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Abstract 
   An exact solution of Einstein equation is easier than actual solution. The Schwarzschild metric is established on the basis of 
Einstein’s exact solution and it is also a static and stationary solution. The Schwarzschild solution expresses the geometry of a 
spherically symmetric massive body’s (star) exterior solution. It predicts small observable departures from the Newtonian gravity. 
It also represents theory of black holes when sufficiently massive stars unable to support themselves against the pull of self 
gravity and must undergo a complete gravitational collapse when they have exhausted their internal nuclear fuel. Various sides of 
Schwarzschild geometry, such as, Kruskal–Szekeres extension, space-time singularities and black hole formation, are discussed 
with simple but detail calculations. The black hole is a region from which no causal signals can reach to the external observers 
and it contains a space-time singularity hidden within the event horizon. 
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1 Introduction 1 

Karl Schwarzschild (1873–1916) discovered 
Schwarzschild metric in December 1995. In 1916 he had 
died by a disease (perhaps by Pneumonia). Schwarzschild 
metric is established assuming a star isolated from all the 
gravitating bodies. In this paper we consider the procedure 
of Schwarzschild geometry and singularities therein. By the 
exact solution of Einstein equation prediction of general 
theory of relativity, such as, the perihelion shift of planets, 
when a light ray passes near a heavy mass then the ray is 
deflected by the gravitational effect of that body a shift 
towards the red end of spectrum, verified experimentally. 
The Schwarzschild solution of Einstein equation is also 
important for the interpretation of black hole. 
      Einstein field equation is highly non-linear and it is 
combination of ten equations connecting the total twenty 
quantities and to solve Einstein equation need to place 
constraints on the simultaneous choice of these twenty 
quantities. One generally needs to impose several 
symmetry assumptions on the space-time in order to work 
out the metric components as a solution to the Einstein 
equation. In the actual universe the energy-momentum 
tensor will be made up of contributions from a large 
number of different matter fields, so that we need a precise 
measurement of it to solve Einstein equation. In fact one 
has little idea of the behavior of matter under extreme 
conditions of density and pressure (i.e., near big bang). 
Hence exact solutions of Einstein equation are better than 
actual solutions [1].  
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    Schwarzschild established his metric by considering 
asymptotically flat solutions to Einstein’s equation. Hence 
in our study we will consider all the known solutions of 
null geodesics of the space-time. This provides a complete 
illustration of the light cone from an arbitrary apex in the 
space-time [3].  
 
2 Einstein field Equation 
        Einstein’s field equation can be written as [5]; 
 

µνµνµν
π

T
c

G
RgR 4

8
2
1 −=− .   (1) 

 
where G is the gravitational constant and c is the 

velocity of light. A metric is defined as; 
 

νµ
µν dxdxgds =2     (2) 

 

where µνg  is an indefinite metric in the sense that the 

magnitude of non-zero vector could be either positive, 
negative or zero. Ricci tensor is defined as; 
 

λµσν
λσ

µν RgR = .    (3) 

  
Further contraction of (3) gives Ricci scalar; 

 

λσ
λσ RgR =ˆ .    (4) 

 

The energy momentum tensor 
µνT is defined as; 

 
νµµν ρ uuT  0=     (5) 
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where 0ρ  is the proper density of matter, and if there 

is no pressure, and 
dt

dx
Xu

µ
µµ ==

 
is a tangent vector. A 

perfect fluid is characterized by pressure ( )µxpp = , then; 

 

( ) µννµµν ρ pguupT ++=    (6) 

 
where ρ  is the scalar density of matter. The principle 

of local conservation of energy and momentum states that; 
 

0; =µν
νT .  

 
Riemann curvature tensor   

 
β
µν

α
βσ

β
µσ

α
βν

α
σµν

α
νµσ

α
µνσ ΓΓ−ΓΓ+Γ−Γ= ;;R

       
(7) 

 
is a tensor of rank four. 
 

Einstein introduced a cosmological constant ( )0≈Λ  

for static universe solutions as; 
 

µνµνµνµν
π

T
c

G
gRgR

4

8

2

1 −=Λ+−  .  (8) 

 
It is clear that divergence of both sides of (1) and (8) is 

zero. For empty space 0=µνT  then µνµν gR  Λ= , then; 

 
0=µνR  for 0=Λ     (9)  

 
which is Einstein’s law of gravitation for empty space. 

 
3 Minkowski Space-time 
    The Minkowski space-time is the manifold M

4ℜ=  
with Lorentzian metric is given by; 
 

22222 dzdydxdtds +++−=   (10) 

 
where ∞<<∞− zyxt ,,, . Here coordinate t is 

timelike and other coordinates  x, y, z are spacelike. This is 
a flat space-time manifold with 0=µ

νλσR . In spherical polar 

coordinates (10) becomes; 
 

( )2222222 sin φθθ ddrdrdtds  +++−=       
(11) 

 
with πφπθ 20  ,0  ,0 <<<<∞<< r . Here 

coordinate t is timelike and other coordinates  φθ ,,r  are 

spacelike. 
 

Under Lorentz transformation the Minkowski metric 
preserves both time and space orientations. The geodesics 
of Minkowski space-time are straight lines of the Euclidean 

geometry. If a future directed non-spacelike curve γ  has a 

future end point p, then ( ) ( )pII −− =γ  ([2], [5]). Again, if 

γ  is future inextensible without any future ideal point, the 

set ( )γ−I  determine a ‘point at infinity’ of M. Two such 

curves 
1γ  and 2γ  determine the same point or a point at 

infinity if ( ) ( )21 γγ −− = II . This defines future ideal 

points, and the past ideal points are defined dually. In 
Minkowski space-time, ( ) =− γI M .Hence all such 

timelike curves determines single future ideal point 
+i  

(figure 2), called the future timelike infinity. The past 
timelike infinity is defined dually. Any timelike geodesic 

originated at 
−i  is finished at 

+i  (figure 1). Let the  

 
                                t      r = 0 
 
 
 
                                                 u = constant 
                                                                                              
 
                                                    v = constant                                                    
                                        Ө                                
 
 
 

 
 
 
 
 

Figure 1: Future and past light cones are given 
respectively by the null surfaces u = constant and v = 

constant. 
 

Collection of future ideal points be denoted by I
  +, and 

I
  +  is a three-dimensional manifold with topology ℜ×2S . 

For Minkowski space-time three-dimensional null 
hypersurface I 

+ and I
 – are called future and past null 

infinities respectively [3]. 
If in equation (11) the advanced and retarded null 

coordinates are given by (figure 1); 
 

rtv += ,  rtu −=          (12) 
 

then (11) becomes; 
 

( ) ( )22222 sin
4

1 φθθ ddvududvds  +−+−=
        

(13) 

 
 with ∞<<∞− u  and ∞<<∞− v . 
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    Absence of 2du  and 2dv  in (13) indicates that {u = 
constant} and {v = constant} are null. 
 
 
            i+ (q = π/2)               Light cone cut of null infinity is 

                                                   given by ( )ζζ ,uu =           

             I 
 +                I+ (p)                  I  + (p = π/2) 

                                         r = 0          Surface {q = constant}                                                                                                                                                                                                                             
     
                                                       
 i0                                                                        i0 (regarded          
                                                                           as one point) 
                            I– (p)  
                                                    i – 
     
 
 
                                                    Null geodesics 
                                                  Surface {p = constant} 
Spacelike geodesics 
 
                    Timelike geodesics 
 

Figure 2: Conformal infinity in the Minkowski space-
time. The future and past null infinities are I  I  I  I  

±. 
 
4 Schwarzschild Geometry 
     The Schwarzschild metric represents the empty exterior 
solution where the Ricci tensor vanishes and which is 
matched to the interior solution inside the body. In 

( )φθ ,,,rt  coordinates, the Schwarzschild metric is given 

by; 
 

2
1

22 2
1

2
1 dr

r

m
dt

r

m
ds

−








 −+






 −−=    

 ( )2222 sin φθθ ddr  ++               (14) 

 
 where r = 2m is the Schwarzschild radius, for the earth 

r = 1 cm and for the sun r = 3 km. Here coordinate t is 

timelike and other coordinates  φθ ,,r  are spacelike. The 

range of coordinate t is ∞<<∞− t . From (14) we see 
that for t = constant and r = constant we find the two-
sphere; 
 

( )22222 sin φθθ ddrds  +=     (15) 

 

and the area of such two-sphere would be 24 r π . 
Here we have; 
  

2c

GM
m= ,    (16) 

 
where M is the point mass at the origin which gives rise 

to the Newtonian gravitational potential φ . From (16) we 

observe that the Schwarzschild solution is interpreted as 

describing the gravitational field of a point particle with 
mass m situated at the centre, in relativistic units G =c = 1 
[2], The coordinate r is restricted by the condition 

mr 2> , as the metric (14) has an apparent singularity at 

r = 2m.  If 0r  is the boundary of a star then 0rr >
 
gives 

the outside metric as in (14). If there is no surface, (14) 
represents a highly collapsed object viz. a black hole of 
mass m [5]. The metric (14) has singularities at r = 0 and r 
= 2m, so it represents patches mr 20 <<  or 

∞<< rm2 . If we consider the patches mr 20 <<  
then it is seen that as r tends to zero, the curvature scalar, is 
divergent and it follows that the point r = 0 is a real space-
time singularity. 
 

6

248
r

m
RR =µνσλ

µνσλ  

 
t r = 2m the curvature scalars are well behaved at this 

point, so it is a singularity due to inappropriate choice of 
coordinates. The maximal extension of the manifold (14) 
with ∞<< rm2  was obtained by [4] and [6]. We now 
discuss about this, which uses suitably defined advanced 

and retarded null coordinates. For null geodesics 02 =ds , 

02 =θd , 02 =φd , then (14) takes the form, 

 

2
1

2 2
1 

2
1 dr

r

m
dt

r

m
−








 −=






 −
 

 

dr
mr

r
t ∫ −

±=
2

 

 

+














 −+±= 1
2

log2
m

r
mr constant 

 
*rt = +constant.    (17) 

 
    The null coordinates u and v are defined by; 
 

*rtu −= ,  *rtv +=  
 

2
* uv

r
−=     (18) 

 
Now; 
 

2
1

2 2
1 

2
1 dr

r

m
dt

r

m
−








 −+






 −  

 

( )2*2 1
2

2
drdt

m

r

r

m −






 −−=  
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( )
dudvee

r

m m
uv

m
r

  
2 22

−−−=    

   
 

Hence (14) becomes; 
 

( )
dudvee

r

m
ds m

uv
m

r
  422 2 −−−=   

     ( )2222 sin φθθ ddr  ++ .   (19) 

 
As mr 2→  corresponds to ∞→u  or −∞→v , we 

define new coordinates U and V by; 
 

m
u

eU 4
−

−=  , m
v

eV 4=  
 

( )
dudve

m
dUdV m

uv

 
16

1 4
2

−
= . 

 
Hence (19) becomes; 

 

( )22222
3

2 sin
32 φθθ ddrdUdVe

r

m
ds m

r
  ++−= − .    (20) 

 
     Hence there is no singularity at U = 0 or V = 0 which 
corresponds to the value at r = 2m.  
    Let us take a final transformation by;  
 

2

VU
T

+=   and 
2

UV
X

−= , then (20) becomes; 

 

( ) ( )2222222
3

2 sin
32 φθθ ddrdXdTe

r

m
ds m

r
 +++−= −

    
(21) 

 
which is Kruskal–Szekeres form of Schwarzschild 

metric. Then transformation ( )rt ,  to ( )XT,  becomes; 

 

( )







 −==−=− − 1
2

 2222

m

r
eeUVTX mrmuv

          

(22) 

 

m

t

X

T

4
tanh=   

X

T
mt 1tanh4 −=⇒ .                    (23) 

 

     From (22), 0>r  gives 122 −>−TX . The physical 

singularity at r = 0 gives ( ) 2
1

2 1−±= TX , and we 

observe that there is no singularity now at r = 2m.  
     The original Schwarzschild solution for mr 2>  
corresponds to the region I which is interpreted as the 
exterior gravitational field of a collapsing body. Regions I 

and I ′  are asymptotically flat and of identical properties. 
We use a conformal diagram of figure 3 as figure 4.  

    There is no causal communication between regions I 

and I ′ ; any observer or photon from region I either goes 
away to infinity or crosses the null line X = T and enters 

region II . When an observer falls into the closed trapped 
surfaces region II , cannot escape from it and within a finite 
proper time the observer must fall into the singularity at 

( ) 2
1

2 1−= TX . 

 
 
                            T      Singularity, r = 0 
  
                                        
 
                                                             r = 2m, t = + ∞ 
                            II 
 

          I ′                                    I 
                                                                    X 
 
                 II ′                           r = 2m, t = – ∞ 
 
 
 
 
        Singularity, r = 0 
                                                                             

Figure 3: The Kruskal–Szekeres extension of the 
Schwarzschild metric. 

 
Any light signal emitted from region II  must fall into 

the singularity and never cross to region I. Hence region II  
is termed black hole.  
 
                          Future singularity, r = 0 

                i+                                              i+ 
                                                 II  
                I  +                                                   I

  +  

                         I ′                                      I       t = constant 
 

        i0                                                                       i0 
 
 
                   I  –                            II ′            I  – 
 
                             
                                Past singularity, r = 0 

 
Figure 4: A conformal representation of the 

Schwarzschild geometry. 
 
 

The region I ′  is another asymptotically flat universe 

on the other side of the Schwarzschild ‘throat’. The 
2S , r 

= constant surfaces are almost Euclidean for large values of 
r, but for small r, their areas decreases to a minimum 

corresponding to that of the value mr 2= , and then it 

increases again as the 2S . 
Expand in the other region of asymptotically flat three 

space. However, if we consider a complete gravitational 
collapse of a spherically symmetric homogeneous dust 

cloud the regions I ′  and II ′  are no longer relevant as 
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they are replaced by the interior metric which is not 
vacuum Schwarzschild, 

µνT  being non-zero there (figure 5). 

     The region II ′  has time reversed properties of region II  
and also called a white hole. A particle emitted by the 

singularity at ( ) 2
1

2 1−−= TX  must leave this region within 

a finite proper time. Each point of figure 3 is 
2S  in space-

time.  
                                         
 
                                   T         
                                                                    r = 0 Singularity 
                                                    II  

                          
                                                       r = 2m 
              
                                                            I 
              
                                                                      X      
                                            Matter                                                                 
                                                                                                           
 
 
 
 

Figure 5: Complete gravitational collapse of a 
homogeneous dust cloud represented in the Kruskal 

picture. 
 
 

If a source at a point p in the region mr 2>  emits a 
flash of light from p, then there will form two 2S , one by 
the outgoing wave front and the other by ingoing wave 
front, the area of outgoing sphere  will be greater than 

ingoing one. But in region mr 2<  both areas of the 
ingoing and outgoing sphere will be less than that at p. 
Then p is a closed trapped surface. In the extended 
Schwarzschild manifold, the surface mr 2=  is a null 

hypersurface and at each point there is 
2S  surface of area 

2 16 mπ . The uncovered portions of region I and II  
represent the vacuum Schwarzschild geometry exterior to 
the collapsing matter. The portion of region II  indicates that 
a Schwarzschild black hole is always produced in the 
complete gravitational collapse which fully covers the 
resulting space-time singularity of infinite curvature and 
density, which plays an important role in cosmic censorship 
and the black hole formation. The straight lines TX ±=  
are odd labeling in the Schwarzschild solution, since on this 
line ±∞=t . 
       Let us consider the Schwarzschild solution in spacelike 

surface r = constant and the equatorial plane 
2

πθ =  then 

(14) becomes; 
 

( )22222
1

2 sin
3

1 φθθ ddrdr
r

m
ds  ++







 −=
−

. 

 

which is embedded in the ordinary Euclidean geometry. 

Here, brr <<0  is filled by matter of spherical star with 

a boundary at brr = . We have retarded time; 

 

( )mrmrtu 2log2 −−−=  

 

( ) ( ) dudr
mr

r
dr

mr

r
dtdu

2

2

2
2

2

2
22

−
−

−
−= , 

 

2
1

22 2
1 

2
1 

2
1 dr

r

m
dt

r

m
dudrdu

r

m
−








 −+






 −−=−






 −− . 

 
     Then (14) takes the form; 
 

( ) .sin2
2

1 222222
    φθθ ddrdudrdu

r

m
ds ++−







 −−=

 
(24) 

 

Let us put 
r 2

1=l  and uu =′ 2 . Let us introduce 

complex stereographic coordinates ζ  and its complex 

conjugate ζ  such that ( )ζζ ,uu =  on the sphere are 

defined by; 

  
θζ φ

2

1
cotie= ,    θζ φ

2

1
cotie−=  

 








 −−= φθθθζ φ dideced i  
2

1
cot 

2

1
cos

2

1 2  

 








 +−= − φθθθζ φ dideced i  
2

1
cot 

2

1
cos

2

1 2  

 

θζζ
2

1
cos

4

1

2

1 42
0

2

ecP ==






 +
 

 

222
2

0

 sin
 φθθζζ

dd
P

dd += . 

 
    Hence the conformal transformation of (24) becomes; 
 

( ) 22222 4221 udmdssd ′−−=Ω= ll   

 

2
0

2.22
P

dd
dud

ζζ+′+ l  

( )
2

0

232 4 224
P

dd
dududm

ζζ+′+′−−= lll

       

(25) 
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where l21 ==Ω −r . 
 

      The new coordinate l  is now finite at infinity and I + 

is described by the hypersurface 0=l , which 
corresponds to ∞=r . The Lagrangian for the geodesics 
is written as; 
 

( )
2

0

232
2

2

2
2 222

2

1

P

dd
uum

ds

sd
L

ζζ &&

l&&&ll −−−=−=
    

(26) 

 
where dot denotes derivative with respect to affine 

parameter s. 
 
     The known equations for null geodesics are [2]; 
 

( ) 1 222 32 =−− l&&ll um , 

 

  ( ) 0 232 2 =−+ umu &ll&& ,    

 

  ( ) 021 2 =−+ ζζζζζ &&& ,    (27)     

 

( ) 021 2 =−+ ζζζζζ &&& , 

 

( ) 04 224
2

0

232 =−−−
P

uum
ζζ &&

l&&&ll . 

 

where the last equation corresponds to 02 =ds . For 

simplicity let us take equatorial plane 
2

πθ = . From a fixed 

apex this yields an 
1S  worth of null geodesics. For 

2

πθ = , φζ ie= , then third equation of  (27) gives  

 

b== φφ &&&   ,0 . 

 
     From the first equation of (27) we get; 
 

( )32 222

1

ll

l&
&

m
u

−
+= .   (28) 

 
     From the last equation of (27) we get; 
 

Abmb =+−= 122 22322
lll&  (say), 

 

A±=l& ,      
A

d
ds

l±= . 

 
Again,  
 

A

d
bbdsd

l±==φ .   (29) 

 
     The null rays coming from an arbitrary apex are divided 
into two sets (the two sheets of A) that are given initially by 

0<l&  and 0>l& . 

      For the first sheet ( 0<l& ) the geodesics continue with a 

decreasing l  (increasing r) until intersection with I +. For 

the rays which begin with 0>l& , that is, those rays with 

initially increasing l  (decreasing r), some reach a 

minimum l  (when A = 0) and then begin to move 
outwards, and eventually intersect I 

+. For others depending 

on b they continue to move towards increasing l  and 
eventually fall within the horizon and do not reach I +.   

     For the second sheet ( 0>l& ), the range is again from 

mb  to b = 0, but now there is a critical value cb  such that 

for all 
cbb <  the rays continue past the horizon, so that 

range for b is mc bbb << . From (28) we get for the first 

sheet ( 0<l& ); 
 

( )
( )
( ) ( )A

b

A

Ab

m

A
u

+
=

−
−=

−
−=

1212
1

222

1 22

32
ll

&  

 

( )AA

db
du

+
=

12

2
l

.     

  
 
    Integrating we get,  
 

∫∫ +
′

+
′

−=
l

l

l

l

ll

00
12

1

2

1 22

0
A

db

A

db
uu .  (30) 

 
     Since A is a cubic, both the integrals of (30) are elliptic 
integrals due to 0≠m . If m = 0 then (29) reduce to flat 

space-time case.  If ( )∞== r  0l  then (30) becomes by 

dropping primes; 
 

∫∫ +
−+=

00

0

2

0

2

0
12

1
2
1

ll

ll

A

db

A

db
uu .   (31) 

 
     From (31) we get; 
 

∫=
0

0

l

l

A

d
bφ .    (32) 

 
    We now consider the second sheet (0>l& ). The 

integration procedure is slightly complicated than 0<l& .    
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We integrate (29) with  A+  (for fixed b) to the ‘bounce’ 

point bl  after which we return to the first sheet  

( A− ) and integrate to 0=l  to 0l ;  

 

( )∫∫ +
′

++=
0

0 0

22

0
12

12

2

1
ll

l

ll

AA

db

A

db
uu

b

 (33) 

 

∫∫ +=
0

00

2
ll

ll

A

d
b

A

d
b

b

φ .   (34) 

 
Equation (33) and (34) are very complicated and are 
difficult to integrate, since A is cubic.  
 
Conclusions 

In this paper we have tried to give a simple explanation 
of the Schwarzschild geometry. We have avoided complex 
calculations thinking about the common readers. Those 

who want to know more about the Schwarzschild geometry 
we refer to see them [1] and [2]. 
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