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Longitudinal dispersion coefficient (LDC) is one thfe most important parameters in the river watelity management.
Several ways as empirical formulas and artifiaiglligent techniques are proposed for predictimgltDC and it is necessary to
evaluate the performance of them. In this studviu#tilayer perceptron neural network (MLP) modekhzeen developed and 12
formulas empirical formulas were collected. To assthe performance of these formulas and MLP model case study
problem, calculating the LDC by dispersion routmgthod for Severn River in UK was considered. RessHows that the best
accuracy is related to the Tavakollizadeh and Kistier formula (R=0.45) based on data set and for Severn Rivercitsracy
is R~0.4. the (MLP) model has acceptable accurady@m3) to predict the LDC in Severn River.

Key words: Longitudinal dispersion coefficient; empiricalrfioula; Multilayer Perceptron (MLP) neural networdispersion

routing method.

1 Introduction

Rivers are one of the most vulnerable environmeats
study on the water quality of this source of water
extremely important. Recently, river pollution Hascome
one of the most important problems in the enviromme
knowledge, [1, 2]. The mechanism of Pollutant
transmission in river is a more complex phenomeswthe
major part of the Knowledge of Environmental Engirieg
is related to this issue. Study on the mechanispobtifition
transmission in rivers with various condition leats
improve the public human's health. [3].

When a source of pollution released into the rilare
to molecular motion, turbulence and non-uniformoeély
in flow cross section, quickly spreads at the sectind
moved along the river with the flow [1, 4].

The governing equation of the pollution transmissio
river is Advection Dispersion Equation (ADE). This
equation is a partial differential equation and adm
convection equation in general. The ADE has many
applications in simulating the hydraulic phenomésan
water and environmental engineering Such as simulaff
sediment transport and pollution transmission wens and
groundwater pollution modeling [5-7].

Computer modeling the pollution transmission ireriv
included two parts. One- Selecting the Numericathoegs
with reasonable accuracy (Fortunately, recentln@pes
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that have been provided are appropriate). Twomesing
the Longitudinal Dispersion coefficient, the main
disadvantage of numerical modeling is related te th
infirmity of the LDC prediction. Increasing the acacy of
estimating this parameter leads to increase theputen
modeling. So the major part of studies on the rivater
quality is related to measurement, calculating and
estimating of this parameter [8-10]

LDC is a function of the hydraulic and geometry
characteristics of river and also its path, sositviery
variable and susceptible. Thus, with minimal changethe
hydraulic conditions and river geometries, the ealu
fluctuations of this parameter will be very muchahy
empirical formulas have been proposed for calaupthe
LDC. These formulas are usually obtained by classic
regression and usually obtained by study invesifgabn
the one or more rivers. Some of these formulas are
collected in Table (1) [11-17]

To calculate the LDC usually a tracer injects i th
river and some stations along the river for sangpbmd
measuring the tracer concentration in river wabeugd be
considered. To this purpose, the first station khdwe
considered after the completely spreading the tracall
the flow cross section and recording the concéatreof
tracer, the LDC will be calculate by a method swch
Dispersion Routing Method (DRM). A brief instruatiof
DRM is given in the methodology section. Some redex
uses of the more powerful tools such as image psitg,
Acoustic Doppler Current Profiler (ADCP) and so on
technique to obtain more details of dispersing pssdn the
cross section of river [18]. These tools helpedthe
researcher for obtaining the effect of river geaineiuch
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as meandering and dead zone area on the dispersicess

in the river. Studies are based on the measurirg th
concentrations of tracer are suitable referencesvéduate
the performance of empirical formulas. Due to thghltost

of laboratory and field studies and also based @mes
researches that reported the lack of empirical fbes)
researchers have turned to the development angiagpl
the artificial intelligence techniques for predigithe LDC
[3].

In the artificial intelligence techniques usuallsopide
a network instead of the classical regression. adeeiracy
of the Al models, based on the research conduetesl,
much more from empirical formula. In the field ofl A
model using the Multilayer Neural network (MLP),
Adaptive Neuro Fuzzy Inference System (ANFIS), M5
algorithm, Support Vector Machine (SVM) and Genetic
programing(GP) can be mentioned [3, 19-23].

In this paper after assessing the accuracy of émapir
formulas by data set which range of them giverabid (2),
the LDC in the Severn River was calculate by DRM,
empirical formulas and MLP model.

2 M ethodology

As shown in the figure (1) when a pollutant releaise
the river, it rapidly disperses in all the flow ssosection
and transports to the downstream by the river fla¥ter
covering the pollution all the flow cross sectiothe
transmission of pollutant along the river is onmeisional.
The governing equation of pollutant transmissiomiver is
introduced to show the important role of LDC in quuter
modeling of pollution transmission in river. To edt the
governing equation of pollution transmission ineriyit is
enough to consider an element of river and by usiiregy
continuity equation for balancing the inputs andpots of
the pollution discharge in the element of the flaitd by
aid of Fick lows, the one dimensional ADE (eq.1)l\we
extracted [4]. in this equation, C (ppb) is concatidn,
u(m/s) is the mean flow velocity and x(m) is thetdhce
from pollution injection and D (n¥/s) is the LDC. To
calculate the dispersion coefficient, several weays
empirical formulas and artificial intelligent tedgnes has
been proposed and developed. All of them are based
dimensionless parameters that extracted by usirg th
Buckingham theory on influence parameters on LD@ an
will be explained in the next section. in this stusbme
selected empirical formulas and Al model has been
assessed to calculate or predict the LDC and tease the
accuracy of LDC prediction in a case study, a novel
approach has been proposed and it is related to the
calculating the Longitudinal dispersion coefficieity
powerful method such as neural network models for
Severn River. In this paper, the MLP model was mred
because it's suitable accuracy, automatic devejopin
without any human making in parameters settingeasily
in development. About 100 data related to thesarpater
was collected and the range of them given in thiet®)
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+ L —
ox ax 2
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Fig 1: shamanic figure of pollutant transmissiomiirers

2.1 Longitudinal Dispersion coefficient

The longitudinal dispersion coefficient is relatedthe
properties of Fluid, Hydraulic condition and theveri
geometry (Cross sections and path line). For fluid
properties the density and dynamic viscosity and fo
hydraulic condition, the velocity, flow depth sharocity
and energy gradient slope and for river geometeyvifdth
of cross section and longitudinal slope can be oeet.
Several other parameters that are influences or_Erg,
but cannot be clearly measurement such as sinupatty
(Sr)and bed form of rivesf,). All the influences parameter
can be written as below function:

D =fy(ppuu. hw s s,) @

wherep is fluid density; p is dynamic viscosity¥ is
the width of cross section; h is flow depth;is share
velocity, Sy is longitudinal bed shape afidis sinuosity.to
extract the dimensionless parameter on the LDC, the
Buckingham theory was considered and dimensionless
parameter will be extracted as below[12].

Always the flow in the nature spatially in the nivis
turbulent so the Reynolds number(uhju) can be ignored
and the bed form and sinusitis path parameterscalsoot
be measuring clearly so the effect of them can be
considered as flow resistant and seems in the &epth.
The dimensionless parameters that can be clearly

measurement give as below[11, 12]

D _ u w
=f,| —,—
hu. u h

@)

These dimensionless parameters are the base for the
each empirical equations and development of the Al
models also are based on these parameters. Fdoplene
the Al models such as MLP, ANFIS SVM the data tat
related to these parameters must be considered.
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Tablel: Empirical equations for estimating the longituali
dispersion coditient

Author Equation
Elder (1959) D, =5.93w.
2
McQuivey and _ h
Keefer (1974) D, _O'St{ux o
2\/\/2
Fisher (1967) D, :0.011“hT
Lietal (1998) D =055
0.5 2
Liu (1977) D, :0.18(”J (Wj hu.
u. h
Iwasa and Aya w)°
(1991) D, = ( J hu.
u 1.43 w 0.62
Seo and D, :5.92[] (—] hu,
Cheong (1998) u.) \h
. 2
Koussis and _ w
Rodriguez- D, _O'G(FJ hu.

Mirasol (1998)

Lietal (1998) D

~

1.2 1.3
=5.92(“j ("l] hu,
u, h

Kashefipur and u "% w2

Falconer D, :2(] Eij hu.

(2001) u. h

Tavakollizadeh y 1.752 L
and D, =7.428+ 1.77{] (—j hu
Kashefipour u, h
(2007)

Rajeev and _ u

Dutta (2009) Dt ‘10'61{U*Jh“

2.2 Artificial Neural Network (ANN)

ANN is a nonlinear mathematical model that is &bl
simulate arbitrarily complex nonlinear processex tielate
the inputs and dputs of any system. In many comp
mathematical problems that lead to solve com
nonlinear equations, Multilayer Perceptron netwogke
common types of ANN that are widely used in
researches. To use MLP model, definition of appade
functions,weights and bias should be considered. Du
the nature of the problem, different activity fuoos in
neurons can be used. An ANN maybe has one or
hidden layers. Figure 4 demonstrates a -layer neural
network consisting of inputs layer, hidc layer (layers)
and outputs layer. As shown in Fig.w; is the weight and
b; is the bias for each neuron. Weight and biasesieg
will be assigned progressively and corrected dutiiaiping
process comparing the predicted outputs with kn
outputs. Such networks are often trained using t
propagation algorithm. In the present study, ANNs'
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trained by Levenberd#arquardt technique because t
technique is more powerful and faster than the eotignal
gradient descent techniqua[ 25].

Table 2: Range dfDC collected data

W(m) H(m) u(m/s) U*(m/s) Dy, (m2/s)
Min 11.9 0.2 0.0 0.0 1.9
Max 711.2 19.9 1.7 0.6 1486.5
Avg 73.2 15 0.5 0.1 115.3
Stdev  106.9 2.3 04 0.1 218.7
Input Hidden Layer Output Layer
N7 N 7 )
pt at a=y
2 4xl f e a 3 x1 74
: :
2 4x1 4 31 3
LSRN J \

a1 = tansig (TWLript +bi) a: =purelin (LW2.1a1 +b2)

Fig. 2 A threelayer ANN architectur

2.3 Dispersion Routing Method

As mentioned in the past session, calculatini LDC
is more important, so firstly, the longitudinal pission
was calculated from the concration profile by Dispersion
Routing Method (DRM). The basic formula used in
dispersion routing method given in the equation Using
the DRM included the four sta( 1-considering of initial
value for LDC. 2- @lculating the concentration profile
the downstream station by using the upstream coratint
profile and LDC. 3- Dne a comparison between 1
calculating profile and measurement pro 4- If the
calculating profile doesn’ a suitable cover the
measurement profile the proc will be repeated until the
calculating profile has a good covering on the roezsent
profile. In the equation (£ t is the average time of
measured concentration and index one and tw
considered for upstream and downstream samplirnigrs¢
[26].

[o-foter]

R N e
C(xz,t)zqu(xl,t) \/477D (( F) dr
e L\t274 (4)
TtC(x,t)
t=2
IC(x,t)
0 5)
2.4 Case study

To assess the performance of empirical formulas
differ river, the field study that did bAtkinson and Davis
[27] on pollutant transmission mechanism in Severn F
has been considered. They selected about 14 krthler:
the river to study and showing the effect of sompeéraulic
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and geometry condition of river such as bed forevers
and dead zone on thelfution concentration profile. The
used of RhodamineWT 20% as tracer and considere
stations after the place of injection to take thmgles fron
the water of river. Figure (3) shows a schematip wiathe
river and location of the sampling stati. Universal
Coordinates of sampling along the river in eactistavas
given in the table (3) [28, 2%igure (4) shws the values of
measurement concentrations at sampling ste

»
i~ Main River with Sampling station
/% Bridge with Sampling station

Minor tributary with area
wer ! drained (km?)

==~ Edge of natural fiood plain

"X« Railway embankment and bridge
over channel
Point for measurement of grain size
s°\- distribution of bed material

o o
‘ woo |

A{ON Ly
) )/ SN G

N /nm )
1 Dussu
_(ﬁ ‘ { 7

Fig. 3. Schematic map of the Severn River and sampliatipsik

3 Results and Discussion

Initially assessing the empirical forms was done
with data set that the range of them given in Higet (2)
and indices error(eq.6) for result of them for a#dting the
LDC was determined and gives in table(4). As giirethe
table (4), Tavakdizadeh and Kashefipour (2007) formt
has the best accuracy through the empirical forsnalad
the performance of other formulas is not suit: Then to
assessing the performance of all empirical formutas
LDC in the Severn River has been calculédby DRM. All
the stage of calculating the LDC for Severn Riveovgs in
the figures 4 to 9 and gives in the table (5). Aghie LDC
was calculating by empirical formulas for SeverndRiand
result of them given in the table (6).
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Fig. 4 concentrations value measurement at Severn Rarmapling statior
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As given in the table (6),Tavakollizadeh an
Kashefipour (2007) has the best accuracy for caling

the LDC for Severn River through the empirical fotes.
After calculating the LDC from the dispersion rag
method for each station, again, the LDC was caledlady
MLP model ad the results of this model also given in
table (6).

Table 3 Universal coordinatef Sampling Stations

Site UK Distance(m)
(Grid reference

Injection SN 9549 847 0

A SN 9570 848 210

B SN 9621 856 1175

C SN 9748 855 2875

D SN 9969 851 5275

E SO 0160 867 7775

F SO 0252 885 10275

G SO 0220 909 13775

With a review of the table (6) it is clear Almodttbe
empirical formulas has not suitable ability to cédte the
LDC. To reach more accuracy in calculating the LB
MLP model was developeds shown in the figure (10),
The MLP model contains two hidden layers; the hid
layer contains eighteen (18) neurons in the firsidén
layer and five (5) in the second hidden layer anaahdfer
functions were tangent sigmoid (tansig). The tragnofthe
MLP model was performed with levenberg_marc
technique. 70 % of data is used for training, 15fc¥
validation and 15 % for testing the mocThe performance
of MLP model in each stage of development (train
validation and testing) is shown ihe Figures 11, 12 and
13. As shown in the figures 11 to 13, the accurmaicthe
MLP model is more suitable than the empirical eiqpunet
The dimensionless parameter that extracted in
dimensional analysis stage was considered as
parameters to th&LP model. To predict the LDC fc
Severn River, its dimensionless was extract forhi
sampling station and gives to the MLP model as
parameters and the LDC was predicted. The resNtLd?
model gives in the table (6). The MLP model
acceptableccuracy to predict the LDC. In final conclusi
it seems to have a powerful tool to predict the LIDC
rivers it is good to prepare free codes or comraé
software's that they are based on Al model withiitakle
GUL.

250
200 # Station B
-g - HC2(x,t)
£ 150 S
=
H *
% 100
2
S

0 g

)
0o+—me 0¥ 5 § = = B
0 2000 4000 6000 8000 10000
Time(Second)

Fig 4: Station B:Comparisons measured and calculated
concentration profile
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Table (4): Error indexes for Entjzal Equatiot

Author Equation R? RMSE
Elder (1959) 01 245.6 4000
35.00 * -
McQuivey and = 3000
Keefer (1974) 0 5485096.39 % oo n
Fisher (1967) 0.29 1470.9 2 o0 *QAx1)
Li etal. (1998) 0.07 2457 - 15'00 m ¥ W Station E
Liu (1977) 022 35346 £ 1000 ]
! * a
Iwasa and 5.00 TSN
Aya (1991) 021 19878 000 : s %eely g s
0 5000 10000 15000 20000 25000 30000
Time(Second)
Seo and Cheong (1998 0.38 378.94
9 ( ) Fig 7: Station E:Comparisons of mured and calculated
Koussis andRodriguez- concentration profile
Mirasol (1998) 017 335.96
Li etal. (1998) 0.33 186.17 25.00
Kashefipur and N
Falconer (2001) 082 230.94 00 o ——
Tavakollizadeh and 2
Kashefipour (2007) 045 3388.41 £ 1500 + 3
Rajeev and Dutta (2009) 0.36 314.03 E oHo, m
S 10.00
g ]
120 © o B
[ 4 5.00 [] %
100 * #Station € <* n
z * BC2x0 0.00 ' '
g 80 ‘ 0 5000 10000 15000 20000 25000 30000
é Time(Second)
Z 60 *
% - Fig 8: Station F:Comparisons of measured and catiediconcentratio
g 40 . * profiles
20 —oif ry
ol s umbaw  ee . 2500
0 5000 10000 15000 20000
Time(Second) 20.00 ' +C2(xt)
’.E * MW Station G
Fig 5: Station C: Comparisons of measured and tztied % 15.00 ]
concentration profile = !‘
- [ |
: 10.00 * s
8 *n
70 5.00 ",
0 ] & Station D * *
_ ¢ B2k 0.00 ‘ : .~ am® : S
2 50 u 0 5000 10000 15000 20000 25000 30000 35000
% . ’. Time(Second)
E 30 -' Fig 9: Station G:Comparisons of measured and catled
g ° a concentration profile
S 20 ’.
10 | ,L
[ ]
*
o <,
0 5000 10000 15000 20000
Time(s)
Fig 6: Station D:Comparisons of measured and catied
concentration profile
Hidden Layer 1 Hidden Layer 2 Output Layer

Fig. 10: structure of MLP model
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Table 5: Result of Dispersion routing Method fov&m River

River Station AX At D,
A 4 2
[} B 4 ) 415
= 26.5
14 C 4 2
p 125
= D 4 2
o 26.5
3 E 4 2 375
2 F 4 2 ’ 295
G 4 2 .
Train Data R=0.99292
1500 : ' : : . : 1500
-]
8
L
£ 1000 _ 1000+
o [}
8 Cl
o o
° €
=3 o
2 [
T 500k = 500
g E
2
o
0 .
1000 1500
Data Number Real Data
MSE=855.4452RMSE= 29.248 U=7.3040=28.5258
150 . . . . . . 10 . . - . - . - . .
100 R
50+ g
s
w ol i
50}
100 . . . . . .
0 10 20 30 40 50 60 70
Data Number
Fig. 11: Performance of MLP models during the tregnStage.
Validtion Data R=0.8792
400 400 . . . - . - .
§ 300 300} R
K
= -
8 3
5] i<}
= 2000 £ 2001 ,
=3 o
2 =
g =
@ 100+ 100 E
(=]
0 0 . . . . . . .
0 0 50 100 150 200 250 300 350 400
Data Number Real Data
MSE=1754.2149RMSE= 41.8833 |I=7.46050=42.6601
100 - . 3 . : . . .
50 b 25¢
I
o |
5 150
w
50} |
1k
100+ 05l
-150 L L 0
0 5 10 15 -150 -100

Data Number

Fig. 12: Performance of MLP models during the Vatiion Stage.
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Test Data
1200

—©&— Real Data
—+— MLP model

1000 R
8001
600

400 (-

Dispersion Coefficient

200 -

1200

1000F © —

600 B

MLP model

400

200 B

0 L L L L

L
1000 1200

0 0 200 400 600 800
Data Number Real Data
MSE=36296.8494RMSE= 190.5173 p=-69.8310=183.4797
200 T T 5
or 4+ 4
200 4 3 4
2
-400 E 2t E
-600 - E 1t I E
800 ‘ ‘ 0 ‘ ‘
0 5 10 15 -800 -600 -400 -200 0 200 400 600
Data Number
Fig. 13: Performance of MLP models during the Testage.
N ) N ) 1/2
Z(DL\ (model) - D'-| (Actud )) Z(DLI (model) - D'-| (Actud ))
RZ=1-|12 JRMSE =12 ©
N 2 N
Z(DL\(Amua‘) )
i=1
Table 6: Calculating the DL by Empirical formulasdaMLP model
model St(A-B) St(B-C) St(C-D) St(D-E) St(E-F) StL(F-G)
2 415 26.5 125 385 375 29.5 R?
DL—DRM (m /S)
Eq (1) 0.11 0.12 0.14 0.14 0.12 0.15 0.21
Eq (2) 1069.3  905.96  1071.9 1069 957 1166.76 0.00
Eq (3) 150.1 1325 124.8 116.4 147.9 117.7 0.17
Eq (4) 2.81 2.7 2.38 2.43 3.06 2.35 0.11
Eq (5) 12.92 34.6 34.8 359 43.1 37.8 0.7
Eq (6) 74.03 13.8 14.7 15.3 16.8 16.5 0.38
Eq (7) 74.4 69.07 72.53 66.24 67.35 69.7 0.01
Eq (8) 27.1 29.04 29.8 31.8 375 34 0.02
Eq (9) 18.26 17.42 17.73 16.93 18.85 17.71 0.05
Eq (10) 3.49 3.39 3.77 3.45 3.15 3.71 0.4
Eq (1 l) 586.1 490.8 490.5 416.2 441.1 424.4 0.00
Eq (1 2) 56.13 53.29 55.25 52 55 54.47 0.01
ANN(MLP) 38.2 29.8 14.5 49.7 40.4 326 0.83
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