Journal of Environmental Treatment Techniques  
2018, Volume 6, Issue 4, Pages: 74-80  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
Pilot-Scale Evaluation of CO Loading Capacity  
2
in AMP Aqueous Solution beside the Improvers  
HMDA-NH under a Series of Operational  
3
Conditions  
1
*2  
3,4  
Amin Ale-Ebrahim Dehkordi , Alireza Jahangiri Amirreza Talaiekhozani A.Heidari  
5
Semiromi  
1
- Chemical Engineering Department, Jami Institute of Technology, Isfahan, Iran  
- Faculty of Engineering, Shahrekord University, Shahrekord, Iran  
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, Iran  
- Applied Nanobiophotonics Center, Shiraz University of Medical Sciences, Shiraz, Iran  
-Chemical Engineering Department, Jami Institute of Technology, Isfahan, Iran  
2
3
4
5
Received: 09/08/2018  
Accepted: 01/12/2018  
Published: 30/12/2018  
Abstract  
Nowadays, carbon dioxide removal has to be ingeniously managed because of its environmental and health effects. CO as a  
2
heat-trapping greenhouse gas is pumped into the atmosphere through anthropogenic activities. This specific characteristic of CO2  
gas not only adversely impacts the environment but also imposes noxious effects on human life. In spite of all the various and  
potential scientific technics for CO2 removal, gas absorption using alkanolamines solvents has played a significant role in  
industries in recent decades. In the present research, the equilibrium set up for measuring CO solubility in aqueous solvents was  
2
assembled. CO loading data in aqueous Amp and Amp (3M) activated with HMDA and NH were assessed under the influence  
2
3
of various operational conditions of CO partial pressures (8.44, 25.33, and 42.22kPa), temperatures (303, 313, and 323K) and  
2
solvent concentrations of (0.5, 1.5 and 3M) for pure AMP and (0.4, 0.8 and 1.2M) for HMDA-NH . The result showed that CO  
3
2
loading of AMP activated HMDA-NH3 increases with decreasing system temperature and increasing CO partial pressure.  
2
Furthermore adding the HMDA solvent into the system increased CO loading before it followed a slight decrease while adding  
2
NH decreased the amount. Concerning efficiency enhancement, it was comprehended that, HMDA could be considered among  
3
promising improvers while NH as an additive beside AMP or as a based solvent, perform well in CO absorption process only  
3
2
under specific operational condition.  
Keywords: CO solubility, AMP, Ammonia (NH ), Loading  
2
3
1
mean global temperature by 1.9 C and the sea level by 3.8  
m [2]. To find a solution to this severe environmental  
concern and to reduce the amplified greenhouse effects,  
several CO2 removal methods have been designed after  
tremendous amounts of laboratory works. Some of them  
include chemical absorption, physical absorption,  
refrigerating methods, membrane separation and biological  
absorption. However gas absorption using aqueous  
1
Introduction  
The anthropogenic increase of greenhouse gases  
concentration in the atmosphere is stated to be the root  
cause of global warming. Among these greenhouse gases,  
CO is believed to be highly responsible contributing to this  
2
issue. The accumulation of CO2 in the air stems from  
diverse sources such as steel plants, cement industry and  
coal-fired power plants [1]. It is estimated that, if these  
large emitters continue to release CO2 up into the  
atmosphere, by the year 2100 the atmosphere may will  
alkanolamine solutions as  
a mature well-established  
technology has proved both efficacious and viable among  
others. Some of the most sought-after solutions in this  
category which have been exercised by many industry are  
monoethanolamine (MEA), diethanoleamine (DEA), and  
have loaded up to 570 ppm CO . This will then increase the  
2
Corresponding author: Alireza Jahangiri, Tel.:  
989192672218; fax: 
9 8 3814424438; E-mail address:  
jahangiri@eng.sku.ac.ir.  
methyldiethanolamine (MDEA). Owing to  
advancement in gas treating technology,  
hindered amine 2-amino-2-methyl-1-propanol (AMP) has  
a
recent  
a
sterically  
7
4
Journal of Environmental Treatment Techniques  
2018, Volume 6, Issue 4, Pages: 74-80  
been proposed as a different class of chemical absorbent  
also used beside to compensate for the low absorption rate  
of AMP [8]. NH3 as an additive has several major  
dominances over amine solutions such as high CO2  
removal capacity, no degradation, less corrosion, low heat  
requirement for regeneration and the potential of capturing  
CO , SO and NOx simultaneously [1]. In this regard,  
3].  
Due to several supremacies in absorption capacity,  
absorption rate, selectivity, degradation resistance and  
regeneration energy over conventional alkanolamines it has  
been called  
a commercially attractive solvent [4].  
2
2
Preliminary work on hindered amine solution was  
conducted by A.K. Chakraborty et.al. Also pahlavanzadeh  
and jahangiri were the priors to undertook the similar  
experiment with the introduced CO2 absorption set up  
which showed good results [5]. Another study with AMP  
solvent was conducted by Anoar Ali Khan et.al to prove  
high loading capacity of this hindered amine [1].  
Concerning efficiency enhancement, many researchers  
made a start on the utilization of blends of alkanolamines,  
or an amine based improved solution in varying  
concentration. They believed to produce absorbent with  
intensified absorption characteristics [4]. In other word, by  
this method it could bring together the advantages of each  
experiments were carried out with different molar  
compositions of AMP (.5, 1.5 and 3 M), AMP+HMDA  
(3+.4, 3+.8 and 3+1.2M) and AMP+NH3 (3+1, 3+2 and  
3+3M) at three different temperatures of (303, 313, and  
323K) and CO2 partial pressures of (8.44, 25.33, and  
42.22Kpa). The loading capacities of CO in each blends of  
2
AMP, AMP/NH3 and AMP/HMDA were calculated under  
the mentioned operational conditions and the data were all  
registered.  
2
Materials and Methods  
In order to carry out the experiments, AMP, HMDA  
and NH solvents were purchased with purity of 95%, 99%  
3
amine to facilitate CO absorption process. For instance a  
2
and 25% respectively, supplied by Merck Company and a  
certain amount of distilled water for preparing aqueous  
solution. CO -N gas was prepared by SEPAHAN,  
mixture of primary (MEA) and tertiary amine (MDEA)  
could benefit from both a high absorption rate of MEA and  
a high equilibrium capacity of MDEA [6]. In this field,  
there exist several study to show the increasing interest in  
performing CO2 absorption experiment using amine  
mixtures. As an example Yuli Artanto et.al investigated  
2
2
industrial and medical gasses production, Company which  
is located in ISFAHAN  
Laboratory Setup: In order to conduct the CO absorption  
2
process, equilibrium set up for measuring CO solubility in  
2
CO absorption in aqueous mixture of AMP and piperazine  
2
aqueous solvents was assembled which is illustrated in Fig.  
(PZ) which showed good results compared to conventional  
1
. This set up have several advantages over the  
MEA [7]. Won-Joon Choi et.al investigated CO absorption  
2
conventional static and flow apparatus which have been  
into aqueous AMP/HMDA and AMP/MDEA to show the  
high CO2 loading capacity and high absorption rate of  
HMDA and MDEA additives [6].  
The present research focuses on the use of amine blends  
which takes advantages of a hindered amine named AMP  
applied for several years to measure CO solubility data.  
2
The most important feature is the continuous contact of  
both phases during the experiment which practically occurs  
in industrial processes. Since you could have precise data  
for industrial designing.  
with a higher equilibrium CO loading capacity in compare  
2
to conventional amines. Aqueous HMDA and NH3 were  
Figure 1: The apparatus for measuring the solubility of gases in liquid (a:Spiral tube, b:Scalling burette, c:Monometre, d:Water  
bath, e:Mercury Jack, f:Cell, g:Unloaded Solvent Container, h: Circulating Pump, i: CO Capsule, J:Loaded Solvent Collector,  
2
K:H O injector)  
2
7
5
Journal of Environmental Treatment Techniques  
2018, Volume 6, Issue 4, Pages: 74-80  
The basic elements of the set up are as follows:  
V
Equilibrium cell: It is designed to make an  
n   
(2)  
equilibrium environment in which the equilibrium  
solubility of CO in aqueous solvent solution could be  
2
investigated. The water which enters the equilibrium  
cell adjust the temperature to begin the experiments.  
Spiral tube: There exist number of turns which is  
constant. In these turns the liquid and vapor phase  
come into contacts with each other to begin absorption  
process. The solute and the solvent decide the  
parameters such as number of turns, the slope and the  
diameter of the tube. While the solubility of the gas  
increases, the number turns should be increased and  
the slope should be decreased to guarantee the  
equilibrium condition between the solvent and the  
solute at the end of the spiral tube.  
Scaling Burette: A scaling burette is a requisite  
device in order to estimate the volume of the dissolved  
gas into the solvent and also to maintain the gas in  
the set up. This burette is connected to the spiral tube  
at the top and to an internal valve at the bottom. The  
valve is in connection with a CO2 capsule and a  
mercury vessel. The mercury vessel is located on a  
moving platform so as to adjust the level of the  
solution in the monometer.  
Determining the number of Solvent moles with the  
volume, density and molecular mass of the solvent, the  
number of solvent moles consumed is calculated from the  
following equation:  
Vd  
n   
(3)  
M w  
In this regard, V is the solvent volume in milliliters, d is  
the solvent density in grams per ml, and MW is the solvent  
molecular mass in grams per mole. The number of moles  
consumed from each of the solvents is obtained by the  
following equation:  
Vd  
n t  
(4)  
M w  
That n  
is the number of total molecules consumed for  
t
Manometer: A manometer is constructed at the  
bottom of the spiral tube. It is needed to show the  
pressure disagreement in the set up. The manometer is  
joint to the spiral tube from one end and is opened to  
the atmosphere from the other end.  
Water bath: A water bath is applied in the process in  
order to supply the water to the equilibrium cell at an  
adjusted temperature. This will provide for the  
temperature at which the experiments are considered  
to be performed.  
solvent mixtures, in which:  
n
d   
x d  
(5)  
i
i
i
n
M w  
x ( M ) i  
i
w
(6)  
i
Circulating pump: This device is used to circulate  
the water which is supplied from the bath into and out  
of the equilibrium cell.  
Solvent container: Solvent container is used to inject  
the certain amount of solvent into the system at a  
constant rate.  
In these equations, xi, di and (MW)  
i
are the solvent (i)  
mole fraction in the composition, the solvent (i) density,  
and the molecular mass of the solvent (i). The following  
equation is used to calculate the mole of each solvent  
consumed:  
CO loading calculations: To obtain CO loading, tests are  
2
2
n  c n  
t
(7)  
i
i
needed to measure the amount of CO gas dissolved in a  
2
certain amount of solvent. In each experiment, the amount  
of CO dissolved during the test is obtained by reading on  
By calculating the amount of CO  
2
moles and the  
2
the burette. Then, using a proper equation of state, with  
having the pressure and temperature of the experiment, the  
volume of the gas is converted to the number of dissolved  
moles. Because the total pressure at which the set up works  
is approximately 1 atmosphere, the ideal gas equation of  
state is used. Molar volume of the gas could be obtained  
from equation 1.  
amount of solvent moles according to equations above, the  
amount of α which stands for CO  
loading could be  
2
obtained by the following equation:  
m olC O  
2
exp  
(8)  
m olsolvent  
Laboratory data related to CO loading in AMP + H O  
P  RT  
(1)  
2
2
+
CO system: In Table 1, CO loadings are calculated  
2
2
After calculating the molar volume of the gas dissolved  
in the test conditions, given the fact that during the test the  
volume of the gas is also determined based on the change  
in the height of the surface of the mercury, the amount of  
according to equation. The calculations were performed  
under different operational conditions in AMP  
concentrations of (.5, 1.5 and 3M), temperature (303, 313,  
and 323K) and CO2 partial pressure (8.44, 25.33, and  
42.22kPa). According to the data which are presented in  
table 1, Figure 1 displays CO2 loading capacity of pure  
AMP under the mentioned operational conditions.  
CO moles can be obtained according to equation 2.  
2
7
6
Journal of Environmental Treatment Techniques  
2018, Volume 6, Issue 4, Pages: 74-80  
Laboratory data related to CO loading in AMP + H O  
(8.44, 25.33, and 42.22kPa). According to the data which  
are presented in table 2, Figure 2 displays the effects of  
HMDA additive into AMP (3M) under the mentioned  
operational conditions.  
2
2
+
CO + HMDA system: In Table 2, CO loadings are  
2
2
calculated according to equation. The calculations were  
performed under different operational conditions in  
AMP+HMDA concentrations of (3+.4, 3+1.8 and 3+1.2),  
temperature (303, 313, and 323K) and CO partial pressure  
2
Table 1: CO loading in AMP+H O+CO system  
2
2
2
AMP Concentration  
M
Temp  
K
 E x p  
PC O  8 .4 4 kP a  
PC O  2 5 .3 3 kP a  
PC O  4 2 .2 2 kP a  
2
2
2
AMP (0.5M)  
AMP (0.5M)  
AMP (0.5M)  
AMP (1.5M)  
AMP (1.5M)  
AMP (1.5M)  
AMP (3M)  
303  
313  
323  
303  
313  
323  
303  
313  
323  
0.0207  
0.0160  
0.0078  
0.0096  
0.0080  
0.0052  
0.0062  
0.0040  
0.0026  
0.1243  
0.0722  
0.0466  
0.0495  
0.0399  
0.0232  
0.0329  
0.0279  
0.0212  
0.3107  
0.2005  
0.1166  
0.1581  
0.1261  
0.0903  
0.0960  
0.0797  
0.0643  
AMP (3M)  
AMP (3M)  
8
.44  
25.33  
42.22  
CO  
2
Partial Pressures (kPa)  
0
0
0
0
.35  
.3  
.25  
.2  
.15  
.1  
0
.3107  
0
0
0.2005  
0
.1581  
0
0
.1243  
.0207  
0.1261  
.0399  
0
.1166  
0
0
.096  
0
.0903  
0
0
.0797  
.0279  
0
.0722  
.016  
0
.0643  
.05  
0
.0466 0.0495  
.0078 0.0096  
0
0
0
0
.0329  
0.0232  
0.0212  
0
0.008  
0.0052 0.0062  
0.004  
313  
0.0026  
3
03  
.5  
313  
0.5  
323  
303  
313  
323  
303  
323  
3
0
0.5  
1.5  
1.5  
1.5  
3
3
AMP Concentrations (M)-Temperatuares (K)  
Figure 1: The influence of operational conditions on CO loading in different AMP Concentrations of (0.5, 1 and 3M)  
2
Table 2: CO loading in AMP+HMDA+H O+CO system  
2
2
2
AMP Concentration  
M
Temp  
K
 E x p  
PC O  8 .4 4 kP a  
PC O  2 5 .3 3 kP a  
PC O  4 2 .2 2 kP a  
2
2
2
AMP(3M)+HMDA(0.4M)  
AMP(3M)+HMDA(0.4M)  
AMP(3M)+HMDA(0.4M)  
AMP(3M)+HMDA(0.8M)  
AMP(3M)+HMDA(0.8M)  
AMP(3M)+HMDA(0.8M)  
AMP(3M)+HMDA(1.2M)  
AMP(3M)+HMDA(1.2M)  
AMP(3M)+HMDA(1.2M)  
303  
313  
323  
303  
313  
323  
303  
313  
323  
0.011  
0.009  
0.007  
0.001  
0.009  
0.007  
0.010  
0.009  
0.007  
0.052  
0.042  
0.037  
0.052  
0.044  
0.039  
0.048  
0.041  
0.037  
0.0105  
0.096  
0.079  
0.099  
0.088  
0.073  
0.099  
0.089  
0.073  
7
7
Journal of Environmental Treatment Techniques  
2018, Volume 6, Issue 4, Pages: 74-80  
Laboratory data related to CO loading in AMP+NH +  
reason, CO  
2
loading decreases with increase in  
2
3
H O + CO system: In Table 3, CO2 loadings are  
concentration, which has been observed in previous  
researches conducted by pure AMP to confirm the accuracy  
of the matter[5]. According to Figure 2 HMDA additive  
into AMP (3M) made an upward trend toward an  
2
2
calculated according to equation. The calculations were  
performed under different operational conditions in  
AMP+NH3 concentrations of (3+1, 3+2 and 3+3M),  
temperature (303, 313, and 323K) and CO partial pressure  
enhancement in CO loading capacity especially at higher  
2
2
(8.44, 25.33, and 42.22kPa). According to the data which  
CO2 partial pressures, however it was applied in low  
are presented in table 3, Figure 3 displays the effects of  
NH3 additive into AMP (3M) under the mentioned  
operational conditions.  
concentrations. For aqueous NH According to Figure 3, it  
was found that, no improvement has obtained during the  
3
absorption process while NH was added to AMP system  
3
under the same operational conditions. In order to justify  
the behavior of ammonia solvent, Several Previous works  
3
Results and Discussion  
on CO absorption using aqueous ammonia were studied. It  
Experiments were carried out under the mentioned  
2
was understood that, aqueous ammonia in CO absorption  
operational conditions. According to the Figures 1, 2, and  
, it was comprehended that for pure AMP, AMP+NH and  
2
process has its best performance while it is applied in  
temperatures below 10C. In a case where the temperature  
exceeds, Figure 3, ammonia evaporation may occur as a  
result which leads to solvent loss during the experiments.  
Furthermore, In order to cope with solvent loss during the  
absorption process, some researchers have recommended  
the use of metal additives like Zn, Cu, Ni, and Me into the  
aqueous ammonia [9, 10].  
3
3
AMP+HMDA, CO loading increased with a reduction in  
temperature and an increase in CO partial pressures. By  
increasing AMP concentration, CO loading decreased. In  
practice, during the absorption process with pure AMP, the  
2
2
2
increase in CO mole numbers in the solvent is not as well  
2
as the increase in AMP solvent moles when increasing the  
concentration. According to equation 8, the denominator  
increase is much more than the numerator increase. For this  
8
.44  
25.33  
42.22  
CO2 Partial Pressures (kPa)  
0
.12  
.1  
0
0.099  
0.099  
0.089  
0
.096  
0.096  
0
0
.088  
.044  
0
0
0
0
.08  
.06  
.04  
.02  
0
0.0797  
0.079  
0
0
.073  
.039  
0.073  
0.037  
0
.0643  
0
.052  
0.052  
0
.048  
0.042  
0.041  
0.009  
0
.037  
0
0
.0329  
.0062  
0
.0279  
0.0212  
0
0. 0. 011015  
0.01  
0
.009  
0.009  
0.007  
323  
0.007  
323  
0.007  
323  
0
.004 0.0026  
0.001  
303  
3
03  
0
313  
323  
0
303  
0.4  
313  
0.4  
313  
0.8  
303  
1.2  
313  
1.2  
0
0.4  
0.8  
0.8  
1.2  
AMP+HMDA Concentrations (M)-Temperatures (K)  
Figure 2: The influence of adding the improver (HMDA) in concentrations of (0.4, 0.8 and 1.2M) into AMP (3M) under variable operational  
conditions  
Table 3: CO loading in AMP+NH +H O+CO system  
2
3
2
2
AMP Concentration  
M
Temp  
K
 E x p  
PC O  8 .4 4 kP a  
PC O  2 5 .3 3 kP a  
PC O  4 2 .2 2 kP a  
2
2
2
AMP(3M)+NH (0.4M)  
303  
313  
323  
303  
313  
323  
303  
313  
323  
0.0010  
0.0007  
0.0002  
0.0010  
0.0006  
0.0003  
0.0010  
0.0007  
0.0003  
0.0209  
0.0181  
0.0161  
0.0150  
0.0131  
0.0117  
0.0120  
0.0105  
0.0094  
0.0499  
0.0435  
0.0398  
0.0351  
0.0307  
0.0282  
0.0291  
0.0263  
0.0237  
3
AMP(3M)+NH (0.4M)  
3
AMP(3M)+NH (0.4M)  
3
AMP(3M)+NH (0.8M)  
3
AMP(3M)+NH (0.8M)  
3
AMP(3M)+NH (0.8M)  
3
AMP(3M)+NH (1.2M)  
3
AMP(3M)+NH (1.2M)  
3
AMP(3M)+NH (1.2M)  
3
7
8
Journal of Environmental Treatment Techniques  
2018, Volume 6, Issue 4, Pages: 74-80  
8
.44  
25.33  
42.22  
CO2 Partial Pressures (kPa)  
0
.1  
0
0
0
0
0
0
0
0
0
.09  
.08  
.07  
.06  
.05  
.04  
.03  
.02  
.01  
0
0.09  
0
.079  
0
.064  
0
.049  
0
0
.043  
0
0
.039  
0.035  
.016 0.015  
0
.032  
.006  
0.03  
.013  
0.029  
0
0
.027  
.004  
0.028  
0.011  
0.026  
0.01  
0.0007 0.0003  
313  
0
0
.023  
.009  
0.021 0.02  
.002 0.001  
.018  
0
0.012  
0.001  
303  
0
0
0.001  
303  
0.0007 0.0002  
313  
0.0006 0.0003  
313  
3
03  
0
313  
0
323  
303  
323  
323  
323  
0
0.4  
0.4  
0.4  
0.8  
0.8  
0.8  
1.2  
1.2  
1.2  
AMP+NH Concentrations (M)-Temperatures (K)  
3
Figure 3: The influence of adding the improver (NH ) in concentrations of (0.4, 0.8 and 1.2M) into AMP (3M) under variable  
3
operational conditions  
4
2.22  
42.22  
CO partial pressure (kPa)  
2
3
0 3  
0
3 1 3  
0
3 2 3  
0
3 0 3  
0 . 4  
3 1 3  
0 . 4  
3 2 3  
0 . 4  
3 0 3  
0 . 8  
3 1 3  
0 . 8  
3 2 3  
0 . 8  
3 0 3  
1 . 2  
3 1 3  
1 . 2  
3 2 3  
1 . 2  
AMP+HMDA  
AMP+NH3  
AMP (3M) ACTIVATED NH -HMDA  
3
2
Figure 4: Experimental CO loading of the mixed AMP+HMDA in comparison with AMP+NH3  
consideration for CO loading calculation which caused a  
drop in the amount.  
4
Conclusion  
2
In the present research CO absorption by pure AMP  
2
and AMP activated NH -HMDA was studied under various  
3
operational conditions. HMDA additive increased CO2  
loading capacity of pure AMP while adding aqueous NH3  
to AMP did nothing to enhance the amount. In fact  
inappropriate selection of the operational temperature range  
higher than the optimum amount, led to ammonia loss  
during the CO absorption process. That meant that no NH  
References  
[1] A.A. Khan, G.N. Halder, A.K. Saha, Experimental  
investigation of sorption characteristics of capturing  
carbon dioxide into piperazine activated aqueous 2-  
amino-2-methyl-1-propanol solution in  
column, International Journal of Greenhouse Gas  
Control, 44 (2016) 217-226.  
a
packed  
2
3
was introduced into the system while it had been taken into  
7
9
 
Journal of Environmental Treatment Techniques  
2018, Volume 6, Issue 4, Pages: 74-80  
[
2] A. Uma Maheswari, K. Palanivelu, Absorption of  
carbon dioxide in alkanolamine and vegetable oil  
mixture and isolation of 2-amino-2-methyl-1-propanol  
carbamate, Journal of CO2 Utilization, 6 (2014) 45-52.  
3] A. Jahangiri, H. Pahlavanzadeh, A. Mohammadi, The  
modeling of CO2 removal from a gas mixture by 2-  
amino-2-methyl-1-propanol (AMP) using the modified  
Kent Eisenberg model, Petroleum Science and  
Technology, 32 (2014) 1104-1113.  
absorption into aqueous AMP/HMDA, AMP/MDEA,  
and AMP/piperazine solutions, Green Chemistry, 9  
(2007) 594-598.  
[7] Y. Artanto, J. Jansen, P. Pearson, G. Puxty, A. Cottrell,  
E. Meuleman, P. Feron, Pilot-scale evaluation of  
AMP/PZ to capture CO 2 from flue gas of an Australian  
brown coalfired power station, International journal of  
Greenhouse Gas control, 20 (2014) 189-195.  
[
[
[
[8] S.-B. Jeon, H.-D. Lee, M.-K. Kang, J.-H. Cho, J.-B.  
Seo, K.-J. Oh, Effect of adding ammonia to amine  
4] W.-J. Choi, B.-M. Min, B.-H. Shon, J.-B. Seo, K.-J. Oh,  
Characteristics of absorption/regeneration of CO 2SO  
solutions for CO  
2 capture and mass transfer  
2
binary systems into aqueous AMP+ ammonia  
performance: AMP-NH 3 and MDEA-NH 3, Journal of  
the Taiwan Institute of Chemical Engineers, 44 (2013)  
1003-1009.  
solutions, Journal of Industrial and Engineering  
Chemistry, 15 (2009) 635-640.  
5] H. Pahlavanzadeh, S. Nourani, M. Saber, Experimental  
analysis and modeling of CO 2 solubility in AMP (2-  
[9] K. Li, H. Yu, M. Tade, P. Feron, Theoretical and  
experimental study of NH 3 suppression by addition of  
Me (II) ions (Ni, Cu and Zn) in an ammonia-based CO 2  
capture process, International Journal of Greenhouse  
Gas Control, 24 (2014) 54-63.  
[10] N. Dave, T. Do, G. Puxty, R. Rowland, P. Feron, M.  
Attalla, CO2 capture by aqueous amines and aqueous  
ammoniaA Comparison, Energy Procedia, 1 (2009)  
949-954.  
amino-2-methyl-1-propanol) at low CO  
2 partial  
pressure using the models of DeshmukhMather and the  
artificial neural network, The Journal of Chemical  
Thermodynamics, 43 (2011) 1775-1783.  
[
6] W.-J. Choi, K.-C. Cho, S.-S. Lee, J.-G. Shim, H.-R.  
Hwang, S.-W. Park, K.-J. Oh, Removal of carbon  
dioxide by absorption into blended amines: kinetics of  
8
0