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Abstract

Unsteady flow is the result of turbulence (valve shut, pump deactivation, etc.) in the steady flow. A sudden change in the
velocity of fluid, flowing inside the tube, brings about an abrupt change in pressure and water hammer occurs as the result.
Because of internal fluid-structure interaction inside the pipe, this phenomenon effects on the pipe system. During water
hammer phenomenon, considerable dynamic forces are exerted on the pipe. If these forces cause deformation of the
structure, Fluid-structure interaction occurs. Thus, the present research intended to investigate the pip dynamic behaviour in
frequency domain. In time models proposed for solving water hammer equations in pipe structure, because of using
interpolation a great deal of time was required for transmission of hydraulic parameters to structure equations and vice versa.
Therefore, by simplicity of water hammer differential equation in frequency domain, the problem was solved in this domain.
The comparison made between the achieved results of this research and those obtained by other researchers confirmed the

accuracy and efficiency of this method.
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1- Introduction

During water hammer, considerable dynamic forces
are exerted on the structure. Fluid-structure interaction
occurs where these forces cause deformation on the
structure. Therefore, it is impossible to investigate pipe
behaviour or fluid separately so a simultaneous
investigation needs to be undertaken- In other words, we
have to study interaction mechanism. In some materials,
molecules' array change gradually toward each other as a
result of external loading. It causes deformation in
addition to deformation occurred at the beginning of
loading. Viscoelastic materials have both short and long-
time deformation as a result of loading [1]. So far, a
variety of models have been developed for describing
these substances mathematically [2]. These models with
their specific array of some springs and damper can be
used to describe viscoelastic substances behaviour [10].
Here, we apply Kelvin-Woigt model for describing
viscoelastic substances behavior (Fig. 1). In viscoelastic
problems, Matching Principle is used, when frequency
solution is under consideration. Then, deferential
equation is written in Laplace domain, and thus, the exact
solution can be achieved in Laplace domain [4]. The idea
of fluid-structure interaction in pipes, first developed by
Skalac in 1956 with presenting interaction equations
concerning water hammer [5]. Afterward, it was
investigated uninterruptedly and a wide variety of
procedures including Coupling, semi coupling, and
various algorithms recommended for numerical modeling
among which we can refer to solving interaction equation
of pipe vibration through method of characteristic lines
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proposed by wiggert and Taijsseling, solving structure
equations through finite element, solving hydraulic
equations through method of characteristic lines and
solving fluid-structure interaction in pipes analytically

[6].

2- Classifications of Various Types of
Coupling Modelling

Coupling procedures which are used for solving
problems of pipes fluid-structure interaction (FSI) can be
classified as below, according to differential equations
used in each procedure:

1. Model of two differential Equations: In this model,
only two hydraulic differential equations can be solved
(continuity and momentum) and thus, the calculated
pressure and velocity are used for analysing structure
equations. In this method which is in reality a semi
coupling method, the values calculated by solving
hydraulic equations are considered as an external
uploading in structure equations. This analytical method
is also known as classical water hammer solution [5].

2. Model of four first-order differential equations:
these four equations involve two continuity and
momentum equations that are hydraulic equations and
the structure axial vibration equation shifts into two first-
order differential equations because it is a second-order
equation. This model can be used in direct pipes with
axial movements. In addition to pressure and velocity,
axial stress and axial velocity of pipe wall are other
variables that can be seen in these four first-order
differential equations [5].

3. Model of six first-order differential equations: this
model is required only if radial inertia forces are needed.
In this model, hoop stress and radial velocity are
unknown in addition to what mentioned as unknown
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parts in the former model [5].

4. Model of fourteen first-order differential equations:
these fourteen first-order equations are: two hydraulic
equations, one axial vibration equation that changes into
two first-order differential equation as it is a second-
order equation, one rotational vibration equation that
again is a second-order equation and therefore changes
into two first-order differential equations, and two
bending vibration equations in two screens of xy and xz
that can come to eight first-order differential equations
for the fact that bending vibration equations are fourth —
order. This method can model pipe and fluid axial
vibration on vibration screen and out of vibration screen
and even rotational vibration in 3-D position in systems

[5].

3- Various types of coupling mechanism

Three major mechanisms have been discovered by
investigation into FSI phenomenon.

1. Poisson coupling mechanism: Poisson coupling
mechanism is the result of Poisson ratio in pipe materials
that change radial stress into axial stress. It can be
investigated by using an expression that is dependent on
Poisson ratio of materials and exists in hydraulic
equations, as well as, structure. This effect can cause
sudden changes in fluid pressure diagrams and structure
stress [3].

2. Friction coupling mechanism: rises from fluid
friction against pipe wall that reduces pressure and pipe
stress (damping). For this reason, a large number of
researchers ignore this effect which is just for certainty
[3].

3. Junction coupling mechanism: it occurs when some
junction of the pipe structure are not perfectly connected
on the ground. In some cases, it is observed that the
effect of this coupling is more significant than Poisson
coupling and thus it can intensify stress and consequently
destroy the structure [3].

4- Mechanical behaviour of viscoelastic

Materials

Viscoelastic materials exhibit both fluids and solids
characteristics. To model mechanical behaviour of a
linear elastic solid substance, a spring is usually used and
in one-dimensional position it is modelled as FS= K; U in
which F is force, U stands for movement, and S
represents spring. To model mechanical behavior of a
linear viscous fluid, a linear viscous damper is usually
used and in one-dimensional position it is modeled as
FD=K,U in which D represents damper, and spot over U
indicates displacement derivative with respect to time
[7].

One way to get the answer of a linear viscoelastic
substance is to consider a system containing a spring
which is.kpcated parallel with a damper. In this case, it is
o‘éﬁmfm;ﬂﬁ{éz%me force is F=F;+Fp, and therefore
F=K,U=K,U. In this model, the relationship between
stress o and strain € (set of spring and damper) is defined
as below:

P00 = Qo€+ qi€ po=1,q90=E,q1=u )

In which, E is spring modulus elasticity, p is damper
viscosity, € indicates strain rate change. It can be proved
that the following relationship exists in the generalized
model of Kelvin- Woigt
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Figure 1: mechanical presentation of a viscoelastic solid substance (a)
Kelvin- Woigt (b) three-parameter model of Kelvin- Woigt (c)
generalized model of Kelvin- Woigt.

5- The Equations
For linear viscoelastic substances in frequency
domain, the relationship between stress and strain is [4]:

e(s) = 3(8)s J(5) ®)

In the above formula, according to generalized model
of Kelvin- Woigt, creep compliance function is computed
J(S) as below:

— 1 Nk Nky Jk<
JG) =G T - S s 0]
In which J,=1/E represents an immediate reaction of
viscoelastic materials, J,=1/E, indicates spring creep
compliance of K Kelvin Woigt, and Ex shows elasticated
modulus K spring, Tk is the delaying time of K damper.

ki in =Ll Ey is K viscoelastic damper.

5.1 Continuity and momentum equations

To obtain above equation in a pipe system, Navier-
Stokes is written in two-dimensional r-z cylindrical
coordinate system [2]. These equations involve a
continuity equation and two momentum equations in
radial and axial direction with variables of axial velocity
V, radial velocity V, , fluid pressure P, and fluid density
py,» moreover, it relates Equation of state, pressure, and
fluid density. Continuity Equation:

v 1dp , 2 . .
Z+;E+Eur|r=R=0r ur|r:R=Vr|r:R ()

And momentum equation in axial direction:

av 1dp _ 2 .
ot Tpj0 R To + gsind (6)

In which velocity (v) and pressure (p) are:

1 R
Vzﬁ fO 27TTUZ d‘r (7)

1 (R
Ve—os J, 2nrp d, (8)

In which Vz and P are distribution function and flow
pressure respectively. In these expressions, Z represents
pipe axis length, t is time, g stands for gravity, R
indicates pipe internal radius, and p is fluid density.
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Assuming that the pipe wall is thin and according to
small strain theory, the following expression is computed
for viscoelastic pipes in continuity differential equation:
Continuity equation:

W 1OP 50Uy o Dalg

e trae 5, =W = Dprg oo, ©)

In this expression, 0z is pipe axial velocity, f shows

Darcy-Weisbach friction coefficient , D represents pipe
internal diagonal, v is Poisson ratio, ps is fluid density, e
shows pipe internal thickness, | d is delaying
environmental strain coefficient, and C; is pressure wave
velocity. We have:

1

6= G+ a-vHg) (10)
Ig = [y H (t = 5).2(S)ds (11)

Momentum equation:

av OH _ —fV|V|
%t9% " "m (12)
5.2 Axial vibration equations

Due to the fact that Poisson coupling exists in
continuum equation, and therefore there is a need for
computing axial displacement on various pipe spots,
axial vibration equations again need to be extracted.
Axial vibration, itself, is under the influence of pipe wall
viscoelasticity. The first step in modeling axial vibration
is writing motion equation on axial direction Z and radial
direction r in a two-dimensional state on a cylindrical
coordinate system. These two equations are considered as
momentum balance expression on axial and radial
directions. The effects of Bending stiffness, rotational
inertia, and transverse shear deformation are disregarded.
These hypotheses are known as hypotheses of waves
with long wave length [5].

Qu; 1 009 , DVPsOH _ Olo, _ Dvalg

0z peCE ot 2Fre ot ot Pr9% %
E

,CE == (13)
Pt

In which C, is shear wave velocity and p, is density of
pipe material.

i, 180, _ prAsfVIV]

at  p; 0z peAr 2D

+ gsinf (14)

Ay and A; are flow cross section and pipe cross
section respectively. For solving Fluid-Structure
Interaction, equation 13 and 14 along with fluid
continuity and momentum equations, and transfer Matrix
are applied for example in a tank-pipe-valve system [8].

5.3 Boundary condition

Boundary conditions have always been the major part
of every mathematical model and involve equations in
terms of unknown parts that are true only on boundaries.
To model the effect of junction interaction, boundary
conditions need to be proportional to the numerical
method applied in solving equations, and boundary
condition again must be applied appropriately in

numerical solution process. It is always the most
significant part in every solution method [9].

The effect of junction interaction occurs only if some
parts of structure, in which momentum shift takes place,
are not perfectly connected on the ground. To model the
effect of junction interaction, structure dependent
hydraulic parameters are used on boundary condition and
on structure boundary condition, hydraulic dependent
values are used. Therefore, no changes made on fluid
structure differential equations, and boundary condition
is the only connector between them. Thus we need to
prepare boundary condition in another way for structure
and hydraulic equations. Each boundary condition used
in solving equations, will have a change in their
relationship when their nodes are entirely proved
structurally. Here we're going to take a look at these
changes.

Boundary condition is different in valve, elbow,
closed end, pump, and other facilities used in a hydraulic
system. Thus, their relationships must be extracted
individually. Here, we explain these relationships in
valve and tank [9].

1. Tank (with one open end)
If pipe is fixed in this end, we have:

100 10 _ T
D,=[p 1 oo FEO=[6E o (5
2. Closed valve or closed end with m mass

(2) Fixed pipe
1 0 0O
Dy = ]

= 2 Y0 =T u©I @)

(b) Free pipe for moving along the axis

1 0 -1 o0
Dm=[0 gprA;  tsm gptAt]’ fm($) =
[0 ZR()]" 17)

As Ar and A, are pipe internal cross section and pipe
wall cross section respectively. m is valve mass or closed
end. £ is determined according to coordinate system. R,
is the conversion of external stimulus Laplace at the end
in question. R, is explained as below:

Ry = Ary Erpr(e™"¢ = 1)/s, (18)
6- Solving by transfer matrix

In this method, four first-order partial differential
equations are written like the below matrix.

dy(z,t)  ,dy(z,t) _ (19)
A= tBT g o =ry

In which y(z,t) and r(z,t) are vectors of unknown
parts and matrixes A,B,C are matrix of fixed coefficients.
According to mentioned equations, matrixes and vectors
are:
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In equation 21, L stands for pipe ength, v is Poisson
ratio, R shows pipe internal radius, e demonstrates pipe
wall thickness, E indicates elastic modulus, g is gravity,
and K is fluid bulk modulus. In equation 20, a,, and b,
are Poisson coupling. By converting Laplace on
equation, we have:

SAE)Y (z,8)+ g(EZS) _ ;5 @

dz
We have:
Y (z,8)=L(y(z,t)) A=A (230
r(z,s) = L(r(z,t) + A(s) y(z,0) (23.2)
In which y(z,0) vector is initial condition.

Eigenvalues of expressions like this can be computed
through|B — 24| = 0 like below.

Cr =a =2 = L fa? - Ja® —ac7eZ .

[l

g—=C? +C2+202 2t Rz )
V=

Matrix A, a diagonal matrix with achieved eigenvalues is
as below:

A=diag {1, (5),—2,(5), A5 (S),—A5(S)}  (29)

One solution is:

#(z,5) = S()n(z,1) )

Computing S and n;
A(S)=ST A™* B s(s)
SE)=(§1(s) &2(5) &5(5),--) (@7)

Each &;(s) belong to 4;
_~ -~ _ / . . ~*
7i @,8)=m0; (&) ) 1" (2 )

i =1,2,..,N (28)

n which 77” can be computed by using boundary

condition. And 77:: shows the private answer.

. =sz1%5) - . */ 4 *
(@) = —= Iznri @ " 5)e¥ M e0d
Ais)

i=12,...N (29)
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Figure 2: Pressure changes as compared to time according to research
conducted by covas et al [10].

Don’t forget that if 77: is independent of z, 77:
(r,z)equals 77“ (s).

The vector of 7 is written like this:

7(z.8)=E(2,8)10(8) + 4 (.,5) (30)
In which diagonal matrix E is as below.

E(z,s) =
diag (e ) o ) e als), e_sz//l,,(s)) 31)
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Table 1: Input data
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Figure 3: Pressure changes as compared to frequency

7- Flow in viscoelastic pipes

Water hammer test is conducted in a polyethylene
pipe system. This test was performed by covas et al [7]
and is also known as Imperial College [10, 11]. This test
can be implemented like a tank-pipe-valve system. Input
data is available in tables 1 and 2.

8- Conclusions

In sum, the major findings achieved after studying the
effect of viscoelastic pipe networks in frequency domain
are as the follow:

The capability and applicability of the transfer matrix
method, which was the main objective of the study, were
proved by using resource models.

Investigation of interaction in frequency domain
indicated that boundary conditions must be restricted as
much as possible.

Single pipes and less complicated systems in
frequency domain can be better analyzed.

Fluid pressure was studied when system was under
vibration effect and it was observed that under the
influence of structure — interaction, system natural
frequencies were intensified. It indicates the destructive
effect of viscoelasticity and FSI effect.

In comparison with other methods (like FEM), TMM
has another advantage that the length of used matrixes
rarely increase increased by modeled system size.
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