   
                                         I –(p) 

 
                                Chronological past 

 
Figure 3: Causality and chronology in M. 

 
Also qp <<  and rq <  or qp <  and rq << implies 

rp << . Hence, 

 

( ) ( )pJpI ++ =  and ( ) ( )pJpI ++ = && . 

 
4 Einstein Field Equations 
    Riemann curvature tensor;   
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β
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α
βσ

β
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α
βν

α
σµν

α
νµσ

α
µνσ ΓΓ−ΓΓ+Γ−Γ= ;;R

 (3) 
 
is a tensor of rank four. The covariant curvature tensor is 
defined by; 

    














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∂∂
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−
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∂
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xx
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xx
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xx
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( )λ
ρν

α
µω

λ
ρσ

α
µναλ ΓΓ−ΓΓg .  (4) 

 
Ricci tensor is defined as; 
 

.λµσν
λσ

µν RgR =
    

(5) 

  
Further contraction of (5) gives Ricci scalar; 
 

λσ
λσ RgR =ˆ     (6) 

 

The energy momentum tensor µνT is defined as; 
 

νµµν ρ uuT  0=     (7) 

 
where 

0ρ  is the proper density of matter, and if there is no 

pressure, and 
dt

dx
Xu

µ
µµ ==

 
is a tangent vector. A perfect 

fluid is characterized by pressure ( )µxpp = , then; 

 
( ) µννµµν ρ pguupT ++=     (8) 

 
where ρ  is the scalar density of matter. The principle of 

local conservation of energy and momentum states that; 
 

0; =µν
νT . 

 
Einstein’s field equations can be written as [4]; 

                                                         

µνµνµν
π

T
c

G
RgR 4

8

2

1 −=−    (9) 

 
where 1110673.6 −×=G  is the gravitational constant and 

810=c m/s is the velocity of light.  
 
5 Minkowski Space-time 
    The Minkowski space-time (M, g) is the simplest empty 
space-time in general relativity, and is in fact the space-time 
of the special relativity. Mathematically it is the manifold 
M = 4ℜ  and so that metric (1) for Lorentzian case becomes 
[4]; 
  

22222 dzdydxdtds +++−=   (10) 

 
where ∞<<∞− zyxt ,,, . Here coordinate t is timelike 

and other coordinates x, y, z are spacelike. This is a flat 
space-time manifold with all the components of the 

Riemann tensor 0=µ
νλσR . So the simplest empty space-

time solution to Einstein equation is; 
 

08 == µνµν πTG     (11)                                     

 
which underlies of the physics of special theory of 
relativity. Under Lorentz transformation the Minkowski 
metric preserves both time and space orientations. The 
vector 

t ∂
∂   provides a time orientation for this model. 

In spherical polar coordinates ( )φθ ,,,rt , where t = t,  

φθ sinsinrx = , φθ cossinry =  and θcosrz =  then 

(10) takes the  
 

22222 Ω++−= drdrdtds                            (12) 
 
with πφπθ 20  ,0  ,0 <<<<∞<< r  and 

2222  sin φθθ ddd +=Ω . Here coordinate t is timelike 

and other coordinates  φθ ,,r  are spacelike. There are two 

apparently singularities for r = 0 and 0sin =θ ; however 
this is because the coordinates used are not admissible 
coordinates at these points, i.e., we used spherical polar 
coordinates and the frames are now non-inertial. That is 
why we have restriction of φθ ,,r  as above and we need 

two such coordinate neighborhoods to cover all of the 
Minkowski space-time, then (12) will be regular. We 
assumed that all the components of the Riemann curvature 
tensor vanish for the Minkowski space-time which is a flat 
space-time. In ( )zyxt ,,,  coordinates this is very clear that 

all the metric components are constant, i.e., diagonal 

( )+++− ,,, , so all the connection coefficients, Γ’s, will 

vanish. But in spherical polar coordinates ( )φθ ,,,rt , the 

connection coefficients , Γ’s, will not vanish, for example, 

r=Γ1
22 ; however all the Riemann curvature components 

will still vanishes, 0=µ
νλσR  i.e., the manifold is still 

gravitation free, i.e., flat space-time [1, 2].   
   The Lorentz transformations on the Minkowski space-
time are defined as the set of those metric preserving 
isometries (a metric is isometries if ( ) ( )xgxg µνµν =  from 

the transformation of one inertial ix  to ix ) which are linear 
and homogeneous transformations. Physically these 
represent the change of reference frame from one inertial 
observer to another inertial observer. Hence the Lorentz 
transformations are defined by the coordinate change; 
 

µνµ
ν

µµ xxLxx L==′→    (13) 
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From the above and the fact that these are metric preserving 
isometries, it follows that 1det ±=µ

νL , so the matrix is non-

singular. If 1det =µ
νL  and further 10

0 ≥L , then the Lorentz 

transformation preserves both the orientations in space as 

well as time. If we transform µx′  to µx′′  then; 
 

µµµµ xLLxLxLx 211 ==′=′′ ,  (14) 

 
where LLLL 11 ≠ , i.e., Lorentz transformation forms a non-

Abelion group. 
 
The set of all the Lorentz transformations form a group 

where the identity map is given by 4I=µ
νδ  and the 

inverse is defined by inverse matrix 1−L . The Poincare 
group is defined by; 
 

TL +=+=′ νµ
ν

νµ
ν

µ xTxLx ,   (15) 

 
where T denotes transformation matrix. 

So, Lorentz group is a sub-group of Poincare group of 
transformations which are general inhomogeneous mapping 
that leave the general mapping consists of a Lorentz 
transformation together with an arbitrary transformation in 
space and time. This is ten parameter group, consisting of 
six Lorentz parameters (six rotations in space-time are; 

( )4,3,2,1,; =
∂
∂−

∂
∂= ji

x
xe

x
xeM

i
j

jj
i

i
ij

   , where 1=ie  

for i = 1,2,3 and 1−=ie  for i = 4) and four translation 

parameters 






 =
∂
∂= 4,3,2,1;i
x

L
ii

, and represents 

physically a mapping of one inertial frame onto another in 
general position in the space and time. These isometries 
form the ten parameter Lie group of isometries of flat 
space-time known as inhomogeneous Lorentz group which 
is Poincare group. 

In a coordinate system in which the metric takes (10), 

the geodesics γ  have the form, ( ) µµµ cvbvx +=  , where 
µb  and µc  are constants. Here 0≠µc  gives a new choice 

of the initial point ( )0γ  and 0≠µb  implies the 

renormalization of the vector X. Thus the exponential map 
MTe pp →:  is given by; 

 

( ) ( )pxXXex p
µµµ += ,   (16) 

       
where µX  are the components of X with respect to the 

coordinate basis 








∂
∂

µx
 of 

pT . Since pe  is one-one and 

onto, it is a diffeomorphism between 
pT  and M. Thus any 

two points of M can be joined by a unique geodesic curve. 

As pe  is defined everywhere on 
pT  for all T, (M, g) is 

geodesically complete. So, there is no singularity in 

Minkowski geometry. The geodesics of Minkowski space-
time are the straight lines of the underlying Euclidean 
geometry.  

An arbitrary event p in the Minkowski space-time is 
uniquely determined either by its chronological future 

( )pI +  or past ( )pI −
 .  

If a future directed non-spacelike curve γ  has a future 

end point p, then ( ) ( )pII −− =γ  ( ( )γ−I  is the union of all 

( )qI −  with q being a point on the curve γ ). On the other 

hand, if γ  is future inextensible without any future ideal 

point, the set ( )γ−I  determine a ‘point at infinity’ of M 

(figure 4). Two such curves 1γ  and 2γ  determine the same 

point or a point at infinity if ( ) ( )21 γγ −− = II  (figure 5). 

This defines future ideal points, and the past ideal points are 
defined dually. A future or past inextensible curve, in the 
context of Minkowski space-time is a trajectory which goes 
off to the infinity in future or past without stopping 
anywhere. 
 

In Minkowski space-time, there are future directed 
inextensible timelike curves γ  which have the same past, 

which is the entire space-time M, that is, ( )γ−I  = M. Hence  

all such timelike curves determine single future ideal point 
+i  (figure–7), called the future timelike infinity. The past 

timelike infinity is defined dually.  
 
 
 
 
                                                                                                  
 
 
 
                                  γ 
 
 
                                I–(γ) 
 
 

 
Figure 4: The timelike curves γ is future inextensible without future end 

points and it has an infinite length in future. 

 

Any timelike geodesic originated at 
−i  is finished at 

+i  (figure–7). Let the collection of future ideal points be 
denoted by I +, then there is a one-one and onto 
correspondence between the points of I

 + and such null 
hypersurfaces. Any such null hypersurface is determined by 
the value of the time t at which it intersects the time axis 
and by the direction of null vector at point of intersection. 
Since the set of all possible light rays’ direction at any point 
is equivalent to the two-sphere 2S , it follows that I + is a 

three-dimensional manifold with topology ℜ×2S . For 
Minkowski space-time three-dimensional null hypersurface 

I 
+ and I

 – are called future and past null infinities 
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respectively. A general space-time also would admit such a 
boundary construction under certain conditions such as 
being asymptotically flat and empty. One can show for the 
Minkowski space-time that all the complete null 
hypersurfaces are flat and so are like the surfaces { }tx = , 

in which case the topological structure of the null infinity is 
clearly I

 +
= ℜ×2S . It is not clear, however, that the null 

infinities will necessarily have the same topological 
structure even in the case of general space-time [1, 2, 4]. 
 
                                     º 

 
 

                     2γ             1γ  

 
 

                         ( )1γ−I  

 
Figure 5: The timelike curves  

1γ  and 
2γ

 
are future inextensible without 

future end points where ( ) ( )21 γγ −− = II . 

 

Minkowski space approaches ( )−+ ii  for indefinitely 

large positive (negative) values of its affine parameter, so 
one can regard any timelike geodesic as originating at −i  
and finished at +i . Similarly one can regard null geodesics 
as originating at I + and ending at I –, while spacelike 

geodesics both originate and end at 0i . Thus one may 

regard +i  and −i as representing future and past timelike 
infinities, I

 + and I – as representing future and past null 

infinities, and 0i  as representing spacelike infinity (non-
geodesic curves do not obey these rules; for example, non-
geodesic timelike curves may start on  I

  – and end on I  +). 
Since any Cauchy surface intersects all timelike and null 
geodesics, it is clear that it will appear as a cross-section of 
the space everywhere reaching the boundary at 0i . 
     It is possible to introduce a differential structure as well 
as a metric on I

 +. To see this, we first note that a 
convenient way to attach the ideal point boundary I

 + to M 

is to use a suitable conformal factor Ω  to obtain a 
transformation of the original space-time metric 

ijη , then; 

 

0,2 >ΩΩ=    ijijg η    (17) 

 
which leaves the causal structure of M invariant, because 
the null geodesics of 

ijη and the unphysical metric 
ijg  are 

the same up to a renormalization. Hence the past of any 
non-spacelike curve γ  is unchanged and there is a natural 

correspondence between ideal points in two space-times.  
Since light cones are unaltered by a conformal 

transformation, the boundary attachment obtained in this 
manner is coordinate independent. 
If in equation (12) the advanced and retarded null 
coordinates (an alternative coordinate system) are given by 
(figure–6); 

 
rtv += ,  rtu −=      (18) 

 
 
                                            t      r = 0 
 
 
 
 
                                                                     u = constant 
                                                                                              
 
                                                                     v = constant                                                    
                                                                        
 
                                         

 
                                             Ө 

 
 
 

                                                
 
 
                      

Figure 6: Future and past light cones are given respectively by the null 
surfaces u, v = constant. 

 
( )uv ≥  which gives  reference frame based on null cones, 

which is most suitable to analyze the radiation fields; then 
(12) becomes [4, 5]; 
 

( ) 222

4

1 Ω−+−= dvududvds
  

(19) 

with ∞<<∞− u  and ∞<<∞− v .  
 
     Now, information at future null infinity corresponds to 
taking limit as ∞→v , which amounts to moving in future 
along u = constant light cones and similarly past null 
infinity corresponds to ∞→u . Absence of 2du  and 2dv  
in (19) indicates that {u = constant} and {v = constant} are 
null. We can compactify the Minkowski pace-time M by 
means of a conformal transformation of equation (19) is 
given by; 
 

( ) ( ) 12122 11
−− ++=Ω uv . 

 
   From null coordinates u, v we define new null coordinates 
in which the infinities of v, u have been transformed to 
finite values. Let us introduce new coordinates p, q by v = 

tanp, u = tanq with 
22

ππ <<− p , . 
22

ππ <<− q  Then 

(19) becomes; 
 

( ){ }22222 sinsecsec Ω−+−= dqpdpdqqpds    .     (20)  
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The light cones are unaltered after conformal 

transformation. Then metric µνg  on the unphysical space-

time M , after conformal transformations is given by;  
 

( ) 22222 sin4 Ω−+−=Ω= dqpdpdqdssd  . (21) 

 
It is seen that equation (21) is a manifold embedded as a 

part of the Einstein static universe. To see this let; 
 
 
            i+ (q = π/2)               Light cone cut of null infinity is 
                                                   given by ( )ζζ ,uu =           

              I 
 +                   I+ (p)                I  + (p = π/2) 

                                         r = 0           Surface {q = constant}                                                                                                                                                                                                                 
     
                                                       
 i0                                                                        i0 (regarded          
                                                                           as one point) 
                            I– (p)  
                                                     
     
 
 
                                                      Null geodesics 
                                                  Surface {p = constant} 
Spacelike geodesics 
                                           i – 
                    Timelike geodesics 

 
Figure 7: Conformal infinity in the Minkowski space-time.  

 
qpT += , qpR −=    (22) 

 
where  ππ <+<− RT  and  ππ <−<− RT , R > 0 then 

(22) becomes in ( )φθ ,,,RT   as; 

 
22222  sin Ω++−= dRdRdTds .  (23) 

 

This is a natural Lorentz metric ℜ×3S  which is the 
Einstein static universe [1]. Then future null infinity is 
given by RT −= π  for π<< R0  and the past null 
infinity is given by RT +−= π  for π<< R0 . Let us 
introduce complex stereographic coordinates ζ  and its 

complex conjugate ζ  such that ( )ζζ ,uu =  on the sphere 

are defined by; 
 

θζ φ

2

1
cotie= ,    θζ φ

2

1
cotie−=

 
 








 −−= φθθθζ φ dideced i  
2

1
cot 

2

1
cos

2

1 2  

 








 +−= − φθθθζ φ dideced i  
2

1
cot 

2

1
cos

2

1 2  

 

θζζ
2

1
cos

4

1

2

1 42
0

2

ecP ==






 +  

 

222
2

0

 sin
 φθθζζ

dd
P

dd += . 

 
Hence (23) becomes  
   

2
0

222  
2

P

dd
rdudrduds

ζζ+−−= .  (24) 

   

Let us substitute uu ′= 2 , 
r 2

1=l   and the 

conformal factor is l 2=Ω , then conformal 
transformation of (24) becomes; 
 

2
0

22222 44
P

dd
dududdssd

ζζ+′+′−=Ω= ll .    (25) 

     
Dropping the primes we get; 
 

2
0

22222 44
P

dd
duddudssd

ζζ++−=Ω= ll .    (26)  

 
If ∞→r  then 0→l  and the null infinity I +  is 

defined by the condition 0=l . Future directed null cones 
are characterized by the values u, ζ  and ζ , so the 

coordinates ( )ζζ ,,u  can be used as coordinates on I
 +, 

which are called Bondi coordinates on I
 +. In this 

coordinate system a hypersurface of I
 +  has the metric; 

 

 
2

0

2

P

dd
ds

ζζ= . 

 
Hence I + is a null hypersurface which is generated by 

the null curves constant, =ζζ . For conformal metric;  

 

( )0,0,1,0=
∂

Ω∂
µx

 and 0=
∂

Ω∂
∂

Ω∂
νµ

µν

xx
g  on I  +.      (27) 

 

Hence Ω  is differentiable on M , the new unphysical 

manifold with boundary and 
µx∂

Ω∂  is a null vector. Ω  is 

smooth everywhere and 0=Ω  at I 
+, which is a null 

hypersurface. 

 
Now, we will discuss the complete light cone at any 

given apex point in the space-time. All the known null 
geodesic equations of the space-time are given by [2]; 
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12 2 =− l&&l u , 
 

02 =+ uu &l&& , 
 

 ( ) 021 2 =−+ ζζζζζ &&& ,              (28) 

 

( ) 021 2 =−+ ζζζζζ &&&& , 

 

044
2

0

22 =−−
P

uu
ζζ &&

l&&&l . 

 
Here dot denotes derivative with respect to affine 

parameter s. The last equation of (28) correspond to 

02 =ds . For simplicity let us consider the equation for the 

equatorial plane 
2

πθ =  then φζ ie= . Now we write; 

 

( )φζ φ && iei= , ( )2φφζ φ &&&&& −= iei

, ( )2φφζ φ &&&&& −−= − ie i . 

 
The third equation of (28) gives, 0=φ&& , b=φ& .  

 

The first equation of (28) gives, 
22

1

l

l&
&

+=u . 

 
The last equation of (28) gives, 2221 bll& =− . 
 

221 b
ds

d
l

l
l& −±==∴  

 

221 b

d
ds

l

l

−
±=∴ .   (29) 

 
If 0<l&  then a null ray moves away from the origin, if 

0>l&  then the ray moves away initially towards the origin 
of the coordinate system ( )∞== l,0r  and after reaching 

a maximum value 
mr  where 01 22 =−= mb ll& , it begins 

to move outwards and again 0<l& . We have [2, 4],  
 

221 b

bd
bdsd

l

l

−
−==φ .      (30) 

 

ds

d

ds

du l

ll
.

2
1

2
1

22
+=  

 

2222 212 l

l

ll

l d

b

d
du +

−
−= .  (31) 

At apex of the cone,
0ll = , 0uu = and 

0φφ = . Then, 

integrating the above equations from 
0l  to an arbitrary l  

we find the equations for one sheet of the light cone. For 
simplicity let us choose at apex 0,0 0 == φl . Integrating 

(30) and (31) we get; 
       

0

2
0

2

0 2

11

l

lb
uu

−−
+= .   (32) 

 

    ( )0
1sin lb−=φ .  

 

Initial direction b ranges from 0 to 
1

0
−

l .  Note that for a 

fixed apex one has a one-one relation between the initial 
direction b and the final angular position φ  on the future 

null infinity. By eliminating b from above equations we 
obtain the equatorial plane portion of the light cone cut 
which is given by; 
 

( )φcos1
2

1

0
0 −+=

l
uu .   (33) 

 
For the sheet 0<l& , φcos  is positive and 0>l& , 

φcos  is negative. Here we have considered only 

equatorial plane, so (33) describes only on 1S  worth of null 
rays, as we have null rays intersection I

 +, since we have 
restricted ourselves to the equatorial plane. For spherically 
symmetry the full cut, which is topologically 2S , can be 
generated by rotating this plane. 
 
6 Conclusions 

In this paper we have tried to give a simple explanation 
of the Minkowski geometry. Before discuss Minkowski 
geometry we have tried to explain briefly the general 
relativity, differential geometry and some necessary 
definitions. Thinking about the common readers, we have 
avoided complex mathematical calculations. First we have 
discussed the differentiable manifold, space-time manifold, 
topology and space-time causality conditions. Then we also 
have briefly discussed the Einstein equations and related 
symbols with these equations. We have stressed on the 
description of the Minkowski geometry and have tried our 
best to explain it clearly. We have added diagrams to clarify 
the descriptions and concepts of the paper to the readers. 
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