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Abstract 
Unsteady flow is the result of turbulence (valve shut, pump deactivation, etc.) in the steady flow. A sudden change in the 

velocity of fluid, flowing inside the tube, brings about an abrupt change in pressure and water hammer occurs as the result. 

Because of internal fluid-structure interaction inside the pipe, this phenomenon effects on the pipe system. During water 

hammer phenomenon, considerable dynamic forces are exerted on the pipe. If these forces cause deformation of the 

structure, Fluid-structure interaction occurs. Thus, the present research intended to investigate the pip dynamic behaviour in 

frequency domain. In time models proposed for solving water hammer equations in pipe structure, because of using 

interpolation a great deal of time was required for transmission of hydraulic parameters to structure equations and vice versa. 

Therefore, by simplicity of water hammer differential equation in frequency domain, the problem was solved in this domain. 

The comparison made between the achieved results of this research and those obtained by other researchers confirmed the 

accuracy and efficiency of this method. 
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1- Introduction
1
 

During water hammer, considerable dynamic forces 

are exerted on the structure. Fluid-structure interaction 

occurs where these forces cause deformation on the 

structure. Therefore, it is impossible to investigate pipe 

behaviour or fluid separately so a simultaneous 

investigation needs to be undertaken- In other words, we 

have to study interaction mechanism. In some materials, 

molecules' array change gradually toward each other as a 

result of external loading. It causes deformation in 

addition to deformation occurred at the beginning of 

loading. Viscoelastic materials have both short and long-

time deformation as a result of loading [1]. So far, a 

variety of models have been developed for describing 

these substances mathematically [2]. These models with 

their specific array of some springs and damper can be 

used to describe viscoelastic substances behaviour [10]. 

Here, we apply Kelvin-Woigt model for describing 

viscoelastic substances behavior (Fig. 1). In viscoelastic 

problems, Matching Principle is used, when frequency 

solution is under consideration. Then, deferential 

equation is written in Laplace domain, and thus, the exact 

solution can be achieved in Laplace domain [4]. The idea 

of fluid-structure interaction in pipes, first developed by 

Skalac in 1956 with presenting interaction equations 

concerning water hammer [5]. Afterward, it was 

investigated uninterruptedly and a wide variety of 

procedures including Coupling, semi coupling, and 

various algorithms recommended for numerical modeling 

among which we can refer to solving interaction equation 

of pipe vibration through method of characteristic lines  
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proposed by wiggert and Taijsseling, solving structure 

equations through finite element, solving hydraulic 

equations through method of characteristic lines and 

solving fluid-structure interaction in pipes analytically 

[6]. 

 

2- Classifications of Various Types of 

Coupling Modelling 
Coupling procedures which are used for solving 

problems of pipes fluid-structure interaction (FSI) can be 

classified as below, according to differential equations 

used in each procedure:  

 1. Model of two differential Equations: In this model, 

only two hydraulic differential equations can be solved 

(continuity and momentum) and thus, the calculated 

pressure and velocity are used for analysing structure 

equations. In this method which is in reality a semi 

coupling method, the values calculated by solving 

hydraulic equations are considered as an external 

uploading in structure equations. This analytical method 

is also known as classical water hammer solution [5].  

 2. Model of four first-order differential equations: 

these four equations involve two continuity and 

momentum equations that are hydraulic equations and 

the structure axial vibration equation shifts into two first-

order differential equations because it is a second-order 

equation. This model can be used in direct pipes with 

axial movements. In addition to pressure and velocity, 

axial stress and axial velocity of pipe wall are other 

variables that can be seen in these four first-order 

differential equations [5]. 

 3. Model of six first-order differential equations: this 

model is required only if radial inertia forces are needed. 

In this model, hoop stress and radial velocity are 

unknown in addition to what mentioned as unknown 
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parts in the former model [5]. 

 4. Model of fourteen first-order differential equations:  

these fourteen first-order equations are: two hydraulic 

equations, one axial vibration equation that changes into 

two first-order differential equation as it is a second-

order equation, one rotational vibration equation that 

again is a second-order equation and therefore changes 

into two first-order differential equations, and two 

bending vibration equations in two screens of xy and xz 

that can come to eight first-order differential equations 

for the fact that bending vibration equations are fourth –

order.  This method can model pipe and fluid axial 

vibration on vibration screen and out of vibration screen 

and even rotational vibration in 3-D position in systems 

[5].  

 

3- Various types of coupling mechanism 
Three major mechanisms have been discovered by 

investigation into FSI phenomenon.  

 1. Poisson coupling mechanism: Poisson coupling 

mechanism is the result of Poisson ratio in pipe materials 

that change radial stress into axial stress. It can be 

investigated by using an expression that is dependent on 

Poisson ratio of materials and exists in hydraulic 

equations, as well as, structure. This effect can cause 

sudden changes in fluid pressure diagrams and structure 

stress [3].  

 2. Friction coupling mechanism: rises from fluid 

friction against pipe wall that reduces pressure and pipe 

stress (damping). For this reason, a large number of 

researchers ignore this effect which is just for certainty 

[3]. 

 3. Junction coupling mechanism: it occurs when some 

junction of the pipe structure are not perfectly connected 

on the ground. In some cases, it is observed that the 

effect of this coupling is more significant than Poisson 

coupling and thus it can intensify stress and consequently 

destroy the structure [3].  

 

4- Mechanical behaviour of viscoelastic 

Materials 
Viscoelastic materials exhibit both fluids and solids 

characteristics. To model mechanical behaviour of a 

linear elastic solid substance, a spring is usually used and 

in one-dimensional position it is modelled as FS= 𝐾1U in 

which F is force, U stands for movement, and S 

represents spring. To model mechanical behavior of a 

linear viscous fluid, a linear viscous damper is usually 

used and in one-dimensional position it is modeled as 

FD=𝐾2𝑈̇ in which D represents damper, and spot over U 

indicates displacement derivative with respect to time 

[7].  

 One way to get the answer of a linear viscoelastic 

substance is to consider a system containing a spring 

which is located parallel with a damper. In this case, it is 

obvious that the entire force is F=𝐹𝑠+𝐹𝐷, and therefore 

F=𝐾1U=𝐾2𝑈̇. In this model, the relationship between 

stress σ and strain ε (set of spring and damper) is defined 

as below:  

𝑝0𝜎 =  𝑞0 𝜖 + 𝑞1𝜖 .   𝑝0 = 1 , 𝑞0 = 𝐸 , 𝑞1 = 𝜇               (1) 

 

In which, E is spring modulus elasticity, μ is damper 

viscosity, ε indicates strain rate change. It can be proved 

that the following relationship exists in the generalized 

model of Kelvin- Woigt 

 

𝑝0𝜎 + ∑ 𝜌𝐾
𝑁𝐾𝑉

𝑘=1

𝑑𝜎𝑘

𝑑𝑡𝑘 = 𝑞0𝜀 + ∑ 𝑞𝑘
𝑑𝑘𝜀

𝑑𝑡𝑘

𝑁𝐾𝑉

𝑘=1                       (2) 

 

 
 

Figure 1: mechanical presentation of a viscoelastic solid substance (a) 

Kelvin- Woigt (b) three-parameter model of Kelvin- Woigt (c) 

generalized model of Kelvin- Woigt. 

 

 

5- The Equations 
For linear viscoelastic substances in frequency 

domain, the relationship between stress and strain is [4]: 

 

𝜀(𝑠)̅̅ ̅̅ ̅̅ = 𝜎̅(S).s  𝑗(𝑠)̅̅ ̅̅ ̅̅                                                         (3) 

 

In the above formula, according to generalized model 

of Kelvin- Woigt, creep compliance function is computed 

𝐽(𝑆)̅̅ ̅̅ ̅̅  as below:  

 

𝐽(𝑆)̅̅ ̅̅ ̅̅  =(
1

𝑆
 .  ∑ 𝐽𝐾 

𝑁𝐾𝑉

𝐾=1  - ∑
𝐽𝐾 𝜏𝐾

𝑆 𝜏𝐾+1 

𝑁𝐾𝑉

𝐾=1  )                               (4) 

 

In which J0=1/E represents an immediate reaction of 

viscoelastic materials, Jk=1/Ek indicates spring creep 

compliance of K Kelvin Woigt, and 𝐸𝐾 shows elasticated 

modulus K spring, 𝜏𝐾  is the delaying time of K damper.  

𝜇𝐾 in τk=μk/Ek is K viscoelastic damper.  

 

5.1 Continuity and momentum equations   

To obtain above equation in a pipe system, Navier-

Stokes is written in two-dimensional r-z cylindrical 

coordinate system [2]. These equations involve a 

continuity equation and two momentum equations in 

radial and axial direction with variables of axial velocity 

VZ, radial velocity Vr , fluid pressure P, and fluid density 

𝜌𝑓, moreover, it relates Equation of state, pressure, and 

fluid density. Continuity Equation:  

 
∂v

∂z
+

1

𝐾

∂p

∂t
+

2

𝑅
𝑢𝑟̇│𝑟=𝑅 = 0,   𝑢𝑟̇│𝑟=𝑅 = 𝑉𝑟│𝑟=𝑅            (5) 

 

And momentum equation in axial direction: 

 
∂v

∂𝑡
+

1

𝜌𝑓

∂p

∂z
= −

2

𝜌𝑓𝑅
𝜏0 + 𝑔𝑠𝑖𝑛𝜃                                      (6)  

 

In which velocity (v) and pressure (p) are:  

 

(7) V=
1

𝜋𝑅2 ∫ 2𝜋𝑟𝑈𝑍
𝑅

0
 𝑑𝑟                                                         V=

1

𝜋𝑅2 ∫ 2𝜋𝑟𝑈𝑍
𝑅

0
 𝑑𝑟 

 

V=
1

𝜋𝑅2 ∫ 2𝜋𝑟𝜌
𝑅

0
 𝑑𝑟                                                         (8) 

 

 

In which VZ and P are distribution function and flow 

pressure respectively. In these expressions, Z represents 

pipe axis length, t is time, g stands for gravity, R 

indicates pipe internal radius, and 𝜌𝑓 is fluid density. 
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Assuming that the pipe wall is thin and according to 

small strain theory, the following expression is computed 

for viscoelastic pipes in continuity differential equation:  

Continuity equation: 

 

  
∂𝑉

∂z
+

1

𝐾

𝜕𝑃

𝜕𝑡
− 2𝜐

𝜕𝑢𝑧̇

𝜕𝑧
= (𝝊2 − 1)𝜌𝑓𝑔

𝐷

𝑒

𝜕𝐼𝐻̃

𝜕𝑡
                     (9) 

 

 In this expression, ůZ  is pipe axial velocity, f shows 

Darcy-Weisbach friction coefficient , D represents pipe 

internal diagonal, υ is Poisson ratio, 𝜌f is fluid density, e 

shows pipe internal thickness,
 H

I ~  is delaying 

environmental strain coefficient, and Cf is pressure wave 

velocity.  We have:  

 

𝐶𝑓 = (𝜌𝑓 (
1

𝐾
+ (1 − 𝜈2)

𝐷

𝐸𝑒
)

−
1

2
                                     (10) 

 

𝐼𝐻̅ = ∫ 𝐻̅
𝑡

0
(𝑡 − 𝑠).

𝑑𝐽

𝑑𝑆
(𝑆)𝑑𝑠                                         (11) 

 

Momentum equation:  

 
∂v

∂t
+ 𝑔

𝜕𝐻

𝜕𝑧
=

−𝑓𝑉|𝑉|

2𝐷
                                                       (12) 

 

5.2 Axial vibration equations 

Due to the fact that Poisson coupling exists in 

continuum equation, and therefore there is a need for 

computing axial displacement on various pipe spots, 

axial vibration equations again need to be extracted. 

Axial vibration, itself, is under the influence of pipe wall 

viscoelasticity. The first step in modeling axial vibration 

is writing motion equation on axial direction Z and radial 

direction r in a two-dimensional state on a cylindrical 

coordinate system. These two equations are considered as 

momentum balance expression on axial and radial 

directions. The effects of Bending stiffness, rotational 

inertia, and transverse shear deformation are disregarded. 

These hypotheses are known as hypotheses of waves 

with long wave length [5].  

 
∂u𝑧̇

∂𝑧
−

1

𝜌𝑡 𝐶𝑡
2

𝜕𝜎𝑧

𝜕𝑡
+ 𝑔

𝐷

2

𝜐𝜌𝑓

𝐸𝑒

𝜕𝐻

𝜕𝑡
=

𝜕𝐼𝜎𝑧

𝜕𝑡
− 𝜌𝑓𝑔

𝐷𝜐

2𝑒

𝜕𝐼𝐻̃

𝜕𝑡
           

, 𝐶𝑡
2 =

𝐸

𝜌𝑡 
                                                                     (13)  

 

In which Ct is shear wave velocity and 𝜌𝑡 is density of 

pipe material.  

 
𝜕𝑢𝑧̇

𝜕𝑡
−

1

𝜌𝑡

𝜕𝜎𝑧

𝜕𝑧
=

𝜌𝑓𝐴𝑓

𝜌𝑡𝐴𝑡

𝑓𝑉|𝑉|

2𝐷
+ 𝑔𝑠𝑖𝑛𝜃                               (14) 

 

𝐴𝑓 and 𝐴𝑡 are flow cross section and pipe cross 

section respectively. For solving Fluid-Structure 

Interaction, equation 13 and 14 along with fluid 

continuity and momentum equations, and transfer Matrix 

are applied for example in a tank-pipe-valve system [8].  

 

5.3 Boundary condition 

Boundary conditions have always been the major part 

of every mathematical model and involve equations in 

terms of unknown parts that are true only on boundaries. 

To model the effect of junction interaction, boundary 

conditions need to be proportional to the numerical 

method applied in solving equations, and boundary 

condition again must be applied appropriately in 

numerical solution process. It is always the most 

significant part in every solution method [9].  

 The effect of junction interaction occurs only if some 

parts of structure, in which momentum shift takes place, 

are not perfectly connected on the ground. To model the 

effect of junction interaction, structure dependent 

hydraulic parameters are used on boundary condition and 

on structure boundary condition, hydraulic dependent 

values are used. Therefore, no changes made on fluid 

structure differential equations, and boundary condition 

is the only connector between them. Thus we need to 

prepare boundary condition in another way for structure 

and hydraulic equations. Each boundary condition used 

in solving equations, will have a change in their 

relationship when their nodes are entirely proved 

structurally. Here we're going to take a look at these 

changes.  

 Boundary condition is different in valve, elbow, 

closed end, pump, and other facilities used in a hydraulic 

system. Thus, their relationships must be extracted 

individually. Here, we explain these relationships in 

valve and tank [9]. 

1. Tank (with one open end) 

If pipe is fixed in this end, we have: 

 

𝐷𝑟 = [
0 0 1
0 1 0

   
0
0

] ,       𝑓𝑟(𝑠) = [𝑢𝑔(𝑠) 0]𝑇           (15) 

 2. Closed valve or closed end with m mass 

 

(a) Fixed pipe 

 

𝐷𝑅 = [
1 0 0
0 0 1

   
0
0

] ,       𝑓𝑅(𝑠) = [𝑢𝑔(𝑠) 𝑢𝑔(𝑠)]𝑇  (16) 

 

(b) Free pipe for moving along the axis 

 

𝐷𝑚 = [
1 0 −1
0 𝑔𝜌𝑓𝐴𝑓 𝑠𝑚−

+    
0

𝑔𝜌𝑡𝐴𝑡
] ,       𝑓𝑚(𝑠) =

[0 𝑅−
+

𝑙(𝑠)]𝑇                                                             (17) 

 

As 𝐴𝑓  and 𝐴𝑡 are pipe internal cross section and pipe 

wall cross section respectively. m is valve mass or closed 

end. ± is determined according to coordinate system. 𝑅𝑙 

is the conversion of external stimulus Laplace at the end 

in question. 𝑅𝑙 is explained as below:  

 

𝑅𝑙 = 𝐴𝑟√𝐸𝑟𝜌𝑟(𝑒−𝑠𝑇𝑐 − 1)/𝑠,                                   (18)  

 

6- Solving by transfer matrix 
In this method, four first-order partial differential 

equations are written like the below matrix. 

 

 

    (19) 

 

 

In which y(z,t) and r(z,t) are vectors of unknown 

parts and matrixes A,B,C are matrix of fixed coefficients. 

According to mentioned equations, matrixes and vectors 

are: 

),(),(
),(),(

tzrtzcy
dt

tzdy
B

dt

tzdy
A 
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 (20)      


















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




















~

~
2

2

sin
2

||

)1(

2

||

H
dt

dI

e

D
g

dt

dI

g
D

vfv

A

A

H
t

I

e

D
fg

D

vfv

r

J
t

tt

fJ











  𝑦 = [

𝑉
𝐻
𝑢𝑧

𝜎𝑧

̇ ] 

 

𝐴 =




















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00/0
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f
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

,                                   

𝐵 =

























0100

1
000

001

000

t

D

g




, 2 ,      (21)t

t

E
C


  

1
2

2 )1(211









 


eE

R

k
C

f

f




            

 

 

In equation 21, L stands for pipe ength, υ is Poisson 

ratio, R shows pipe internal radius, e demonstrates pipe 

wall thickness, E indicates elastic modulus, g is gravity, 

and K is fluid bulk modulus. In equation 20, 𝑎42 and 𝑏23 

are Poisson coupling. By converting Laplace on 

equation, we have:  

 

),(
),(

),()( szr
d

szdy
szYsSA






      (22)  

 

We have: 

 

A(S) = A  

 

)0,()(),((),( zysAtzrLszr 


    
 

 

In which y(z,0) vector is initial condition. 

Eigenvalues of expressions like this can be computed 

through|𝐵 − 𝜆𝐴| = 0 like below. 

 

 2 4 2 2
1 2

1
4 ,

2
f f tC q q c c      

,

2222 2 f

t

f

tf C
e

R
CCq




  (24) 

 

Matrix Ʌ, a diagonal matrix with achieved eigenvalues is 

as below:  

 

Λ=  )s(),s(),s(),s(diag 3311        (25)  

 

One solution is:  

 

),()(),(
~ ~

tsSs  
                         (26)

 

 

Computing S and ɳ: 

   Ʌ(S) =S-1  A*-1 B  S(s) 

S(s)=( 𝜉1(𝑠)  𝜉2(𝑠)  𝜉3(𝑠) , …)                                  (27) 

 

Each 𝜉𝑖(𝑠) belong to 𝜆𝑖 

( )

~~ ~
/ *

0( , ) ( ) ( , ) 

1,2,...,                                               (28)

i ssz
rii iz s s e z s

i N


  


 



  

n which ri~    can be computed by using boundary 

condition. And 
*~
ri  shows the private answer.  

( )
( )

~ / ~
*/* * *

( )

( , ) ( , )

1,2,....                                                                    (29)

i s
i s

sz
szz

ri ri
i s

se
z s z s e dz

i N




 








   

 

 

 
Figure 2: Pressure changes as compared to time according to research 

conducted by covas et al [10]. 

 

Don’t forget that if 
*~
ri  is independent of z, 

*~
ri  

(r,z)equals ri~ (s).  

The vector of ῆ is written like this:  

~~ ~
*

0( . ) E( , ) ( ) ( , )                             (30)rz s z s s z s   

 

In which diagonal matrix E is as below. 

 

𝐸(𝑧, 𝑠) =

𝑑𝑖𝑎𝑔 (𝑒
−𝑠𝑧

𝜆1(𝑠)⁄
, 𝑒

−𝑠𝑧
𝜆2(𝑠)⁄

, 𝑒
−𝑠𝑧

𝜆3(𝑠)⁄
, 𝑒

−𝑠𝑧
𝜆4(𝑠)⁄

)      (31) 

 

 

 

 

 

 

 

 

 

 

 

 

 2242

43 4
2

1
tft ccqqC  

( , ) ( ( , ))Y z s L y z t

(23_2) 

(23_1) 
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Table 1: Input data 
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Table 2: results of creep functions in 

 

s

l
Q 01.1  ,

s

m
C f 395

 

Kelvin- 

Woigt 
τk,Jk (10^-10 Pa-1) 

5 

τ1=0.0

5s 
0.5 1.5 5 10 

J1=0.0

57 

1.05

4 

0.905

1 

0.261

7 

0.745

6 

 

 

 
Figure 3: Pressure changes as compared to frequency 

 

7- Flow in viscoelastic pipes 
Water hammer test is conducted in a polyethylene 

pipe system. This test was performed by covas et al [7] 

and is also known as Imperial College [10, 11]. This test 

can be implemented like a tank-pipe-valve system. Input 

data is available in tables 1 and 2.  

 

8- Conclusions 
 In sum, the major findings achieved after studying the 

effect of viscoelastic pipe networks in frequency domain 

are as the follow:  

 The capability and applicability of the transfer matrix 

method, which was the main objective of the study, were 

proved by using resource models.  

Investigation of interaction in frequency domain 

indicated that boundary conditions must be restricted as 

much as possible.  

 Single pipes and less complicated systems in 

frequency domain can be better analyzed.  

 Fluid pressure was studied when system was under 

vibration effect and it was observed that under the 

influence of structure – interaction, system natural 

frequencies were intensified. It indicates the destructive 

effect of viscoelasticity and FSI effect.  

 In comparison with other methods (like FEM), TMM 

has another advantage that the length of used matrixes 

rarely increase increased by modeled system size.  

 

References 
1- Brinson Hal F., Catherine Brinson L.(2010). Polymer 

Engineering Science and Viscoelasticity: An 

Introduction. pp. 116–124. 

2- Haberman, H. (2004) Applied Partial Differential 

Equations with Fourier Series and Boundary Value 

Problems, 4th edition. Prentice Hall, pp. 116–124. 

3- Ahmadi, A. and Keramat, A. (2010). Investigation of 

fluid–structure interaction with various types of 

junction coupling. Journal of Fluids and Structures, 

26, 1123–114. 

4- Lixian Zhang.(1998). Frequency response analysis of 

pipeline under any excitation. Journal of 

Hydrodynamics, Series B, 13(4):71–89. 

5- Keramat, A. and Tijsseling, A.S. and Hou, Q. and 

Ahmadi, A. (2011). Fluid–structure interaction with 

pipe-wall viscoelasticity during water hammer. 

Journal of Fluids and Structures, 28,434-455. 

6- Bergant, A. , Tijsseling, A.S. (2001). Parameters 

Affecting Water Hammer Wave Attenuation, Shape 

and Timing. Proceedings of the 9th Int. Meeting of 

the IAHR Work Group on the Behaviour of Hydraulic 

Machinery under Steady Oscillatory Conditions, 

June 26.-28., Trondheim, Norway. 

7- Covas, D. and Stoianov, L. and Mano, J. (2005). The 

dynamic effect of pipe-wall viscoelasticity in 

hydraulic transients, Part II—model 

development,calibration and verification. IAHR 

Journal of Hydraulic Research, 43,56–70. 

8- Charley J., Calgnaert G.(1993). Vibroacoustical 

analysis of flow in pipes by transfer matrix with 

fluid-structure interaction. Proceedings of the 6th 

International Meeting of the IAHR Work Group on 

the Behaviour of Hydraulic Machinery under Steady 

Oscillatory Conditions, Lausanne, Switzerland. 

9- Li Q.S., Yang Ke., Zhang Lixiang., Zhang N. (2002).  

Frequency domain analysis of fluid–structure 

interaction in Liquid-filled pipe systems by transfer 

matrix method. International Journal of Mechanical 

Sciences 44 2067–2087. 

10-   Covas D., Stoianov I., Mano J., Ramos H.( 2004b). 

Graham N., Maksimovic C. Water hammer 

inpressurized polyethylene pipes: conceptual model 

and experimental analysis. Urban Water Journal, 

177–197. 

 


