

J. Environ. Treat. Tech. ISSN: 2309-1185

Journal weblink: http://www.jett.dormaj.com

Geo-polymer Bacterial Concrete Using Microorganism

Ramin Andalib¹, Muhd Zaimi Abd Majid¹*, Mohd Warid Hussin¹, Ali Keyvanfar¹, Amirreza Talaiekhozani², Hasrul Haidar Ismail¹

1- Construction Research Center (CRC), Institute for Smart Infrastructure and Innovation Construction (ISIIC), Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor Bahru, Malaysia.
 2- Department of Civil Engineering, Jami Institute of Technology, Isfahan, Iran.

Abstract

The existent research investigates the ability of *Bacillus* bacteria species to improve the strength of Geo-polymer concrete based on bio-mineralization mechanism. The appropriate cell concentration of bacteria was introduced in ordinary and Geo-polymer concrete by way of the mixing water to compare their strength and durability. In this research, it was found that the compressive strength growth in Geo-polymer bacterial concrete was the highest in comparison to ordinary bacterial concrete at 90th day. For durability study, the specimens were immersed in 5% H₂SO₄ solution and the result showed that Geo-polymer bacterial concrete had the least weight and strength losses than ordinary bacterial concrete at different ages. This improvement was due to the temperature condition of Geo-polymer bacterial concrete to survive more bacteria for purpose of calcite precipitation. The density and uniformity of concrete were also examined by ultrasonic pulse velocity (UPV) test. The result showed that the density and uniformity of Geo-polymer structural bacterial concrete were more in comparison to other types of concrete.

Keywords: Geo-polymer Bacterial Concrete; Bacillus Strain; Concrete Strength and Durability; UPV Test

1 Introduction

Geopolymer, as an inorganic polymer member can be created from Silicon (Si) and Aluminium (AL) of by-product materials [1]. However the polymerization procedure contains a rapid chemical reaction under alkaline situation on Si-AL minerals, the most alkaline activator applied in Geopolymerisation is a combination of sodium silicate and sodium hydroxide [2]. The fundamental difference between ordinary and Geopolymer concrete is the binder which can be obtained from a certain concentration of alkaline activator and Ash mixing.

Palm Oil Fuel Ash (POFA), a waste from Palm oil mill and Fly Ash, a waste from coal-burning power stations which are cheap and available to create Geopolymer concrete. Davidovits was the first, introduced the term of Geopolymer in 1978. The initial research about partially replacement of ordinary Portland cement concrete by Palm Oil Fuel Ash started since 1990 in Malaysia.

Malaysia is focusing on good quality agricultural products such as Palm and it is expected that millions tones of palm oil waste will be produced annually. Hence a lot of money will be spent to transport and maintenance the waste [3]. On the other hand, Fly Ash has been also utilized in replacing Portland cement partially to create Geopolymer concrete. The experiment consequences, demonstrated that

high volume Fly Ash Geopolymer concrete is more durable than ordinary cement concrete [4].

This study is an attempt to highlight the use of bacteria in Geopolymer concrete (Palm Oil Fuel Ash mixed with Fly Ash instead of cement) to achieve a sustainable green building material. Geopolymer bacterial concrete is a novel research domain can be used for cementitious materials that cure themselves automatically by bio-mineralization mechanism. The concept is to introduce bacteria in concrete, which aids to precipitate calcite in pores and tiny cavity areas.

Bacillus species is an ureolytic bacterium can produce calcite to decrease concrete pores for enhancing the strength and durability. Various Bacillus spices of spore-forming bacteria have been used by researchers in their studies: I.e. Bacillus pasteurii [5-20], Bacillus sphaericus [21-29], Bacillus cohnii [30- 32], Bacillus pseudofirmus [30- 32], Bacillus subtilis [33-36], Bacillus Megaterium [37], and Bacillus alkalinitrilicus [38]. Bacillus pasteurii has been also reclassified as Sporosarcina pasteurii [19]. This research actually investigates the ability of *Bacillus* bacteria species to improve the strength and durability of Geoconcrete based on calcification Geopolymerization processes.

Corresponding Author: Muhd Zaimi Abd Majid, Construction Research Center (CRC), Institute for Smart Infrastructure and Innovation Construction (ISIIC), Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor Bahru, Malaysia, Email: mzaimi@utm.my.

2 Experimental work

2.1 Material

Palm Oil Fuel Ash (POFA), Fly Ash, and Ordinary Portland Cement (OPC), were obtained from Palm oil mill, coal-burning power station, and the local market of Malaysia respectively. The chemical composition of the POFA, Fly Ash, and OPC are shown in Table 1. A combination of Sodium Hydroxide and Sodium Silicate solutions were used to react with the Aluminium and the Silica in the POFA. Fine sand and 10mm aggregates were also used in saturated surface dry condition. The mixtures were designed for the compressive strength of Fcu=25 MPa. The Geo-polymer concrete mix was based on the different ratio of materials to optimize the best mixture. The appropriate components of ordinary and Geopolymer concrete with optimum percentage of Palm Oil Fuel Ash mixed with Fly Ash are shown at Table 2 and Table 3 respectively.

2.2 Microorganism isolation and identification

Soil microorganism isolation is a significant initial stage of many biological researches. In this research, soil samples were taken from Universiti Teknologi Malaysia to isolate bacteria. Soil samples were suspended in 10 ml nutrient broth to place in a water bath with 100°C temperature for 10 min. Before transferring samples to agar plate serial dilution were done. Subsequently agar plates containing medium culture were incubated at 30 °C for 24 hours to obtain pure colonies with dilution streaking repetition. In this study, peptone 5.0 g/L, yeast Extract 3.0 g/L, and distilled water were used to create nutrient broth medium culture since peptone 5.0 g/L, yeast Extract 3.0 g/L, agar 12.0 g/L, and distilled water were applied in medium to produce nutrient solid agar. Calcium lactate (80 gram/liter) and urea (20 gram/liter) as calcium and nitrogen origins were also introduced to medium for bio-mineralization mechanism.

Table1: The chemical composition of the POFA, Fly Ash, and OPC (mass %)

	SiO2	AL2O3	Fe2O3	CaO	MgO	Na2O	K2O	P2O5	LOI
POFA	53.5	1.9	1.1	8.3	4.1	1.3	6.5	2.4	18
Fly Ash	46.7	35.9	5.0	3.92	0.84	0.58	0.5	0.383	1.00
OPC	43.1	5.0	2.6	46.0	1.1	0.2	0.5	0.2	1.3

Table2: Geo-polymer concrete mix with different ratio of ingredients to achieve 25 MPa strength

POFA: Fly Ash	Fly Ash	POFA	Na ₂ SO ₃	NaOH	Sand	Aggregate	water	Plasticizer	Liquid : (PFA+POFA)	Achieved Strength (MPa)
30:70 % 50:50 % 70:30% 100:0%	290	123.33	119.05	47.62	530	1233.32	33.33	6.67	0.403	25.20
	206.67	206.67	119.05	47.62	530	1233.32	33.33	6.67	0.403	20.15
	123.33	290	119.05	47.62	530	1233.32	33.33	6.67	0.403	15.10
	0	413.33	119.05	47.62	530	1233.32	33.33	6.67	0.403	12.80

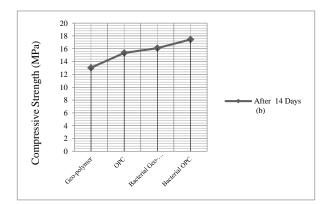
Table3: Appropriate components of Geo-polymer and OPC concrete based on 25 MPa strength

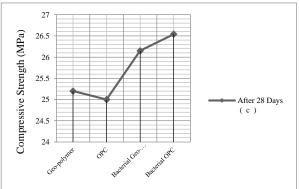
Material	POFA-Fly Ash (30:70) Geo-polymer Concrete Mass Kg/m ³	OPC Concrete Mass Kg/m³			
Cement	0	429.31			
Water	33.33	193.19			
10mm Aggregates	1233.32	965.95			
Fine Sand	530	792.08			
Fly Ash	290	0			
POFA	123.33	0			
Sodium Hydroxide Solution	47.62	0			
Sodium Silicate Solution	119.05	0			
Super Plasticizer	6.67	0			

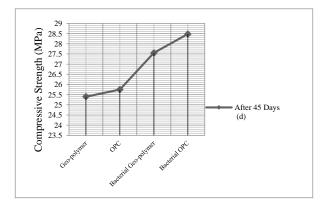
Table 4: Colony morphology, cell morphology, Gram stain reaction, and general tests to identify the genus of bacteria

Bacteria	acteria Colony Morphology (from agar plates)					Cell	Gram	02	Glucose	Endospore
Genus	Shape	Elevation	Edge	Color	Surface	Morphology	reaction (+/-)	Use	Use	(Y/N)
Bacillus	circular	flat	entire	cream	smooth	Bacillus-rod	+	aerobe	No gas	Yes

The colony morphology, cell morphology, Gram stain reaction, motility and other general microbiology tests were the significant evidences to identify the bacteria strain. These experiments were included an easy to read table that enables to rapidly identify an unknown isolated bacteria on the basis of Bergey manual of systematic bacteriology (Table 4).


2.3 Mix proportioning and test specimens


The appropriate cell concentrations of microorganism (30*10⁵ cells) were introduced to ordinary and Geo-polymer concrete by way of the mixing water per ml for the current experimental research. The 100 mm x 100 mm x 100 mm cubes were cast and vibrated to compact in a vibration machine and all cubes were cured in ambient conditions at room temperature 26± 4°C after demolding. The compressive strength of the cubes was determined at different ages for different types of concrete. To study the durability of Geo-polymer bacterial concrete against aggressive agents (acidic conditions), the specimens were immersed in a 5% solution of sulfuric acid to compare with other types of concrete at different ages. Ultrasonic pulse velocity (UPV) test was also applied to clearly describe concrete quality in terms of density, uniformity,


homogeneity. This is on the basis of the fundamental rule that the velocity of an ultrasonic pulse through any substance place trust in the density of the material.

3 Result and Discussion

The major aim of this research was to survey the microorganism effect on the Geo-polymer concrete strength and durability. Fig. 1 (b, c, d, e) demonstrate the compressive strength of different types of concrete without and with appropriate concentration of microorganisms (30*10⁵) at different ages (14, 28, 45, and 90 days). The maximum strength growth was achieved at 90th day in Geo-polymer concrete. It was found that the addition of microorganism had a positive effect on the compressive strength of Geopolymer concrete. Fig.2 (a, b) also demonstrate the weight and strength losses of different types of concrete in acidic conditions. The durability study proved that the Geopolymer bacterial concrete had less weight and strength losses than the other types of concrete in 5% H₂SO₄ solution. Eventually Fig.3 shows the ultrasonic pulse velocity (UPV) test result in different type of concrete. In a comparative manner, higher velocity was achieved since concrete quality was high in terms of density and uniformity.

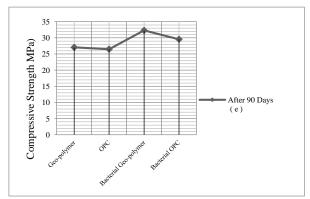
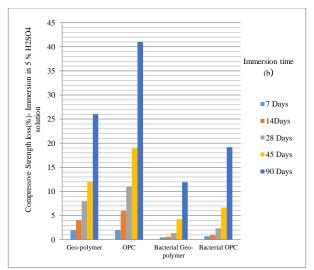



Fig. 1 The microorganism effect on the compressive strength of Geo-polymer and OPC concrete without and with appropriate concentration of bacteria

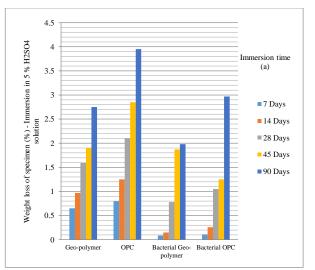


Fig 2: Weight (a) and strength (b) losses of Geo-polymer and OPC concrete without and with appropriate concentration of bacteria in acidic conditions (Immersion in 5% H₂SO₄)

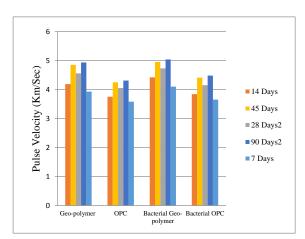


Fig 3: Ultrasonic Pulse Velocity (UPV) test result in Geo-polymer and OPC concrete without and with appropriate concentration of bacteria

4 Conclusions

In this research, we found proof that Bacillus bacteria had a favorable outcome on the compressive strength and durability of Geo-polymer concrete. The highest strength growth was obtained in Geo-polymer bacterial concrete with 30* 10⁵ concentration of microorganism. This improvement was due to Geo-polymer concrete temperature conditions to survive more microorganisms to produce more calcite. The durability study also proved with evidence that the Geopolymer bacterial concrete had less weight and strength losses than the ordinary and Geo-polymer concrete without microorganisms in 5% H₂SO₄ solution. Lastly ultrasonic pulse velocity (UPV) test result verified that the density and uniformity of Geo-polymer bacterial concrete were more than other types of concrete in this research. This improvement was due to filler substance of biology within the concrete pores as a result of microbiologically induced mineral precipitation and Geo-polymer concrete materials component size.

Acknowledgements

The authors thank the Ministry of Science, Technology and Innovation of Malaysia (MOSTI) - science fund - Vote. No 4S042) and the Institute for Smart Infrastructures and Innovative Construction (ISIIC) in Universiti Teknologi Malaysia (Vote. No 00522) for financial support.

References

- 1-Davidovits J, Sawyer JL, US Patent, No.4, 509,985(1985)
 2-Davidovits J, Chemistry of geopolymeric systems, terminology, In: Proceedings Second International Conference, Géopolymère '99, Davidovits, J., Davidovits, R. and James, C. (Eds.), Institut Géopolymère, Saint-Quentin, France, 9-39(1999)
- 3-Ahmad MH, Omar RC, Malek A, Compressive Strength of Palm Oil Fuel Ash Concrete. ICCBT, 27: 297-306(2008)
- 4-Malhotra, V. M. (2002). "High-Performance High-Volume Fly Ash Concrete." ACI Concrete International 24(7): 1-5.
- 5--Bang SS, Ramakrishnan V, Microbiologically-enhanced crack remediation (MECR). The International Symposium on Industrial Application of Microbial Genomes, Taegu, Korea (2001)
- 6-Gollapudi UK, Knutson CL, Bang SS, Islam MR, A new method for controlling leaching through permeable channels. Chemosphere, 30:695–705(1995)
- 7-Bachmeier KL, Williams AE, Warmington JR, Bang SS, Urease activity in microbiologically-induced calcite Precipitation. Journal of Biotechnology, 93:171– 181(2002)
- 8-Bang SS, Galinat JK, Ramakrishnan V, Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology, 28:404–409(2001)
- 9-Chahal N, Siddique R, Rajor A, Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica

- fume. Construction and Building Materials, 37:645-651(2012)
- 10-Darshak B, Raijiwala, Prashant S, Bacterial concrete An ideal concrete for historical structures. © 2009 Taylor & Francis Group, London, UK (2009)
- 11-Day JL, Ramakrishnan V, Bang SS, Microbiologically induced sealant for concrete crack remediation. 16th Engineering Mechanics Conference, 16–18 July 2003, Seattle, Washington (2003)
- 12-Gollapudi UK, Knutson CL, Bang SS, Islam MR, A new method for controlling leaching through permeable channels. Chemosphere, 30:695–705(1995)
- 13-Jonkers HM, Self-Healing Concrete: A Biological Approach, S. van der Zwaag (ed.), Self-Healing Materials. An Alternative Approach to 20 Centuries 195 of Materials Science, 195–204(2007)
- 14-Jonkers HM, Interview with Dr Henk Jonkers by A.Damian Arnold, a freelance built-environment and civil engineering writer, INGENIA Issue 4, 6 March (2011)
- 15-Li P, Wang K, Wang Z, Remediation and Improvement of Concrete by Bacterial Mediated Carbonate Deposition. Advanced Materials Research www.scientific.net, Vols. 446-449, 3373-3376(2012)
- 16-Ramakrishnan V, Panchalan RK, Bang SS, Improvement of concrete durability by bacterial mineral precipitation, Proceedings of 11th International Conference on Fracture, 20–25 March 2005, Turin, Italy(2005)
- 17-Ramakrishnan V, Ramesh KP, Bang SS, Bacterial Concrete, Smart Materials, Alan R. Wilson, Hiroshi Asanuma, Editors, 168 Proceedings of SPIE, 4234:168-176(2001)
- 18-Santhosh K, Ramachandran SK, Ramakrishnan V, Bang SS, Remediation of concrete using micro-Organism. ACI, materials journal http://www.concrete.org, 98:1 January-February (2001)
- 19-Yoon J, Lee K, Weiss N, Kho YH, Kang KH, Park Y, Sporosarcina aquimarina sp.nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984)and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb.nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. Int J Syst Evol Microbiol, 51(3):1079–86(2001)
- 20-Zhong L, Islam MR, A New Microbial Plugging Process and Its Impact on Fracture Remediation. Society of Petroleum Engineers, 30519:703-715(1995)
- 21-Belie ND, Graef BD, Muynck WD, Dick J, Windt WD, Verstraete W, Biocatalytic Processes on Concrete: Bacterial Cleaning and Repair. 10DBMC International Conférence on Durability of Building Materials and Components LYON [France] 17-20 April (2005)
- 22-Belie ND, Muynck WD, Crack repair in concrete using biodeposition. Concrete Repair, Rehabilitation and Retrofitting II Alexander et al (eds) © 2009 Taylor & Francis Group, London, ISBN 978-0-415-46850-3(2009)
- 23-Dick J, Windt WD, Graef BD, Saveyn H, Van der Meeren P, Belie ND, Verstraete W, Bio-deposition of a

- calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17: 357–367 DOI 10.1007/s10532-005-9006-x(2006)
- 24-Gavimath CC, Mali 1 BM, Hooli VR, Mallpur JD, Patil AB, Gaddi D, PTernikar CR, Ravishankera BE, Potential Application of Bacteria to Improve The Strength of Cement Concrete. International Journal of Advanced Biotechnology and Research ISSN 0976-2612, 3(1): 541-544(2012)
- 25-Muynck WD, Debrouwer D, Belie ND, Verstraete W, Bacterial carbonate precipitation improves the durability of cementitious materials. Cement and Concrete Research, 38: 1005–1014(2008)
- 26-Muynck WD, Cox C, Belie ND, Verstraete W,Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 22 (5): 875–885(2008)
- 27-Tittelboom KV, Belie ND, Muynck WD, Verstraete W, Use of bacteria to repair cracks in concrete. Cement and Concrete Research, 40:157–166(2010)
- 28-Wang J, Tittelboom KV, Belie ND, Verstraete W, Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials, 26: 532–540(2012)
- 29-Wang JY, Tittelboom KV, Belie ND, Verstraete W, Potential of Applying Bacteria to Heal Cracks in Concrete, Second International Conference on Sustainable Construction Material and Technologies, June, Ancona, Italy(2010)
- 30-Jonkers HM, Thijssena A, Muyzerb G, Copuroglua O, Schlangena E, Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36: 230–235(2010)
- 31-Jonkers HM, Schlangen E, Development of a bacteriabased self-healing concrete. Tailor Made Concrete Structures – Walraven & Stoelhorst 425-430. ISBN 978-0-415-47535-8(2008)
- 32-Jonkers HM, Thijssen A, Schlangen E, Development of self-healing concrete with the aid of bacteria. Cement and Concrete Research, 4:78–81(2008)
- 33-Park SJ, Park JM, Kim WJ, Ghim SY, Application of Bacillus subtilis 168 as a Multifunctional Agent for Improvement of the Durability of Cement Mortar. J Microbiol Biotechnol, 22(11):1568-74 (2012)
- 34-Srinivasa Reddy V, Achyutha Satya K, Seshagiri Rao MV, Azmatunnisa, A Biological Approach to Enhance Strength and Durability in Concrete Structure. International Journal of Advances in Engineering & Technology, Sept, IJAET ISSN: 2231-1963(2012)
- 35-Srinivasa Reddy V, Sunil Pratap Reddy S, Seshagiri Rao MV, Sasikala, Ch, The Biological Approach to Enhance Durability in Concrete Structures. 3 rd World Congress on Biotechnology , September 13-15Hyderabad International Convention Centre, Hyderabad, India(2012)
- 36-Srinivasa Reddy V, Sunil Pratap Reddy S, Seshagiri Rao MV, Sasikala Ch, Strength Enhancement of Cement Mortar using Microorganisms An Experimental Study. International Journal of Earth Sciences and Engineering ISSN 0974-5904, October 4(6): 933-936(2011)
- 37-Achal V, Siddique R, Reddy MS, Mukherjee A, Improvement in the compressive strength of cement

mortar by the use of a microorganism – Bacillus megaterium, Excellence in Concrete Construction through Innovation – Limbachiya & Kew (eds) Taylor & Francis Group, London, ISBN 978-0-415-47592-1(2009)

38-Wiktor V, Jonkers HM, Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement & Concrete Composites, 33:763–770 (2011).