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Abstract

In 1970 George E. Andrews defined the geiregdunctions forR," (n) and P, (n) In this article these generating functions

are discussed elaborately. This paper shows h@rote the theoren®," (n) = P;" (n) with a numerical example wher= 9 and
r = 2. In 1966 Andrews defined the ter#4n) and B'(n), but this paper proves the remar{n)= B(n) with the help of an
example whem = 10. In 1961 N. Bourbaki defined the tenl?(n,m). This paper shows how to prove a Remark in terfns o

P(n,m), where P(n,m) is the number of partitions of the type of enumbed by Py’ (n) with the further restrictions that

b <2m.
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1 Introduction Ry (n): The number of partitons oh of the form

We give definitions of"(n), P, (n), R (n), A(n),

n=b, +b, +..+bg, where b = b
B(n), and A(nm). Then we generate the function for

1+1°

R'(n), PS(n), and Ry (n), which are collected from

and for b odd,
b -b=22r-1 (1s i<s, Wherebs+1=0).

George E. Andrews [1] and Hardy and Wright [5] and A(n): The number of partitions ofn into parts
prove the TheoremP,’ (n)=Py' (n). George E. Andrews congruentto 0, 2, 3, 4, 7 (mod 8).
[1] has already prove the remaR” (n)= Py’ (n) and we B(n): The number of partitions oh of the form

give a numerical example forA(n)=B'(n). Finally we

rove a remark which is related to the te m).
P ﬁ(n ) odd, b -b 4, 23.

2 Definitions
R (n): The number of partitions of into part that are

either even or not congruent #r —2(m0d4r) or odd and
congruent to2r —14r —1(mod4r) [2].

i, . 2, [3]
r(n)- !
RS (n): The number of partitions of into parts that are We have,
either even or else congruent &r —1(mod2r) with the
further restriction that only even parts may besetpd. Io_ol(l— x4rj'2)(1— 2 )_1(1_ ij_l)_l
=1

= (1— X4”_2)(1+ X214 xA +,_,oo)><
=1

(1+ K201 4 42 00)
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n=b, +b, +..+bg, where bg>2, by 2b,,, and if b is

F(n, m): The number of partitions of the type enumerated
by Py (n), with the further restriction tha, < 2m [4].

3 Consider the Generating Function with r 2

@)
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:1+z Pl (n)x",
n=1

where the coefficien®' (n) is the number of partitions of

n into parts that are either even and not congruent
4r - 2(mod4r)or odd and congruent to

2r —14r —1(mod4r).
We consider a function, which is of thenfipr

7 (1+ x21 ‘1)(1— x21 )_l; r=2

=1

=1+ Pf(n)x" @

where the coefficient; (n) is the number of partitions of

n into parts that are either even or else congruent
2r —1(mod2r) with the further restriction that only even

parts may be repeated.
From (1) we have;

1zp ()" = [ ot ]

0 2rj-1 il
= N2 =1+ Pf(n)x", by (2).
=7 =-x n=1

Now equating the coefficient ot from the both sides
we get;

Pl ()= P ()

Here we give a Theorem, which is related to thenser
P; (n) and P; (n).

Theorem: Let r =2 be an integer. LeP} (n) denote the

number of partitions ofi into parts that are either even or
else congruent t@r —1(mod2r) with the further restriction

that only even parts may be repeated. B&fn) denote the
number of partitions of of the formn=by +b, +...+bg,

where b 2b,;, and for O odd, b-b,22r-1
(1<i<'s whereb,,, =0).

Then P} (n)= P} (n).
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Proof: Let W' be a partition of the type enumerated by
Ps (n) We represent?’ graphically with each even part
2m represented by two rows of m nodes and each odd pa

2m+ 1 represented by two rows mf-1 nodes and m nodes
respectively.

Such as 9 + 6 becomes;
e o o o o

Now we may consider the graph vertically with the
condition thatr columns are always to be grouped as a
single part, whenever the lowest node in the mmgttr
hand column of the group is not presented there=lf2,
we obtain in this manner, the partition 4 +4 + 8.#Now

since the condition on partitions enumeratediy (n) is

b -b=22r-1, wheneverh is odd, we see that our
grouping ofr columns always have one less node that a
rectangle ofr —2v nodes, wherv is any positive integer.
Thus a part congruent t2r —](moer) is produced. Since
originally odd parts were distinct, we see that nowd
parts will be congruent t@r —1(mod2r) and will not be
repeated and since originally all odd parts weeatgr or
equal to 2r -1, we see that there will always beolumns
available for each grouping. Thus in this case vageh
produced a partition of the type enumerated By(n).
Clearly our correspondence is one to one, howether,
above process is reversible and thus the correspoeds

onto. So thatP; (n) = P§ (n). Hence the Theorem.

Example 1. We taker = 2, n = 9. The corresponding
partitions are listed opposite each other in théoveng
table:

P{ (9) P; (9)

9 with relevant graph e ¢ ¢ ¢ ¢ 2+2+2+3
e o 0 0

7427 " " ceo o0 4+2+3
e 0o o0
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6+3 " " " e o o 7+2
e o o
o o
°

5+2+2 " 7 " o o o 6+3
o o

Now we can writePJ (9) = P; (9)= 4 . Here we give some
remarks.

Remark 1: B/ (n)=PJ(n),if r =2 ie.,letr>2 bean

integer. Let P (n) denote the number of partitions of
into parts that are either even and not congruent t
4r—2(mod4r) or odd and congruent to

2r—l4r—1(mod4r). Let Py (n) denote the number of
partitions of n of the form n=b, +b, +...+bg, where

b >b,, and for b odd, b, —b,, =2r -1
(1si <s, wherebg, :O) ,

Then P (n)=PJ (n). It is proved in George E.
Andrews [1]. We can establish the following Remark:

Remark 2: Let A’(n) denote the number of partitions rof
into parts congruent to 0, 2, 3, 4, 7 (mod 8). LBS(n)
denote the number of partitionsobf the form

n=b +b, +...+bs, where b, =b,;, and for b is odd,
b —b, =3. Then A(n)=B(n).

Example 2: If n = 10, the eight partitions enumerated by
A'lo) are 10, 8 +2,7+3, 4+4+2, 4+2+2 23
+3,3+43+2+2, 2+42+2+2+2.

The eight partitions enumerated Iy(10) are 10, 8 + 2, 7
+3,6+4,6+2+2,4+4+2,4+2+2+2%2+2+2
+ 2.

Thus A'(10)= B'(10) .

Here we give the Remark which is related to thenter
P(n,m).
62

Remark 3:
Anm)- Anm-1)=P(n-2mm)+ P(n-2m+Lm-r),
whereP(n,m) is the number of partitions of the type

enumerated byPy§ (n) with the further restriction that
b <2m.

Proof: Here Anm)- {nm-1) denotes the number of
partitions of the type enumerated b?(nm) with the
further restriction that eithem2or 2n-1 is the largest part.
If 2mis the largest part, we remove it. We obtain aitjam
of the type enumerated bP(n—me). If 2m- 1 is the
largest part, then the next largest part does xoegex 2
1-(2—1) or 2n-2r, since 2n-1 is an odd part. Ifra-1 is
removed from the partition under consideration,aléain
a partition of the type enumerated tB(n—2m+lm—r).
Hence the above process establishes a (1, 1)
correspondence between those partitions enumetated
P(n m)— P(n m—l) and the totality of partitions, which are
enumerated either by

P(n—2mm) or by P(n—2m+:|,m—r).

Thus,
Anm)- {nm-1)= P(n-2mm)+ P(n-2m+1m-r).
Hence the Remark.

4 Conclusions
We have seen that for any positive integerncénd

r=2 the TheoremP (n)=P}(n) is satisfied. We have

shown the TheoremA(n)= B!(n) is true with the help of
example whem = 10.
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