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Abstract

Space-time manifold plays an important role to egprthe concepts of Relativity properly. Causality space-time topology
make easier the geometrical explanation of Minkawplce-time manifold. The Minkowski metric is thienplest empty space-
time manifold in General Relativity, and is in falbe space-time of the Special Relativity. Hende the entrance of the General
Relativity and Relativistic Cosmology. No matenrticle can travel faster than light. So that place is the boundary of the
space-time manifold. Einstein equation plays anoirigmt role in Relativity. Some related definiticeasd related discussions are
given before explaining the Minkowski geometrythis paper an attempt has been taken to elucidat®inkowski geometry in
some details with easier mathematical calculatiorsdiagrams where necessary.

Keywords: Causal structure, Geodesics, Ideal points, Minkowskric, Space-time manifold.

1 Introduction

A manifold is essentially a space which is locally
similar to Euclidean space in that it can be codeby
coordinate patches but which need not be Euclidean
globally. Minkowski space-time manifold plays an
important role in both Special and General Relgtivio
explain Minkowski geometry we need proper knowledge
differential manifold and causal properties of gpime. A
brief discussion of manifold and causality has bgem®n
before discussing the Minkowski metric.

We cannot imagine relativistic problems without
Einstein equations. Einstein equation in the preseof
matter is given by [1];

1 871G
R, =3 g,R=- o T

w

Minkowski metric is on the basis of empty space
solution of Einstein equation. It is a flat spairee
manifold.# = 0* and is given by;

ds’ = —dt® + dx’ + dy? + dZ.

We have discussed its geometrical properties in
section-5.
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2 Manifold in Differential Geometry
Any pointp contained in a se® can be surrounded by

an open sphere or bz#l;k— p‘ <r, all of whose points lie

entirely inS, wherer > 0; usually it is denoted by;
S(p.r)={x:d(p,x)<r}.

Let p be a point in a topological space (defined later i
section 2.2M. A subseiN of M is a neighborhood qf iff
N is a superset of an open sét containingp, i.e.,

pOOON.

A functionf: A- B is a subset oAx B, such that i) if
XA, thereis a setlIB such that X, y) Of i) such an
elementy is unique , that is , ifx A, y, zOB such that
(x,y)Df, (X,Z)Df theny=z.If f:A_Bisa
function, then the image df, f(A), is the subset oB
defined as follows: f (A) ={ f(x)/ x0 A}, that is, f(A)
consists of elements @ of the form f(x), wherex is
some element k. Heref is a map fromA to B. A function
f: A B is one-one if each elementB®fis the image of
some element oA. The functionf is onto if for allx, yOI A,

f(X) = f(y) impliesx = y. The function is one-one and
onto if it is both one-one and onto.
Let R" be the set ofn-tuples (xl,,,,,x”) of real
numbers. A set of pointg/ is defined to be a manifold if
each point of.# has an open neighborhood which is

continuous one-one map onto an open sek"ofor somen.

A manifold is essentially a space which is locally
similar to Euclidean space in that it can be codeby
coordinate patches but which need not be Euclidean

globally. Map ¢:O . O' where OO R" and O' I R" is
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said to be a clasg’ (r > o) if the following conditions are
satisfied. If we choose a poiptof coordinates(xl,...,xn)
on O and its imageg(p) of coordinates (x'l,...,X'”) on
O' then by C' map we mean that the functiop is r-

times differential and continuous. If a map @ for all
r >0 then we denote it by ; also by C° map we mean

that the map is continuous. Amdimensional, C', real
differentiable manifoldM is defined as follows: Manifold

M has aC’ aItas{Ua,qLa} where u, are subsets oft
and g, are one-one maps of the corresponding to open
sets inR" such that;

1. u, coverMi.e., M =0u,>

2. If u,n Uﬂ 2@ then the map

@0 9U, nU,) - g, nu,) is
a C" map of an open subset oR" to an open

subset of R".

Condition (2) is very important for overlapping wio
local coordinate neighborhoods (figure—1). Now sag#p
U, and U, overlap and there is a poiptin y_ nu,-

Now choose a poirgin ¢ (U, ) and a point in qq,}(Uﬁ).

n
0"a

2,U,)

. -1 . . .
Figure 1: The smooth map§), © % on then-dimensional Euclidean

space[]"

Now ()= p. @ (p)= (@ °@)()=a. Let
coordinates ofq be (Xl,...,xn) and those ofr be

(yl,...,y“). At this stage we obtain a coordinate
transformation;

102

The open sety) , Uﬂ and maps @, 0(01}1 and [/ o@;l

are alln-dimensional, so thaC" manifold ./ is r-times
differentiable and continuous i.e// is a differentiable
manifold.

2.1 Space-time Manifold
General Relativity models the physical universeaas
four-dimensional c* Hausdorff differentiable space-time

manifold 4 with a Lorentzian metricg of signature
(— +,+ +) which is topologically connected, paracompact

and space-time orientable. These properties arabbeli
when we consider for local physics. As soon as we
investigate global features then we face various
pathological difficulties such as, the violation @fme
orientation, possible non-Hausdorff or non-
papacompactness, disconnected components of spaze-t
etc. Such pathologies are to be ruled out by medns
reasonable topological assumptions only. However|ike

to ensure that the space-time is causally well-bethaWe
will consider the space-time Manifoldi{,g) which has no
boundary. By the word “boundary’ we mean the ‘edgee’
the universe which is not detected by any astrooalmi
observations. It is common to have manifolds withou
boundary; for example, for two-spher@sin 3 no point

in £ is a boundary point in the induced topology on the
same implied by the natural topology an®. All the

neighborhoods of anyp [0 S? will be contained withirS®
in this induced topology. We shall assuré to be
connected i.e., one cannot have= X OY , whereX andY
are two open sets such thit nY # ¢. This is because

disconnected components of the universe cannatittey
means of any signal and the observations are cmhfin

the connected component wherein the observeruatsi.

It is not known if M is simply connected or multiply
connected.// assumed to be Hausdorff, which ensures the
uniqueness of limits of convergent sequences and
incorporates our intuitive notion of distinct spdiee
events.

2.2 Topology and Tangent Space
A topological space in a manifold is defined asofok:
Let S be a non-empty set. A cla3sof subsets oS is a
topology onSif T satisfies the following three axioms [3]:
i. Sand ¢ belong toT,

ii. the union of any number of open setg ibelongs
toT, and
iii. the intersection of any two setsTibelongs tdr.
The members oF are open sets and the spa&eT}
is called topological space.
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A Ck-curve inJM is a map from an interval dfi in to
M (figure-2). A vector(ty) which is tangent to a
0t/ie,)

C'-curve A(t) at a point z(t,) is an operator from the

space of all smooth functions o#f into [J and is denoted
by [2];

03, (=("%)  =uip sl b0,
Alto g 50 S

o —o—o—

a t b
Figure 2: A curve in a differential manifold.

If {x} are local coordinates in a neighborhood of
p= )|(t0) then we get;

AN L]
(At A dt ox

Thus every tangent vector @[]/ can be expressed as
a linear combination of the coordinates derivates,

(%Xl)p""’(%x”)p' Thus the vectors(%xi) span the

vector spacérp. Then the vector space structure is defined

by (aX + BY)f = a(Xf)+ B(Yf). The vector spacg, is

also called the tangent space at the ppinA metric is
defined as;

Alto)

ds’ =g, dx“dX’; pv=1234 @

where 9, is an indefinite metric in the sense that the

magnitude of non-zero vector could be either pasiti
negative or zero. Then any vectox oT, is called

timelike, null or spacelike if;
a(X,x)<0, g(X,x)=0, g(X,X)>0- @

An indefinite metric divides the vectors 1np into three
disjoint classes, namely the timelike, null or ke
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vectors. The null vectors form a cone in the tahgpace

Tp which separates the timelike vectors from spaelike
vectors (figure-3). When the manifold has dimendimur
then it is called a space-time manifold and sigreatf the
metric of the manifold is +2. The tangent vector o
particle travelling with a constant velocity lessn that of
light through a poinp in such a space-time is represented
by a timelike vector agb.

3 Causality and Space-time Topology
Given an evenp in ./, the lines at 45to the time axis

through that event give null geodesics .. Such null

geodesics form the boundary of the chronologicairiior
past |#(p) of an eventp which contains all possible

timelike material particle trajectories throughincluding
timelike geodesics [1, 2]. The causal futuge(p) is the

closure of|+(p), which includes all the events i, which

are either timelike or null related @by means of future
directed non-spacelike curves from. An event p
chronologically precedes another evgntienoted by <<
q, if there is a smooth future directed timelikevaifromp
to g. If such a curve is non-spacelike thencausally
precedeg] i.e.,p < g. The chronological futurq*(p) and

past| -(p) of a pointp are defined as (figure-3).
1"(p)={q0OM /p<<q}, and

1"(p)={q0M/q<<p}.

The causal future (past) pfcan be defined as;
J*(p)={a0OM/p<g}. and

J°(p)={qOM/q<p}.

Chronological futur

Causal futurg +(p)

Null geodesic through

Chronological past

Figure 3: Causality and chronologyhh

Also p<<gandq<r or p<( and(q<<rimplies
p <<r . Hence,

1°(p)=37(p) and I *(p)=J"(p).

4 Einstein Field Equations
Riemann curvature tensor;
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is a tensor of rank four. The covariant curvatunesor is
defined by;

_1( 09y , 0°9, 0°0,, 99, )4
VT 21 aXOXH OXTOXP OX'OXP  OX“OXH
ga/l (r:vr;a - r,gwr;jv ) ' (4)
Ricci tensor is defined as;
R, =9"R,,- (5)

Further contraction of (5) gives Ricci scalar;
R=g"R,, (6)

The energy momentum tensdr” is defined as;

7

T = p, u U’

where g is the proper density of matter, and if thereas n

pressure, ang“ = x # :Lﬂ
dt

fluid is characterized by pressyse= p(x”), then;

is a tangent vector. A perfect

T =(p+ p) v’ + pg"” ®)
where p is the scalar density of matter. The principle of
local conservation of energy and momentum statss th

T =0-
Einstein’s field equations can be written as [4];

1 871G
Ruv _E guvR = _?Tuv

©)
where G = 6673x10!! is the gravitational constant and
c =10 m/sis the velocity of light.

5 Minkowski Space-time
The Minkowski space-timeX(, g) is the simplest empty
space-time in general relativity, and is in faet #pace-time

of the special relativity. Mathematically it is thenifold
M= 0* and so that metric (1) for Lorentzian case becomes
[4];

ds’ =—dt’> +dx’ +dy’* +dZ (10)
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where—oo <t, X, Y,z <oo. Here coordinate is timelike
and other coordinates y, z are spacelike. This is a flat
space-time manifold with all the components of the
Riemann tensorRY, =0. So the simplest empty space-

time solution to Einstein equation is;

G, =8m, =0

» w (11)
which underlies of the physics of special theory of
relativity. Under Lorentz transformation the Minkski
metric preserves both time and space orientatidme
vector 0 provides a time orientation for this model.
ot
In spherical polar coordinate(s,r,ﬂ,(z), wheret = t,

X=rsindsing, y=rsinfcosg and z=rcosg then
(10) takes the

ds? = —dt? + dr? + r’dQ? (12)

with 0<r<omw,0<f<nm,0<¢<2n and

dQ? =d&? +sin” §d¢# . Here coordinate is timelike
and other coordinates ,8, ¢ are spacelike. There are two

apparently singularities far = 0 andsind = 0; however
this is because the coordinates used are not ablaiss
coordinates at these points, i.e., we used sphepmar
coordinates and the frames are now non-inertiaht Tt
why we have restriction of ,6,¢ as above and we need
two such coordinate neighborhoods to cover all loé t
Minkowski space-time, then (12) will be regular. We
assumed that all the components of the Riemanratune
tensor vanish for the Minkowski space-time whiclaiflat
space-time. In(t, x y,z) coordinates this is very clear that

all the metric components are constant, i.e., diabo
(—+ + +), so all the connection coefficientE;s, will

vanish. But in spherical polar coordinatésr,g,¢), the
connection coefficientsI,’s, will not vanish, for example,
lez =r; however all the Riemann curvature components
will still vanishes, R/‘;U:O i.e., the manifold is still
gravitation free, i.e., flat space-time [1, 2].

The Lorentz transformations on the Minkowski spa
time are defined as the set of those metric presgrv
isometries (a metric is isometriesgf,, (X) = 0w (X) from

the transformation of one inertiad to x') which are linear
and homogeneous transformations. Physically these
represent the change of reference frame from oeeiah
observer to another inertial observer. Hence theeita
transformations are defined by the coordinate chang

Xt o XH =X =Lx” (13)
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From the above and the fact that these are me®&epving
isometries, it follows thadetL/V‘ =+1, so the matrix is non-
singular. If get # =1 and further >1, then the Lorentz

transformation preserves both the orientationspace as
well as time. If we transfornx'# to x"# then;

X" = LX# = LLx* = Lx*, (14)

where LL, #L,L, i.e., Lorentz transformation forms a non-
Abelion group.

The set of all the Lorentz transformations form raug
where the identity map is given by, =1, and the

inverse is defined by inverse matrik™. The Poincare
group is defined by;

XU =X +TH=Lx +T, (15)

whereT denotes transformation matrix.

So, Lorentz group is a sub-group of Poincare grafup
transformations which are general inhomogeneoupimgp
that leave the general mapping consists of a Larent
transformation together with an arbitrary transfation in
space and time. This is ten parameter group, dorgisf
six Lorentz parameters (six rotations in space-tiane;

o 0 i 0 wheree =1
M=ex—r-ex' oo ()= 1234) 8
fori =1,2,3 andq =-] for i = 4) and four translation

parameters (L :i;i = 12,3,4], and represents
i ox

physically a mapping of one inertial frame onto theo in
general position in the space and time. These iB@se
form the ten parameter Lie group of isometries lat f
space-time known as inhomogeneous Lorentz grouphwhi
is Poincare group.

In a coordinate system in which the metric take®),(1

the geodesicy have the formx*(v) =b* v+c*, where
b# andc are constants. Here” # O gives a new choice
of the initial point (o) and b*#0 implies the
renormalization of the vectof. Thus the exponential map
e,:T, - M isgiven by;

x"(epx):X”+x"(p), (16)

where X# are the components of with respect to the

Xt
onto, it is a diffeomorphism betweef?) and M. Thus any

coordinate basi{ 0 } of T, Since ep is one-one and

two points of.# can be joined by a unique geodesic curve.
As €, is defined everywhere o, for all T, (M, g) is
geodesically complete. So, there is no singulaiity
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Minkowski geometry. The geodesics of Minkowski spac
time are the straight lines of the underlying Ededin
geometry.

An arbitrary eventp in the Minkowski space-time is
uniquely determined either by its chronological ufiet

1*(p) or pasty ~(p)-

If a future directed non-spacelike curyehas a future
end pointp, then |‘(y)= |‘(p) (|'(y) is the union of all
I-(q) with g being a point on the curvg). On the other
hand, if ) is future inextensible without any future ideal
point, the set| () determine a ‘point at infinity’ otk

(figure 4). Two such curvey; and )/, determine the same

point or a point at infinity if| '(yl) = I‘(yz) (figure 5).
This defines future ideal points, and the pastlideats are
defined dually. A future or past inextensible cyrire the
context of Minkowski space-time is a trajectory alhigoes
off to the infinity in future or past without stoimg
anywhere.

In Minkowski space-time, there are future directed
inextensible timelike curveg which have the same past,

which is the entire space-tin#, that is, | *(y) =M. Hence
all such timelike curves determine single futureaidpoint

i (figure=7), called the future timelike infinity.hE past
timelike infinity is defined dually.

AN
~

o)

Figure 4: The timelike curvesis future inextensible without future end
points and it has an infinite length in future.

Any timelike geodesic originated df is finished at

i (figure-7). Let the collection of future ideal pts be
denoted by g *, then there is a one-one and onto
correspondence between the pointsgof and such null
hypersurfaces. Any such null hypersurface is deatexchby
the value of the timé at which it intersects the time axis
and by the direction of null vector at point ofdrgection.
Since the set of all possible light rays’ directatrany point
is equivalent to the two-spherg?, it follows thaty ™" is a
three-dimensional manifold with topology?x[. For
Minkowski space-time three-dimensional null hypeface
J " and gy~ are called future and past null infinities
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respectively. A general space-time also would aduonih a
boundary construction under certain conditions sash
being asymptotically flat and empty. One can showtlie
Minkowski space-time that all the complete null
hypersurfaces are flat and so are like the surfz{lxest},

in which case the topological structure of the mfihity is
clearlys - S2x[J. It is not clear, however, that the null

infinities will necessarily have the same topoladic
structure even in the case of general space-tin, [.

.
L
L,
L
L
R £
L
L
L

1~ (n

A O
A
N\

PAY
s
1

N

N
N
N
yl RN
N
N
N
) N

Figure 5: The timelike curves/; and y, are future inextensible without

future end points Wherle’(yl) = ’(yz).

Minkowski space approacheis’ (l ) for indefinitely
large positive (negative) values of its affine paeter, so
one can regard any timelike geodesic as originaging
and finished a§*. Similarly one can regard null geodesics
as originating aty * and ending aty -, while spacelike
geodesics both originate and end idt Thus one may

regard i and i~ as representing future and past timelike
infinities, " and '~ as representing future and past null

infinities, and i° as representing spacelike infinity (non-
geodesic curves do not obey these rules; for exgmuoin-
geodesic timelike curves may start gii and end oo’ ).
Since any Cauchy surface intersects all timelikd aall
geodesics, it is clear that it will appear as &ssection of
the space everywhere reaching the boundaji$.at

It is possible to introduce a differentialustiure as well
as a metric ony *. To see this, we first note that a
convenient way to attach the ideal point boundéfyo
is to use a suitable conformal factd® to obtain a
transformation of the original space-time me%c then;

0; :anij' Q>0 an

which leaves the causal structure.&f invariant, because
the null geodesics o/f/ij and the unphysical metrigij are

the same up to a renormalization. Hence the pastngf
non-spacelike curve, is unchanged and there is a natural

correspondence between ideal points in two spacesti

Since light cones are unaltered by a conformal
transformation, the boundary attachment obtainedhis
manner is coordinate independent.
If in equation (12) the advanced and retarded null
coordinates (an alternative coordinate systempiaven by
(figure—6);
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v=t+r, u=t-r (18)

u = constant

\F constant

Figure 6: Future and past light cones are givepeetsvely by the null
surfaces, v = constant.

(vz u) which gives reference frame based on null cones,

which is most suitable to analyze the radiatiotdfigthen
(12) becomes [4, 5];

ds’ :—dudv+%(u—v)2d§22 (19)
with —co <U <o and-o <v<oo.

Now, information at future null infinity corsponds to
taking limit asv — oo, which amounts to moving in future
along u = constant light cones and similarly past null
infinity corresponds tal — oo. Absence ofdu® and dv?
in (19) indicates thaty = constant} and { = constant} are
null. We can compactify the Minkowski pace-tiroe by
means of a conformal transformation of equation) (9
given hy;

Q2 =[1+v2 ) i+ u?) ™
From null coordinates u, v we define new nubrcbnates

in which the infinities of v, u have been transfednto
finite values. Let us introduce new coordingtes| by v =

tarp, u = targ with —’% < p<£, —£<q<£_ Then
2 2 2
(19) becomes;

ds’ =sed psedq { - dpdg+sin?(p-q) dQZ}- (20)
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The light cones are unaltered after
transformation. Then metri@w on the unphysical space-

time M, after conformal transformations is given by;

62 =4Q2ds* = —dpdg+sin*(p-g) dQ?.  (21)

It is seen that equation (21) is a manifold embdddea
part of the Einstein static universe. To see #tis |

‘ Light cone cut of null infinitgi
given byu=u(¢,7)
I (p=nl2)

i° (regarded
as one point)

Null geodesics
urace {p = constant}
Spac
T
Timelike geodesics

Figure 7: Conformal infinity in the Minkowski spatiene.

T:p+q,R:p—q (22)

where —n<T+R<n and —n<T-R<7, R> 0 then
(22) becomes iI'(T , R,H,¢) as;

ds? =—dT? +dR? +sin?> RdQ?. (23)

This is a natural Lorentz metri§® x (] which is the
Einstein static universe [1]. Then future null mfy is
given by T=n-R for 0O<R<n and the past null
infinity is given by T=-7+R for 0O<R<7. Let us
introduce complex stereographic coordinatgs and its
complex conjugatg’ such thatu = u(Z,Z) on the sphere
are defined by;

; 1 = 1
=€e?cot=- 4 =e'’cot=4
¢ 2 ¢ 2
d¢ = —é“’[} cosed L 0do—i cotéﬁdqz)
2 2 2

dd = —e““’(l cosed 1«9d6+i (:ot1 Hdwj
2 2 2

conformal
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—\2
1+e¢) - P’ =Llcoseclo
2 4 2
dZP?Z =d& +sin0d¢’
0

Hence (23) becomes

ds’ = —du? —2dudr+r2@- (24)
I:)0
Let us substitutes = /2u', (= 1 and the
Jar
conformal factor is Q= \/E ¢, then conformal
transformation of (24) becomes;
&% = Q%ds’ = -4/%du’? + 4dudr + dZoiZ - (25
0

Dropping the primes we get;
&% = Q%ds’ = -40%du® + 4dud’ + dz‘iz - (28)

R

If r - oo then ¢ - O and the null infinitys ™ is
defined by the conditiory =0. Future directed null cones
are characterized by the values ¢ and 7, so the
coordinates(u,Z,Z) can be used as coordinates 6

which are called Bondi coordinates afi *. In this
coordinate system a hypersurface/6thas the metric;

ot = 8007
P02

Henceg ™ is a null hypersurface which is generated by
the null curves¢, ¢ =constantFor conformal metric;

0Q

_ 20 00
ax*

ox* ox”

(0100) and g =pgong". 27

Hence Q is differentiable onM , the new unphysical

manifold with boundary anda£ is a null vector.Q is
ox*

smooth everywhere an@) =0 at ", which is a null

hypersurface.

Now, we will discuss the complete light cone at any
given apex point in the space-time. All the knowull n
geodesic equations of the space-time are give2by [
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200 -1 =1,

+%=0,

¢(+¢7)-2742 =0, (28)

1+ ¢7)-2¢7 =0,

4072 —4u'e—z—i =0.
R

Here dot denotes derivative with respect to affine
parameters. The last equation of (28) correspond to

ds? = 0. For simplicity let us consider the equation floe t

equatorial planeg = 7 thend = €?. Now we write;
2

¢=elig). i =elip-¢7) ¢ =e(-ip-¢7)
The third equation of (28) giveg»=0, g=b.

1+7

207

The first equation of (28) giveg) =

The last equation of (28) gives- /2 = ¢?b?.

av :% = +/1- /%02

-t

If ¢ <0 then a null ray moves away from the origin, if

Ods==

7> 0 then the ray moves away initially towards the iorig
of the coordinate systeffr = 0,/ = ) and after reaching

a maximum valuer where ¢ = Jl—bszn =0, it begins
to move outwards and again< 0. We have [2, 4],

bd¢ . (30)
V1-¢%?

du_ 1,1 df

de 202 2% ds

dg=bds=-

dr dr (31)

— +—
2021- 12?207

du=
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At apex of the cong,=/ , U= uoand o=@ Then,

integrating the above equations frofy to an arbitrary/

we find the equations for one sheet of the lightecd~or
simplicity let us choose at apek= 0,¢, = 0. Integrating
(30) and (31) we get;

1-1-b?*/? . (32)

u=u,+ >
0

p=sin*(b,).

Initial directionb ranges from 0 tcfal. Note that for a

fixed apex one has a one-one relation betweenriali
directionb and the final angular positiop on the future

null infinity. By eliminating b from above equations we
obtain the equatorial plane portion of the lighiheocut
which is given by;

1
—ut—(1- . (33)
u uo+2€0(1 cosp)

For the sheet? <0, cosg is positive and/ >0,
cos¢ is negative. Here we have considered only

equatorial plane, so (33) describes onlygrworth of null
rays, as we have null rays intersectitfy since we have
restricted ourselves to the equatorial plane. pbescally
symmetry the full cut, which is topologicall®?®, can be
generated by rotating this plane.

6 Conclusions

In this paper we have tried to give a simple exatiam
of the Minkowski geometry. Before discuss Minkowski
geometry we have tried to explain briefly the geher
relativity, differential geometry and some necegsar
definitions. Thinking about the common readers, hage
avoided complex mathematical calculations. Firsthage
discussed the differentiable manifold, space-tinamifold,
topology and space-time causality conditions. Tiveralso
have briefly discussed the Einstein equations astated
symbols with these equations. We have stressedhen t
description of the Minkowski geometry and havedraur
best to explain it clearly. We have added diagreodarify
the descriptions and concepts of the paper toghéars.
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