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Abstract

An exact solution of Einstein equation is easiemtlactual solution. The Schwarzschild metric istgdghed on the basis of
Einstein’s exact solution and it is also a statid atationary solution. The Schwarzschild solutspresses the geometry of a
spherically symmetric massive body’s (star) extesmlution. It predicts small observable departdresh the Newtonian gravity.
It also represents theory of black holes when cigfitly massive stars unable to support themsehgednst the pull of self
gravity and must undergo a complete gravitatiooihpse when they have exhausted their interndkeauoduel. Various sides of

Schwarzschild geometry, such as, Kruskal-Szekedengon, space-time singularities and black hotenftion, are discussed
with simple but detail calculations. The black hide region from which no causal signals can reacde external observers
and it contains a space-time singularity hidderiwithe event horizon.

Key words: Einstein equation, Schwarzschild solution, Blacleh8pace-time singularity.

1 Introduction

Karl Schwarzschild (1873-1916) discovered
Schwarzschild metric in December 1995. In 1916 &d h
died by a disease (perhaps by Pneumonia). Schvelzsc
metric is established assuming a star isolated fatinthe
gravitating bodies. In this paper we consider trecedure
of Schwarzschild geometry and singularities therBinthe
exact solution of Einstein equation prediction @ngral
theory of relativity, such as, the perihelion sloftplanets,
when a light ray passes near a heavy mass therayhis
deflected by the gravitational effect of that boayshift
towards the red end of spectrum, verified expertalgn
The Schwarzschild solution of Einstein equationaiso
important for the interpretation of black hole.

Einstein field equation is highly non-lineand it is
combination of ten equations connecting the totanty
guantities and to solve Einstein equation need l&xep
constraints on the simultaneous choice of thesentijwe
guantities. One generally needs to impose several
symmetry assumptions on the space-time in ordevaidk
out the metric components as a solution to the tEims
equation. In the actual universe the energy-monmentu
tensor will be made up of contributions from a &rg
number of different matter fields, so that we naqurecise
measurement of it to solve Einstein equation. It fae
has little idea of the behavior of matter underrexie
conditions of density and pressure (i.e., near lbgg).
Hence exact solutions of Einstein equation areebéttan
actual solutions [1].
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Schwarzschild established his metric by conside
asymptotically flat solutions to Einstein’s equatidience
in our study we will consider all the known soluiso of
null geodesics of the space-time. This providesrapete
illustration of the light cone from an arbitraryeapin the
space-time [3].

2 Einstein field Equation
Einstein’s field equation can be writter{%{s

1 876G
Ry —EgWR=— p T, 1)

v

where G is the gravitational constant amdis the
velocity of light. A metric is defined as;

ds’ =g, dx“dx’ @

where g, is an indefinite metric in the sense that the

magnitude of non-zero vector could be either pasiti
negative or zero. Ricci tensor is defined as;

R, =9"R,,, - ®)
Further contraction of (3) gives Ricci scalar;

R=g"R,,. @)
The energy momentum tensér*” is defined as;

T = p, UL’ (5)
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where 0, is the proper density of matter, and if there

M
is no pressure, ang” = X# = di is a tangent vector. A
dt

perfect fluid is characterized by pressype= p(x”), then;

T =(p+ p) v'u” + pg*” ®)

where O is the scalar density of matter. The principle
of local conservation of energy and momentum stihizs

wo_
T:V =0.
Riemann curvature tensor

+Ig e -Tars ()

a _ra a
R =r -r pv' uo po' uv

\uvo How Hvio

is a tensor of rank four.

Einstein introduced a cosmological consta{h(z O)
for static universe solutions as;

1 87G
R =5 0uR*A G, === T, ®

4
C

It is clear that divergence of both sides of (1d &) is
zero. For empty spacg,, = 0 then RW =A O then;

R, =0 for A=0 (9)
which is Einstein’s law of gravitation for emptyasye.

3 Minkowski Space-time

The Minkowski space-time is the manifeld= [] 4
with Lorentzian metric is given by;

ds? = —dt® + dx® + dy? + dZ (10)

where — oo <t, X, Yy, Z < oo . Here coordinateis

timelike and other coordinates y, zare spacelike. This is
a flat space-time manifold witR“ =0. In spherical polar

coordinates (10) becomes;
ds® =—dt? +dr? +r?(d6% +sin? 6 dg?) (1)

with 0<r <o, 0<f<7m,0<¢g<2n.Here
coordinatd is timelike and other coordinates,9,¢ are
spacelike.

Under Lorentz transformation the Minkowski metric
preserves both time and space orientations. Thdegézs
of Minkowski space-time are straight lines of theckdean
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geometry. If a future directed non-spacelike cuj¢ehas a
future end poinp, then | ~(y) = 17(p) (21, [5]). Again, if

y is future inextensible without any future ideaimipthe
set | *(y) determine a ‘point at infinity’ ofi. Two such
curves y, and J, determine the same point or a point at
infinity it 17(;)=17(),). This defines future ideal
points, and the past ideal points are defined guafi
Minkowski space-time, | ~(y)=.# .Hence all such

timelike curves determines single future ideal poiﬁ
(figure 2), called the future timelike infinity. €hpast
timelike infinity is defined dually. Any timelike epdesic

originated ati ~ is finished ati * (figure 1). Let the

Figure 1: Future and past light cones are given
respectively by the null surfaces = constant andv =
constant.

Collection of future ideal points be denoted$y, and

J* is a three-dimensional manifold with topolo@f x[J .
For Minkowski space-time three-dimensional null
hypersurfaces * and '~ are called future and past null
infinities respectively [3].

If in equation (11) the advanced and retarded null
coordinates are given by (figure 1);

V=t+r, u=t-r (12)

then (11) becomes;
ds = —dudv+%(u VP (dg? +sinfa dg?)  13)

with —co <U<o0 and—oo<y<o0,
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Absence ofdu? and dv? in (13) indicates that{=
constant} and ¥ = constant} are null.

i° (regarded
as one point)

Null geodesics
urface { = constant}

Timelike geodesics

Figure 2: Conformal infinity in the Minkowski space-
time. The future and past null infinities are 4=,

4 Schwarzschild Geometry

The Schwarzschild metric represents the erayptigrior
solution where the Ricci tensor vanishes and wisich
matched to the interior solution inside the body. |
(t I8, (0) coordinates, the Schwarzschild metric is given

by;

-1
4 = —(1—2”‘] at? +(1_sz dr?
r r

+12(d6? +sin? 6 dg?) (14)

wherer = 2mis the Schwarzschild radius, for the earth
r = 1 cm and for the sun= 3 km. Here coordinateis

timelike and other coordinated ,5,¢ are spacelike. The
range of coordinateis —00 <t <00 . From (14) we see

that fort = constant and = constant we find the two-
sphere;

ds? =r?(d6? +sin 6 d¢?) (15)
and the area of such two-sphere woulddser 2.
Here we have;

_GM

CZ

m (16)

whereM is the point mass at the origin which gives rise
to the Newtonian gravitational potentigl. From (16) we
observe that the Schwarzschild solution is integufeas
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describing the gravitational field of a point pelei with
massm situated at the centre, in relativistic units G=t
[2], The coordinater is restricted by the condition

I >2m, as the metric (14) has an apparent singularity at
r=2m. If I is the boundary of a star thdn> I, gives

the outside metric as in (14). If there is no stefa(14)
represents a highly collapsed object viz. a blacle rof
massm [5]. The metric (14) has singularitiesrat 0 andr

= 2m, so it represents patched<r<2m or

2m<r <. If we consider the patche® <r <2m
then it is seen that agends to zero, the curvature scalar, is
divergent and it follows that the point O is a real space-
time singularity.

R/xva/l R - 48m2

VoA 6
" r

t r = 2m the curvature scalars are well behaved at this
point, so it is a singularity due to inappropriateice of
coordinates. The maximal extension of the manifdld)
with 2m<r <o was obtained by [4] and [6]. We now
discuss about this, which uses suitably definedaaded

and retarded null coordinates. For null geodedé =0,
dé” =0,d¢? =0, then (14) takes the form,

-1
(ﬂ:‘j dt (12:“] ar?

t= J_r_[ - _rzmdr

= i[r + 2m|og(2L —1)} + constant
m

t =r’ +constant. (17)
The null coordinates andv are defined by;
u=t-r’, v=t+r
=YY (18)
2
Now;
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= -2 o e(H%m dudv
r

Hence (14) becomes;
_r (V‘U)
d¢ =-2Me7m ¢ i dudv
r
+r?(de? +sin? 6 dg?). (19)

As r — 2m corresponds tq)  «» Of v - —oco , We
define new coordinatdsg andV by;

U =-e/im v =g/

(v-u)
dudv= ! 5 € Vi dudv.
16m

Hence (19) becomes;

3 r
dg =32 ¢ Vom qudv+ rz(dH2 +sin’@ d¢2)- (20)
r

Hence there is no singularity dt= 0 orV = 0 which
corresponds to the valuerat 2m.
Let us take a final transformation by;

_V-U

:U+V and X =

T , then (20) becomes;

ds? =%”“3e‘72m(—cﬂ2 +dx?)+r2(de? +sinto dg?)  (21)

which is Kruskal-Szekeres form of Schwarzschild
metric. Then transformatio(t, r) to (T, X) becomes;

X2 -T2 =V =glrzm = gram (2r _1] 2
m

4T
T _tanh L =t=dmtani*—. (23)
X 4m X

From (22),r >0 gives X?-T2>-1. The physical

singularity atr = 0 gives X =-'_-(T2 —1)%, and we
observe that there is no singularity now at2m.

The original Schwarzschild solution for >2m
corresponds to the regioh which is interpreted as the
exterior gravitational field of a collapsing bodyegionsl

and |' are asymptotically flat and of identical propestie
We use a conformal diagram of figure 3 as figure 4.
There is no causal communication between regdion

and |'; any observer or photon from regibreither goes
away to infinity or crosses the null liné = T and enters
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regionll. When an observer falls into the closed trapped
surfaces regiofi, cannot escape from it and within a finite
proper time the observer must fall into the singtyaat

X =(r7-1)2.

T Singularity,r =0

A

™

Figure 3: The Kruskal-Szekeresextension of the
Schwarzschild metric.

r=2mt=+w

r=2mt=-ow

Any light signal emitted from regioH must fall into
the singularity and never cross to reglofdence regionl
is termedblack hole

Future singularityz 0
s+
|

Past singularity; 0

Figure 4: A conformal representation of the
Schwarzschild geometry.

The region |" is another asymptotically flat universe

on the other side of the Schwarzschild ‘throat’eTSZ, r
= constant surfaces are almost Euclidean for laaf)ges of
r, but for smallr, their areas decreases to a minimum

corresponding to that of the value=2m, and then it

increases again as ts° .

Expand in the other region of asymptotically flatee
space. However, if we consider a complete grawitai
collapse of a spherically symmetric homogeneoust dus

. I I
cloud the regionsl’ and |l" are no longer relevant as
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they are replaced by the interior metric which ist n
vacuum Schwarzschildf,W being non-zero there (figure 5).

The regionl | " has time reversed properties of regibn
and also called avhite hole A particle emitted by the

singularity at X = —(T2 —1)/‘/2 must leave this region within

a finite proper time. Each point of figure 38 in space-
time.

A . .
r = 0 Singularity

Figure 5: Complete gravitational collapse of a
homogeneous dust cloud represented in the Kruskal
picture.

If a source at a poirg in the regionr >2m emits a
flash of light fromp, then there will form twos?, one by
the outgoing wave front and the other by ingoingveva
front, the area of outgoing sphere will be greaten
ingoing one. But in regiont <2mM both areas of the
ingoing and outgoing sphere will be less than thiap.
Then p is a closed trappedsurface. In the extended
Schwarzschild manifold, the surface=2m is a null

hypersurface and at each point theréS% surface of area
167rm?. The uncovered portions of regioh and Il
represent the vacuum Schwarzschild geometry extésio
the collapsing matter. The portion of regibnndicates that
a Schwarzschild black hole is always produced ia th
complete gravitational collapse which fully covettse
resulting space-time singularity of infinite cunveg and
density, which plays an important role in cosminsmship
and the black hole formation. The straight lin¥s= T
are odd labeling in the Schwarzschild solution¢sian this
line t = %00,

Let us consider the Schwarzschild solutiospacelike
surfacer = constant and the equatorial plage 7 then

2

(14) becomes;

-1
ds? :(1—3”'} dr? +r2(dg? +sin? @ dg?).
r
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which is embedded in the ordinary Euclidean geoynetr
Here, O<r < I, is filled by matter of spherical star with

a boundary ar =I,. We have retarded time;
u=t —r —2mlog(r —2m)

r? 2r
(r —2m)’

-1
—(1—2—mj du?® —dudr= —[1—@j dt? +[1—@j dr?
r r r

du? =dt® -

Then (14) takes the form;

ds? :—[1—2rmj du?® - 2 dudr + rz(dé’2 +sin’ 4 d(pz).

24)

1
2r
complex stereographic coordinate§ and its complex

Let us puty = and/2U =u _Let us introduce

conjugateZ_ such thatu :u((,Z) on the sphere are
defined by;

i 1 > 1
=e?cot=4, =e"’cot=6
¢ 2 ¢ 2
dc = —ei“’(l cose@ L gdo-i cotlé’dw]
2 2 2

d¢ = —e““’(l cosecd 1 6do+i cotle d¢)
2 2 2

dZP?Z =d@’ +sin’6d¢s.
0

Hence the conformal transformation of (24) lmees;

6 = Q%ds = {1~ 2mW/2¢) 40 u'

2
0

+2J2/2dudr + di:j(
dddd

R)Z

= —4r? —22mr%) ' + Acide + (25)
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J2r.

The new coordinaté is now finite at infinity ands™*

whereQ=r"t=

is described by the hypersurface/ =0, which
corresponds td” =00 . The Lagrangian for the geodesics
is written as;

L&y (26)

d(d(
L=-=—2 =202 -2v2me3)u? - 20/ -
2 g <AV -2l T

where dot denotes derivative with respect to affine
parametes.

The known equations for null geodesics arg [2]
22 - 22m®)u-7 =1,
a+2(-3/2m?Ju=0,

J(+¢7)-2¢¢% =0, (27)

{1+ ¢7)-20% =0,
ale? - 242m%)u? —4u22—f2 =0.

where the last equation correspondsds2 =0. For

simplicity let us take equatorial plargzﬁ. From a fixed
2

apex this yields anS' worth of null geodesics. For

n .
:E, {= €%, then third equation of (27) gives

9=0, p=b.
From the first equation of (27) we get;

_ 1+/¢
2le2 - 242me?)

From the last equation of (27) we get;

(28)

72 = 2\ 2mP® - b2 +1= A (say),
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ds
do=bds=+b——.
¢ JA

The null rays coming from an arbitrary apes divided
into two sets (the two sheetsAfthat are given initially by

/<0and/>0.
For the first sheet/(< 0) the geodesics continue with a

(29)

decreasing? (increasing) until intersection withy *. For
the rays which begin witlY >0, that is, those rays with
initially increasing ¢ (decreasingr), some reach a

minimum £ (when A = 0) and then begin to move
outwards, and eventually intersg€t For others depending

on b they continue to move towards increasiffg and
eventually fall within the horizon and do not reath

For the second sheef & 0), the range is again from
b,, tob =0, but now there is a critical vald@ such that
for all b<b, the rays continue past the horizon, so that

range forb is bc <b< bm. From (28) we get for the first
sheet ¢ <0);

VA
2z -2v2me?)

b*d¢

2\/K(1+\/Z)

Integrating we get,

_0-va) b
AL+/A)

(30)

Ibzdz ¢ bde
JA 2 1+\/K

SinceA is a cubic, both the integrals of (30) are eltipti
integrals due tom# O. If m = 0 then (29) reduce to flat
space-time case. f =0 (I‘ = 00) then (30) becomes by
dropping primes;

PbPde 1% bPde
u=u,+— (31)
I JA ZI 1+JA
From (31) we get;
 dr
=|b—. (32)
7R

We now consider the second sheet>(0). The

integration procedure is slightly complicated thﬁrﬁ 0.
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We integrate (29) with+ /A (for fixed b) to the ‘bounce’
point £ p after which we return to the first sheet

(-vA) and integrate t =0 to /;

(33)

JZbZdK W1 1% pdr
29 \/K(1+ \/K)

o= 2jb df jb (34)

Equation (33) and (34) are very complicated and are
difficult to integrate, sincd is cubic.

Conclusions

In this paper we have tried to give a simple exaimm
of the Schwarzschild geometry. We have avoided ¢exnp
calculations thinking about the common readers. s€ho
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who want to know more about the Schwarzschild gégme
we refer to see them [1] and [2].
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