Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
A Review on Different Aerobic and Anaerobic  
Treatment Methods in Dairy Industry  
Wastewater  
1
2,3  
1
4
5
Amin Goli , Ahmad Shamiri , Susan Khosroyar , Amirreza Talaiekhozani , Reza Sanaye ,  
7
*
Kourosh Azizi  
1
- Chemical Engineering Department, Islamic Azad University Branch of Quchan, Quchan, Iran  
-Chemical & Petroleum Engineering Department, Faculty of Engineering, Technology & Built Environment, UCSI University,  
6000 Kuala Lumpur, Malaysia  
2
5
3-Process System Engineering Center, Faculty of Engineering, Technology & Built Environment, UCSI University, 56000 Kuala  
Lumpur, Malaysia  
4
-Department ofCivil Engineering, Jami Institute of Technology, Isfahan, Iran  
- Department of Cancer proteomics, Shiraz University of Medical Sciences, Shiraz, Iran  
- Department of Medical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran  
- Department of Medical Entomology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran  
5
6
7
Received: 02/08/2018  
Accepted: 10/02/2019  
Published: 30/03/2019  
Abstract  
Dairy industries have grown tremendously in many regions around the world due to the growth of demand for milk-related  
products. Dairy industries release wastewater containing high chemical oxygen demand (COD), biological oxygen demand (BOD),  
nutrients, in addition to organic and inorganic substances. Such wastewater, if improperly treated, severely pollutes water resources.  
For many years, anaerobicaerobic processes have been used to remarkable effect in the treatment of dairy industry wastewater.  
Previously, a large portion of wastewater treatment was carried out in conventional anaerobicaerobic treatment units. Nowadays,  
high-rate anaerobicaerobic bioreactors are progressively employed for treating wastewater with high COD content. This paper  
reviews dairy wastewater sources, their production, and characteristics. Furthermore, different types of high-rate anaerobicaerobic  
wastewater treatment methods currently available, including aerobic and anaerobic bioreactors over and above hybrid anaerobic–  
aerobic bioreactors, are discussed. The strong points and the weaknesses of different individual and combined anaerobic and aerobic  
bioreactors are highlighted; they are then compared to point out future areas of investigation for full usage and application of these  
methods for wastewater treatment. The comparison demonstrates that using an integrated bioreactor is advantageous in treating  
highly polluted industrial wastewater. The combination of aerobic and anaerobic degradation pathways in an individual bioreactor  
can enhance overall degradation efficiency. Furthermore, this combination appears as an attractive alternative from the technical,  
economic, and environmental perspectives, especially wherever space is a limiting factor.  
Keywords: Dairy product, Industrial dairy wastewater, Anaerobicaerobic treatment, Anaerobicaerobic bioreactors, Wastewater  
treatment  
1
vary significantly, depending on the product (16-18). Water  
1
Introduction  
pollution causes a sharp drop in dissolved oxygen.  
Compounds such as albumin, casein, lactose, and milk fat  
are highly biodegradable and decompose rapidly, becoming  
rancid and septic. Another main water pollutant from the  
dairy industry is whey (19-21). The liquid whey and the  
casein that remain in milk after fat removal are used to make  
cheese. In the milk clotting (coagulation) process, milk is  
separated into curd and whey by the action of milk clotting  
enzymes such as rennet or any edible acidic compound  
Nowadays, many environmental crises threaten human  
life (1-4). One of the most dangerous is the waste from the  
dairy industry and milk factories (5-10). Any effort to  
prevent environmental pollution from the expansion of the  
dairy industry and milk factories should take into account the  
effluents they produce (9, 11-15). Milk is the raw material of  
the dairy industry, regardless of whether the finished dairy  
product is fresh milk, powdered milk, or some other  
products. The quality and quantity of wastewater produced  
Corresponding author: Professor Dr. Kourosh Azizi, Department of Medical Entomology, School of Health, Shiraz University  
of Medical Sciences, Shiraz, Iran  
113  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
like lemon juice or vinegar. Clots (rennin curds) contain  
casein, fats, minerals, and vitamins, while whey contains  
lactose, soluble proteins and/or whey proteins, enzymes,  
organic acids, water-soluble vitamins and minerals (20, 22-  
2
Characteristics of the dairy effluents  
Dairy industry wastewater is generally produced  
intermittently; therefore, effluentsflow rates alter  
significantly. Wide seasonal variations are also frequent and  
related to the volume of milk received for processing, which  
is usually high in summer and low in winter (38). In general,  
dairy industry produces lots of wastewatersnearly 0.210  
L of waste per liter of processed milk (39-41). Given that the  
dairy industry generates various products, such as milk,  
butter, yoghurt, ice-cream, and different desserts, the  
characteristics of dairy industry effluents also change  
significantly based on the operation techniques used in this  
process (31). Wastewater characteristics in the dairy industry  
affected by using of acid and alkaline cleaners and sanitizers,  
generally leads to a highly variable pH (29, 42-44). In  
literature, information on the dairy wastewater  
characteristics of full-scale operations is rare. To the best of  
our knowledge, only one study has been published, which  
presents wide information on the specific characteristics of  
dairy wastewater from several full-scale operations (29).  
Figs. 2 and 3 are some indication that a comprehensive  
review in this field is next to necessary in order to draw  
general conclusions and provide some guided perspectives  
for future research. This is despite the fact that a few reviews  
involving related topics of aerobic/anaerobic biological  
treatment of dairy wastewater have appeared recently (40,  
27). From the economic and environmental point of view,  
whey disposal highlight itself as a thorny issue (28). The  
present rules and regulations executed by environmental  
bodies have had a significant positive impact on new  
technologies. This has resulted in enhancing treatment of  
dairy products. Dairy product treatment methods are  
classified into four categories: chemical, physical,  
biological, and hybrid methods (which are also called mixed  
methods or multistage dairy product treatment systems). It is  
worthy of mentioning that by mixed [multistage] treatment  
here we mean a combination of aerobic and anaerobic  
methods. This classification is presented in Fig. 1. Cleaning  
of transport lines, equipment between production cycles,  
tank trucks, milk storage tanks, and equipment malfunctions  
as well as operational errors generate most of the wastewater  
in the dairy industry (29, 30). Wastewater of dairy industry  
is often treated utilizing coagulation/flocculation and  
sedimentation processes. The main drawbacks of these  
methods are their high coagulant cost, high sludge  
production, and poor removal of COD. Hence, biological  
treatment is typically recommended for treating dairy  
wastewater (31).  
Anaerobic granular sludge sequencing batch reactor  
45). Many researchers have turned their attention to  
(
SBR) was used by Schwarzenbeck et al. (32) for the treating  
anaerobic treatment methods more than the aerobic methods;  
in point of fact, as indicated by the number of citations per  
year, interest is still growing (see Figs. 2 and 3) (46, 47).  
In general, aerobic and anaerobic processes can be  
applied for treating of dairy wastewater in order to obtain a  
high level of organic removal efficiency. Nonetheless, these  
processes suffer from a number of restrictions which reduce  
their effectiveness. Aerobic processes are commonly used  
for treating of low strength effluents (biodegradable COD  
contents lower than 1000 mg/L) while anaerobic processes  
are commonly used for treating of highly polluted effluents  
of dairy industry wastewater. They presented COD, total  
nitrogen, and total phosphorus removal efficiencies of 90%,  
80%, and 67%, respectively, at 8 h of hydraulic retention  
time (HRT). Kushwaha et al. (33) employed an SBR in order  
to remove COD and nitrogen from dairy wastewater: they  
obtained COD and total Kjeldahl nitrogen (TKN) removal  
efficiencies of 96.7% and 76.7%, respectively at an HRT of  
24 h. Sirianuntapiboon et al. (34) used an SBR biofilm  
system for milk industry wastewater treatment. They  
presented 97.9% and 79.3% removal efficiencies of COD  
and TKN, respectively at an organic loading rate of 680 g  
(
biodegradable COD contents greater than 4000 mg/L)(48).  
3
biological oxygen demand (BOD  
5
)/m d. A study by Omil et  
A comparison of aerobic and anaerobic processes are  
presented in Table 1. High energy demands of aerobic  
treatment systems is the biggest disadvantage of these  
processes. Furthermore, dairy wastewater is warm and  
highly polluted, providing an ideal condition for anaerobic  
treatment. Moreover, no demand for aeration, the minor  
level of excess sludge generation, and low area requirement  
are additional advantages of anaerobic treatment processes  
al. (35) demonstrated that an anaerobic filter reactor (AFR)  
coupled with an SBR can achieve a COD removal efficiency  
3
over 90% at an organic loading rate of 56 kg COD/m d. An  
upflow anaerobic sludge blanket (UASB) bioreactor was  
applied for the treatment of wastewater from the cheese  
production industry. The COD removal efficiency thereof  
96% was obtained at an HRT and organic loading rate of 5.3  
h and 10.4 g COD/l d, respectively (36). In addition, a  
membrane SBR was used to treat dairy industry wastewater.  
Thence, high quality effluent results were obtained at 12 h  
HRT with BOD, total suspended solids, total nitrogen and  
total phosphorus removal at 97-98%, 100%, 96% and 80%,  
respectively (37).  
A number of recent qualified, comprehensive research  
and review papers were published with emphasis on  
different topics of the aerobic/anaerobic biological treatment  
methods which are discussed in the next sections.  
(
in comparison to aerobic processes). The stated positive  
points prompted the fast development of biological systems  
for treating dairy industry wastewater using conventional  
anaerobicaerobic treatment plants or high-rate bioreactors  
were developed to reduce the capital cost of the process.  
However, investigation of high-rate anaerobic-aerobic  
treatments is limited and not well documented. Therefore,  
the main objective of this review is to summarize and discuss  
the feasibility of high-rate anaerobic-aerobic treatment  
methods for removing organic compounds from wastewater  
of dairy industry. Additionally, characteristics and sources  
of dairy wastewater are discussed in this review.  
114  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
2
2
2
1
1
1
1
1
40  
20  
00  
80  
60  
40  
20  
00  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
8
6
4
2
0
0
0
0
0
200  
1
50  
00  
1
50  
0
20002001200220032004200520062007200820092010201120122013201420152016  
20002001200220032004200520062007200820092010201120122013201420152016  
Year  
Year  
Fig. 2: Citations on “aerobic treatment of dairy wastewater” per  
year, showing the increasing research interest in this topic. Data  
from ISI Web of Knowledge, Thomson Reuters.  
Fig. 3: Citations on “anaerobic treatment of dairy wastewater” per  
year, showing the increasing research interest in this topic. Data  
from ISI Web of Knowledge, Thomson Reuters.  
Chemical oxidation  
Chemical methods  
Physical methods  
Ozone action  
Screening  
Degreasers  
Aerobic:  
-
-
-
-
-
Activated sludge process (ASP)  
Conventional or percolating filter  
Rotating biological contactors (RBC)  
Sequencing batch reactors (SBR)  
Membrane bioreactor (MBR)  
Dairy wastewater  
treatment methods  
Biological  
methods  
Anaerobic:  
-
-
-
-
-
-
-
Anaerobic digestion AD  
Completely stirred tank reactor CSTR  
Upflow anaerobic film (UAF)  
Upflow anaerobic sludge blanket (UASB)  
Membrane anaerobic reactor system (MARS)  
Expanded bed and/or fluidized-bed digesters- Fixed-bed digester  
Anaerobic contact process  
-
RBC and SBR  
-
-
-
UASB and AFB  
Hybrid methods  
Aerobic-anaerobic fixed-film bioreactor (FFB)  
UBF and MBR  
Fig. 1: Classification of dairy wastewater treatment methods.  
115  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
Table 1: Comparison of aerobic and anaerobic treatment methods (48-51).  
Feature  
Aerobic  
Anaerobic  
Organic removal efficiency  
Wastewater quality  
Organic loading rate  
Sludge generation  
Nutrient demand  
High  
Great  
Moderate  
High  
High  
Moderate to poor  
High  
Low  
High  
Low  
Alkalinity demand  
Energy demand  
Temperature sensitivity  
Odor  
Low  
High  
Low  
High for certain industrial waste  
Low to moderate  
High  
Less opportunity for odors  
Potential odor problems  
Bioenergy and nutrient recovery  
Mode of treatment  
No  
Yes  
Total (rely on feedstock characteristics)  
Essentially pretreatment  
General characteristics of dairy waste effluents from  
full-scale operations are summarized in Table 2 (52-60).  
High COD contents demonstrate that wastewater of dairy  
industry is highly polluted and fluctuates in nature.  
Considerable amounts of the organic compounds and  
nutrients in dairy wastewater are obtained from milk and  
milk products. Nitrogen is mainly derived from milk  
proteins in the wastewater of dairy industry. It is presented  
in different forms, either as organic nitrogen (i.e., proteins,  
were reported to be capable of suppressing the synthesis of  
exopeptidases, a collection of enzymes assisting protein  
hydrolysis (69). The anaerobic degradation of proteins  
mechanism and the impact of ammonia on this process were  
studied in detail by researchers (70-74). The main protein in  
milk composition and dairy wastewater is casein. Casein  
degrades quickly while fed to acclimated anaerobic reactors:  
the consequence degradation products of this mechanism are  
non-inhibitory (75). Lipids are basically inhibitory  
compounds produced during dairy effluent anaerobic  
treatment. Existing literature has limited information on the  
lipids anaerobic digestibility. Lipids are hydrolyzed to  
glycerol and long chain fatty acids (LCFAs) during  
anaerobic degradation process, followed by b-oxidation.  
This produces acetate and hydrogen (69). Low  
bioavailability of lipids makes the mechanism of lipids  
biodegradation complicated (76). Glycerol obtained from  
lipid hydrolysis was found to be a non-inhibitory component  
(75), while LCFAs were presented to inhibit methanogenic  
bacteria (77). The inhibitory effect of lipids on anaerobic  
mechanisms can be associated with the existence of LCFAs,  
which postpone methane production (78). While lipids do  
not create crucial issues in aerobic processes, they  
sometimes adversely affect the typical processes of single-  
phase anaerobic treatment (79, 80). Saturated LCFAs  
reported having a lower inhibitory impact than unsaturated  
LCFAs. Unsaturated LCFAs actively inhibit methane  
generation from acetate and moderately inhibit b-oxidation.  
Consequently, it would be better to convert unsaturated  
LCFAs to saturated LCFAs in order to avoid lipid inhibition  
in anaerobic mechanisms (80). Difficulties experienced with  
lipids in anaerobic treatment processes have been presented  
in the literature (81-85).  
+
- -  
2 3  
, and NO  
urea, and nucleic acids) or as ions (i.e., NH  
4
, NO  
)
. The common forms of phosphorus are inorganic like  
3-  
-4  
7
O ), though  
orthophosphate (PO  
4
) and polyphosphate (P  
2
there are organic phosphorus forms present, too (61). Other  
methods that can be utilized to measure wastewater pollution  
level and treatability are concentrations of suspended solids  
(
SS) and volatile suspended solids (VSS) (29). SS in  
wastewater of dairy industry are derived from coagulated  
milk, cheese curd, or flavoring ingredients (62).  
Concentrations of selected elements, including sodium (Na),  
potassium (K), calcium (Ca), magnesium (Mg), iron (Fe),  
cobalt (Co), nickel (Ni), and manganese (Mn), are listed in  
Table 3. In particular, high Na concentrations signify the  
extensive utilization of alkaline cleaners at dairy industries.  
The concentrations of heavy metals including copper (Cu),  
nickel (Ni), and zinc (Zn) were reportedly low enough not to  
adversely affect the performance of biological treatment (29,  
52). Wastewater of dairy industry is simply made of  
degradable carbohydrates, mainly lactose; and also less  
biodegradable proteins and lipids (63). In cheese factory  
wastewater, 97.7% of total COD was formed via compounds  
such as lactose, lactate, protein, as well as fat (55). As a  
result, dairy wastewater may be considered as a complex  
substance (63-65). Lactose is the main carbohydrate in dairy  
wastewater and is an easily available substance for anaerobic  
bacteria. Lactose anaerobic methanation requires  
collaborative biological activity from acidogens, acetogens,  
and methanogens (66). Components such as organic acids,  
namely, acetate, propionate, iso- and normal- butyrate, iso-  
and normal valerate, caproate, lactate, formate, and ethanol  
can be produced from lactose anaerobic fermentation (67,  
3
Treatment technologies  
3
.1 Primary treatment (Screening, Degreasers)  
Screen is used in wastewater treatment in order to  
eliminate large particles that may cause damage to pumps  
and blocking of downstream (86). For purposes of avoiding  
further increase in COD content due to solid solubilization,  
physical screening of dairy wastewater should occur as fast  
as possible (87, 88). Wendorff (89) suggested the utilizing  
of a wire screen and grit chamber with a screen orifice size  
of 9.5 mm, whereas Hemming (87) suggested the employing  
of finer spaced, mechanically brushed, or inclined screens of  
68). Kisaalita et al. (67) presented two methods of carbon  
flow for the acidogenic fermentation of lactose including  
carbon flow from pyruvate to butyrate and lactate, both  
taking place in parallel. The existence of high carbohydrate  
levels in synthetic dairy wastewater leads to some decrease  
in the synthesized proteolytic enzymes content, resulting in  
low contents of protein degradation (63). Carbohydrates  
40 mesh (about 0.39 mm) for reducing solids.  
116  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
Table 2: Characteristics of industry dairy wastewater.  
Volatile  
Suspended suspend Total  
Total  
phosphorus  
(mg/l)  
Effluent  
type  
COD  
(mg/l)  
BOD  
(mg/l)  
5
pH  
Alkalinity  
(mg CaCO  
TKN  
(mg/l)  
solids  
mg/l)  
ed  
solids  
solids  
(mg/l)  
Reference  
(units)  
3
/l)  
(
(
mg/l)  
Creamery  
Not given  
Mixed dairy  
processing  
Cheese whey  
Cheese  
2000-6000  
980-7500  
1200-4000  
680-4500  
8-11  
_
150-300  
_
350-1000  
300  
330-940  
_
_
_
50-60  
_
_
_
)43(  
)38(  
1150-9200  
_
6-11  
320-970  
340-1730  
255-830 2705-3715  
14-272  
8-68  
)42(  
68814a  
1000-7500  
4656a  
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
1462a  
379a  
)56(  
)57(  
)59(  
)59(  
588-5000  
_
_
5.5-9.5  
6.92a  
5.22a  
500-2500  
_
_
_
_
_
_
_
_
Fresh milk  
Cheese  
5340a  
Milk powder/  
butter  
1908a  
_
5.80a  
_
_
_
_
_
_
)59(  
Mixed dairy  
Processing  
Cheese whey  
Cheese  
Not given  
Fluid milk  
Ice-cream  
Ice-cream  
Milk permeate  
Milk processing  
Dairy  
Dairy  
Dairy  
Cheese whey  
Cheese whey  
Dairy  
6
3100a  
_
3.35a  
_
12500a  
12100a  
53000a  
_
_
)55(  
61000a  
_
_
950-2400  
5200  
4940  
55200-63480  
5000-1000  
4590  
2000-6000  
5000  
60000  
68600  
3620  
_
_
_
_
4.7a  
4.4-9.4  
5.0-9.5  
5.2  
6.96  
5.55-6.52  
4-7  
7.12  
8-11  
7.1  
4.46  
4.9  
8.5-10.3  
6.8-7.2  
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
1780a  
2500a  
90-450  
90-450  
_
1100  
2670-3800  
_
1560a  
_
_
_
2600  
990  
_
_
_
_
_
980a  
830a  
_
_
60  
_
_
20-150  
89  
50-60  
16.5  
_
1120  
_
_
510a  
280a  
_
_
14  
)60(  
)54(  
)53(  
)58(  
)90(  
)91(  
)92(  
)93(  
)94(  
)95(  
)96(  
)97(  
)98(  
)99(  
)100(  
500-1300  
2450  
_
3900  
_
_
3000-7000  
4350  
_
3880  
59000  
1350  
_
_
_
350-450  
50-70  
9.9  
20-50  
38.6  
_
500  
187  
48-52  
3000-5000  
_
_
_
2100  
330-940  
1350  
1500  
_
1200-4000  
2800  
40000  
7710  
2115  
640850  
350-100  
_
_
_
647  
40-50  
1430  
_
Milk processing  
900-1200  
_
a
Mean concentrations are presented.  
117  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
Table. 3: Concentrations of selected elements in dairy effluents  
Effluent type  
Creamery  
Na  
mg/l)  
K
(mg/l)  
Ca  
(mg/l)  
Mg  
(mg/l)  
Fe  
(mg/l)  
Co  
(mg/l)  
Ni  
(mg/l)  
Mn  
(mg/l)  
Reference  
(
170-  
3540  
35-40  
5-8  
2-5  
0.05-  
0.15  
0.5-1.0  
0.02-  
0.10  
)43(  
200  
Cheese/whey  
Cheese/alcohol  
Cheese/beverages  
Cheese/whey  
735a  
423a  
453a  
419a  
123–  
42.8a  
41.2a  
8.6a  
35.8a  
8-160 12120  
47.7a  
54.3a  
33.6a  
52.3a  
11.4a  
8.3a  
16.9a  
11.0a  
297  
)29(  
)29(  
)29(  
)29(  
)42(  
Mixed dairy  
0.5-6.7  
0
0-0.13  
0.03-  
0.43  
2
324  
720–  
80  
Mean concentrations are reported.  
Cheese  
530–  
950  
)57(  
9
a
As reported by Droste (86), in order to avoid the settling  
of coarse matter in wastewater, precautionary measures  
should be carried out before screening. He recommends  
ensuring a 1:2 ratio of depth to width of the approach channel  
to the screen and water velocity not lower than 0.6 m/s.  
Screens ought to be cleaned out using manual or mechanical  
methods and screened material disposed of at a landfill site.  
After screening, fat, oil, and grease (FOG) compounds must  
be removed. Fat adheres to degreasers. Most pond FOG  
mass float to the water surface by gravity method and are  
manually removed (69).  
In case of self-operating and easily-constructed system,  
wastewater flows across a series of cells and FOG mass,  
generally floating on the surface, is separated by retention  
within the cells. Disadvantages comprise of continuous  
monitoring and cleaning to avoid FOG buildup, as well as  
reduction of removal efficiency at pH higher than 8 (58).  
Occasionally, to facilitate this work in aeration ponds, air  
flotation and dissolved air flotation (DAF) are used to  
transfer fat particles to the surface and prevent mildew and  
odor production.  
3.2.1 Activated sludge process  
As presented by Smith (102), a typical activated sludge  
process (ASP) is an ongoing treatment process which uses a  
group of microorganisms that are suspended in wastewater  
in an aeration tank to absorb, adsorb, and biodegrade organic  
pollutants. A simplified diagram of this process is shown in  
Fig. 4. A portion of the organic compound is effectively  
oxidized to innocuous end products and other inorganic  
matters in order to supply energy for sustain growing of  
microbial as well as formation of biomass (flocs). Flocs are  
maintained in suspension by one of the air blown into the  
bottom of the tank or mechanical aeration methods. The  
dissolved oxygen content in the aeration tank is crucial and  
should be in the range of 35 mg/L. The duration of aeration  
as well as cell residence time has to be considered for  
designing of an aeration tank. The mixture flows to a  
sedimentation tank from the aeration tank where the  
activated sludge flocs form larger particles that settle as  
sludge. The biological aerobic metabolism process produces  
large quantities of sludge (0.6 kg dry sludge per kg of BOD5  
removed). Certain sludge is recycled to the aeration tank;  
however, the remaining must be processed and disposed of  
in an environmentally sound manner, which is a major  
running cost. There are numerous alterations of ASP; yet in  
all cases, the main energy-consuming operation is providing  
oxygen during aeration process. With ASPs, issues usually  
occurring are bulking (103-105), foam production, iron, and  
carbonates precipitation, extreme sludge production, as well  
as a decline in efficiency during winter. Various reports  
present that ASP has been employed to successfully treat  
wastewater of dairy industry(105). Donkin and Russell (106)  
reported that reliable COD removal of over 90%, as well as  
TN decrement of 65%, could be achieved with milk powder  
and butter wastewater respectively. Removing of  
phosphorus compounds was less reliable and appeared to be  
sensitive to environmental variations.  
3
.2 Major aerobic biological treatment methods  
Wastewater treatment usually extends from physical  
treatment to biological treatment systems. Numerous studies  
were conducted on the wastewater biological treatment. An  
aerobic biological treatment technique relies on  
microorganisms grown in an environment which is rich in  
2
oxygen to oxidize organic materials to CO , water, and  
cellular compound. Remarkable data on laboratory- and  
field-scale aerobic treatments confirmed that aerobic  
treatment is reliable and cost-effective for production of  
high-quality effluent (101). Start-up typically needs an  
adjustment period to allow the expansion of a competitive  
microbial community. In this process, ammonia-nitrogen  
can be successfully removed in order to avoid disposal  
problems. Foaming and poor solidliquid separation are  
common issues of aerobic processes. Many aerobic  
biological treatment techniques were developed to treat  
dairy production wastewater, such as activated sludge (AS),  
conventional or percolating filter, rotating biological  
contactor (RBC), sequencing batch reactor (SBR), and  
membrane bioreactor (MBR). The pros and cons of these  
methods are presented in Table 4.  
In 2013, the effect of varying retention time was  
investigated in the AS system by Lateef et al. (107). The  
removal efficiencies of COD and BOD were 96% within five  
days (107). Increased retention time did not notably affect  
BOD and COD removal. However, increasing retention  
5
time has several advantages. For example, longer retention  
time and aeration time result in uniformity in these ponds, in  
118  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
which the action keeps the immune system from organic  
shocks. The second advantage is lower sludge production  
due to the digested part of microorganisms in this section.  
These two advantages make use of the system in the dairy  
industry. On the other hand, the bulking phenomenon due to  
the lack of sedimentation creates excessive foam and toxic  
materials, meaning that projected and actual efficiencies of  
these systems are contingent on operator experience (84).  
Table 4: Advantages and drawbacks of using different types of aerobic processes  
Advantages Disadvantages  
Reactor type  
Low effluent quality  
Higher sludge production  
Energy-consuming operation  
Bulking  
Foam production  
Precipitation of iron and carbonates  
Decrease in efficiency during winter  
Easy to operate  
and install  
Odor-free  
Light footprint  
ASP  
High removal efficiency  
Can be blocked by precipitated ferric  
hydroxide and carbonates  
Not appropriate for the treatment of high-  
strength wastewaters  
Conventional  
or percolating  
filter  
Very efficient in removal of ammonia  
Appropriate for small- to medium-sized  
communities  
Simple and reliable process  
Odor problems may occur  
Needs permanent skilled technical  
operator for operation and maintenance  
purposes  
High removal efficiency  
Low power input needed  
Easy to operate  
Needs to be protected against sunlight,  
wind, and rain (especially against  
freezing in cold climates)  
Considerable investment, operation and  
maintenance costs  
Contact media not available at local  
market  
Continuous electricity supply required  
Low maintenance  
Less operator attention  
Lower operating costs  
Well-controlled against organic shocks  
Low space requirement  
Low sludge production  
No risk of channeling  
RBC  
(
but uses less energy compared to  
trickling filters or ASPs in terms of  
comparable degradation rates)  
Easy to modify cycles  
Small footprint  
Cost effective  
Low flow applications  
Wider wastewater strength variations  
High removal efficiency  
Capable of achieving nitrification,  
de-nitrification, and phosphorous  
removal  
High energy consumption  
Difficult to adjust cycle times for small  
communities  
SBR  
Frequent sludge disposal  
Wide operation flexibility  
Minimal sludge bulking  
Minor operation and maintenance  
issues  
May be operated remotely  
High effluent quality  
High volumetric load possible  
High rate of degradation  
Lower sludge production  
More compact  
Control of membrane fouling  
Membrane fouling  
Aeration limitations  
Stress on sludge in external MBR  
Membrane pollution  
High cost  
MBR  
Energy saving  
High removal efficiency  
119  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
Feed  
Effluent  
Sedimentation  
Clarifier  
Sludge return  
Excess sludge  
Fig. 4: Simplified illustration of activated sludge process for aerobic wastewater treatment system (102).  
3
.2.2 Conventional or percolating filter  
Aerobic filters like typical trickling or percolating filters  
of approximately 2 m because deeper filters improve  
anaerobic growth with subsequent odor issues. These having  
been saied, filters with synthetic media are able to fully  
aerobic up to about 8 m (108). The final wastewater flows to  
a sedimentation or clarifying tank to separate sludge and  
particles from the carrier medium. In general, organic  
loading for dairy wastewater must not be higher than 0.28–  
as shown in Fig. 5, are examples of the oldest biological  
treatment techniques that are able to produce high-quality  
effluents (102). The carrier media (20100 mm diameter)  
may include pumice, rock, gravel, or plastic pieces, which  
are populated by a diverse microbial community. A storage  
tank wastewater is usually poured over the medium and then  
trickles via a medium with 2 m bed. The sticky microbial  
film growing on the carrier medium absorbs the organic  
elements of the wastewater and absorbs compounds will be  
decomposed aerobically in the film. Deposited sludge lyre  
needs to be removed periodically. The downward flow as  
well as natural convection currents resulting from  
temperature differences between the air and added  
wastewater contribute to facilitating aerobic conditions. The  
decomposition process might be improved by using forced  
ventilation, but the air must be deodorized in clarifying tanks  
in order to be used in this system. Typical filters with aerobic  
microbes growing on rock or gravel are restricted to a depth  
3
0.30 kg BOD/m and recirculation is required for this system  
(109). Kessler (110) presented a dairy effluent BOD removal  
of 92% and since the BOD of the final wastewater was still  
high, further treatment of effluent was performed in an  
oxidation pond to decrease the BOD content. An essential  
issue is that trickling filters can be clogged by deposited  
ferric hydroxide and carbonates, with associated decrement  
of microbial activity. When overloading occurs with dairy  
wastewater, the medium will be clogged with heavy  
biological and fat films. Maris et al. (111) presented that  
biological filters are not suitable for treating high-strength  
wastewaters because filter blocking by organic precipitated  
on the filter medium is commonly found.  
Distribution  
Feed  
Aerati  
Carrier  
Carrier  
Effluent Outlet  
Fig. 5: Simplified illustration of aerobic filter for wastewater treatment processes (110)  
120  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
3
.2.3 Rotating biological contactors  
The rotating biological contactor (RBC) design includes  
are carried out sequentially in SBR systems are: fill, react  
(aeration), settle (sedimentation/clarification), draw (the  
effluent is decanted), and idle. Wastewater is mixed without  
aeration process in order to provide metabolism of the  
fermentable components while the tank is filled. The  
following stage is aeration process that contributes to the  
oxidation and biomass formation processes. Afterwards,  
sludge is settled and the treated wastewater is separated to  
finalize the cycle. SBR depends strongly on the site operator  
to regulate the duration of each stage to reflect fluctuations  
in effluent composition (113). Owing to their nearly light  
footprint, SBRs are effective in locations where land is  
limited. It is likewise simple to improve cycles within the  
system for nutrient separation if required. In addition, SBRs  
are economical if treatment beyond the biological is  
necessary, like filtration. They also suggest potential capital  
savings by removing the need for clarifiers, are considered a  
reasonable choice for low flow applications, and allow for  
greater effluent strength alterations. SBRs need a high level  
of maintenance because of the timing units and controls.  
Based on the downstream processes, it may be required to  
equalize the wastewater after it exits the SBR. Eroglu et al.  
(53) and Samkutty et al. (114) proposed that SBR should be  
a practical primary and secondary treatment choice for  
treating dairy plant effluent with COD removals of 91% -  
97%. Torrijos et al. (2001) (115) obtained the COD removal  
circular discs (Fig. 6) formed by high-density plastic or other  
lightweight materials (102). The discs that rotate at 13 rpm  
are located on a horizontal shaft such that 40%-60% of the  
disc surface stick out from the tank, making it possible for  
oxygen to transfer from the atmosphere to the exposed films.  
The oxidation of organic compounds of the effluent will be  
faciliated through developing a biofilm on the disc surface.  
The biofilm sludge will be torn off and removed from the  
sedimentation tank as soon as it becomes extremely thick.  
2
Operation efficiency is according to the g BOD per m of  
disc surface per day (102). Rusten et al. (112) presented  
COD removal efficiency of 85% with an organic loading rate  
3
(
OLR) of 500 g COD/m hour when treating dairy effluent.  
The RBC process suggests various superiority over the ASP  
for employ in dairy effluent treatment. The major benefits of  
RBC process are low power input needed, ease of operation,  
and low maintenance. Moreover, pumping, aeration, and  
wasting/recycling of solids are not necessary, thus reducing  
the required operator attention. In addition, the process of  
nitrogen separation is relatively easy, and only inspection  
and lubrication are involved in routine maintenance. The  
rotating discs mostly act as trickling filters; nevertheless, as  
compared to the trickling filter, RBC requires less land and  
lower operating costs. Another advantage of this system is  
the large amounts of microbial mass that can protect against  
organic shocks to the system.  
3
efficiency of 97% at a loading rate of 0.50 kg COD/m day  
using SBR in treating effluent from small cheese-making  
dairies. Meanwhile, Li and Zhang (116) efficiently operated  
an SBR at an HRT of 24 hours for treating dairy effluent  
with a COD content of 10 g/L and they achieved the removal  
efficiencies of 80% in COD, 63% in total solids, 66% in  
volatile solids, 75% in Kjeldahl nitrogen, and 38% in TN.  
3.2.4 Sequencing batch reactor  
A sequencing batch reactor (SBR) is a single-tank fill-  
and-draw system (Fig. 7) that aerates, settles, withdraws  
effluents, and recycles solids (40, 102). The typical steps that  
Disc exposed  
to air  
Rotating discs  
Shaft  
Shaft  
Effluent  
Feed  
Holding tank  
Holding tank  
Side view  
Front view  
Fig. 6: Simplified illustration of aerobic effluent treatment processes: rotating biological contactor (112)  
121  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
Influent  
Settle  
Fill  
React  
Air off  
Add substrate  
DRAW  
Air on  
Waste  
sludge  
IDLE  
effluent  
Air off  
Air off  
Fig. 7: Simplified illustration of aerobic wastewater treatment processes: sequencing batch reactor (102)  
3
.2.5 Membrane bioreactor  
Recently, membrane bioreactors (MBRs), particularly  
(121) and back flushing (122) in order to decrease membrane  
fouling. Similar to most membrane filtration systems,  
membrane fouling, as well as fouling control are main issues  
for a cost-effective and feasible MBR system (123). In  
addition to MLSS, soluble microbial products are considered  
major membrane foulants (122). In testing the performance  
of MBR for dairy effluent treatment with an HRT of 36  
hours and 0.13 kg COD/kg MLSS, a COD removal  
efficiency of 95% was observed. Increasing MLSS  
concentration in the MBR system did not considerably affect  
removal efficiency of BOD5 and COD. The concentrations  
of COD and BOD5 used were 400 and 550 mg/L, and  
removal efficiencies achieved were 95% and 91%  
respectively.  
submerged-type membranes (Fig. 8), have been gaining  
attention owing to their better treated wastewater quality and  
lower sludge generation compared to typical ASPs (40, 117-  
119). In an MBR, membranes play a key role in solid/liquid  
separation. There are two types of MBRs which are differ  
based on the placement of the membrane unit. Membranes  
are either submerged in the reactor or placed externally. The  
submerged membrane unit has attracted more attention  
recently since it is a compact system as well as uses low  
energy (117, 118, 120). One drawback of this system is that  
control of membrane fouling is more difficult compared to  
external membrane system. Different techniques have been  
implemented, including the intermittent suction method  
Retentive Recycle  
(
b)  
(
a)  
Influent  
Influent  
Permeate  
Permeat  
Waste sludge  
Waste  
sludge  
Bioreactor  
Bioreactor  
Fig. 8: The configuration of MBR system: (a) submerged MBR and (b) side-stream MBR configuration  
122  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
3
.2.6 Factors governing aerobic reactor choice  
Aerobic granular activated sludge SBR (GAS-SBR) was  
treatment with high COD content without prior dilution, as  
required by aerobic processes, decreases the required space  
as well as related costs. Usually, there are no bad odors if the  
process is operated properly (134). High capital cost, long  
startup periods, rigorous control of operating conditions, and  
higher sensitivity to variable loads and organic shocks, in  
addition to toxic compositions are the drawbacks of  
anaerobic systems (135). Ammonia nitrogen is accordingly  
discharged with the digester effluent and generating oxygen  
demand in the receiving water since it is not separated in an  
anaerobic system. In order to obtain reasonable discharge  
standards, a complementary treatment is also necessary. As  
demonstrated in previous works, a remarkable disadvantage  
of aerobic treatment plants are the high energy demands.  
COD contents of dairy wastewater change considerably;  
furthermore, dairy wastewaters are warm and highly  
polluted, making them ideal for anaerobic treatment (135).  
Furthermore, no aeration is required, the level of sludge  
production is low, and the area demand is low.  
recently proposed to provide a significant aerobic treatment  
rate as well as superior settling (40, 124). Schwarzenbeck et  
al. (32) presented 90% COD, 80% TN, and 67% TP removal  
efficiencies in a GAS SBR. While mixed culture AS is  
normally employed by scientists to treat dairy wastewater,  
bio-augmentation (adding external microorganisms with  
significant degradation capacity for specific wastewater)  
was successful at improving performance (125). Loperena et  
al. (126) demonstrated that, whereas commercial and mixed  
activated-sludge inocula presented similar rates of COD  
removal in batch experiments for treating dairy industrial  
wastewater, COD degradation rate was higher for  
commercial inocula.  
3.3 Major anaerobic biological treatment methods  
Various anaerobic biological treatment techniques were  
developed to treat dairy products, including anaerobic  
digestion (AD), completely stirred tank reactor (CSTR),  
UASB, upflow anaerobic filter, anaerobic contact process,  
expanded bed and/or fluidized-bed digesters, fixed-bed  
digesters, and membrane anaerobic reactor system (MARS).  
Biological treatment methods are environmentally friendly  
3.3.2 Completely stirred tank reactor  
One of the simplest types of anaerobic digester is  
completely stirred tank reactor (CSTR) (136, 137). Sahm  
(138) stated that the OLR rate ranges from 1 kg to 4 kg  
3
-1  
for treating polluted air and also do not produce NO  
x
, SO  
x
,
organic dry matter m day , and the digesters generally have  
3
or secondary pollutants. Various factors, like pH,  
temperature, and gaseous retention time, have significant  
effects on biological processes and should be in optimum  
condition for obtaining high efficiency. The advantages and  
drawbacks of these methods are laid-out in Table 5.  
An anaerobic filter is able to operate by individual-  
feeding such as upflow, downflow and horizontal direction  
as well as multiple-feeding (40, 91, 127-129). The upflow  
anaerobic filter was widely applied for treating of whey; it is  
able to operate efficiently for treating of low and highly  
polluted dairy effluent at short HRT and high organic  
loading rate (130). Operating conditions and anaerobic  
filters treatment performances for treating dairy wastewater  
are presented in Table 6.  
capacities of 500 to 700 m . CSTRs reactors are usually  
employed for concentrated effluents, particularly those  
whose polluting matter is mostly SS and has COD values  
greater than 30,000 mg/L. There is no biomass retention in  
this reactor; as a result, the HRT and sludge retention time  
(SRT) are not separated, necessitating long retention times  
that depend on the growth rate of the slowest-growing  
bacteria in the process of digestion. Ross (139) reported that  
the HRT of the typical digesters is similar to SRT, which can  
vary from 15 to 20 days. This type of digester was employed  
by Lebrato et al. (140) for treating effluent of the cheese  
factory. Although 90% COD separation was obtained, the  
digester could only work at a minimum HRT of 9.0 days,  
which was likely because of biomass washout. The effluent,  
containing 80% washing water and 20% whey, had a COD  
of 17,000 mg/L. This type of reactor is very beneficial for  
laboratory scale studies, but it is hardly a feasible choice for  
industrial scale treatment because of its HRT limitation.  
3.3.1 Anaerobic digestion  
A biological process carried out via an active microbial  
community without presenting of exogenous electron  
acceptors is known as anaerobic digestion (AD). In this  
process, up to 95% of the organic load in a waste stream can  
be turned into biogas (methane and carbon dioxide), while  
the rest is used for cell growth and maintenance (131). In  
general, anaerobic processes are rather efficient and cost-  
effective for the biological stabilization of dairy effluents  
because the high-energy associated with aeration in aerobic  
systems is not required (59, 132). AD also produces  
methane, a source of heat and power (133). Furthermore,  
minor sludge is produced, diminishing problems associated  
with sludge removal. AD systems require nutrient such as  
nitrogen and phosphorus significantly lower than aerobic  
systems (108). Pathogenic organisms are generally  
destroyed, and the final sludge has a high soil conditioning  
content if the heavy metals level is low. Dairy effluents  
3.3.3 Upflow anaerobic sludge blanket  
Lettinga et al. (1991) (141) designed a UASB reactor for  
commercial applications. A schematic diagram of this  
reactor is shown in Figure 9.  
UASB reactor was used for treating maize-starch effluents  
in South Africa for the first time (142), however the full  
potential of UASB reactor was only discovered after a  
significant development program by Lettinga in the late  
1970s (141, 143). The UASB has only recently been used in  
anaerobic treatment. Through UASB, pollutants in  
wastewater are degraded by microbes that produce 75%-  
4 2  
80% CH by volume, 15%-25% CO , and minor amounts of  
, H , and other gases.  
N
2
2
123  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
Table 5: Advantages and drawbacks of using different forms of anaerobic processes  
Advantages Disadvantages  
Reactor type  
Low energy requirements  
High capital cost  
Less sludge is generated  
Methane production, which can be utilized as a heat or  
power source  
Less requirements to N and P  
Lake of pathogenic organisms  
Less space requirements  
Cost effective  
High removal efficiency  
No biomass retention  
High removal efficiency  
Continuous operation  
Reasonable temperature control  
Simply adapts to two-phase runs  
Reasonable control  
Ease of operation  
Minor operating (labor) cost  
Easy to clean  
Long startup periods  
Strict control of operating  
conditions  
Greater sensitivity to variables  
loads and organic shocks  
Toxic compounds  
AD  
High energy requirements  
Very low conversion per unit  
volume  
By-passing and channeling  
probable with weak agitation  
performance  
CSTR  
High removal efficiencies  
No support material is required  
Cost-effective  
Great decrement in organics  
Is able to tolerate high OLRs (up to 10 kg BOD/m /d)  
Long start-up period  
Sufficient amount of granular  
seed sludge  
3
UASB  
and hydraulic loading rates  
Minor sludge generation (and thus, infrequent deluging  
required)  
Biogas is able to be applied for energy (but generally  
needs scrubbing first)  
Reactor needs skilled operation  
Requires expert design and  
construction  
Low reduction of pathogens  
and nutrients  
Effluent and sludge require  
further treatment and/or proper  
discharge  
Risk of clogging, depending on  
pre- and primary treatment  
Removing and cleaning the  
clogged filter media are  
difficult  
High OLRs  
Short HRT  
High removal efficiency  
Stable against organic and hydraulic shock loading  
No electrical energy is needed  
Minor sludge production; the sludge is stabilized  
Upflow  
anaerobic filter  
Enhances biomass retention  
High removal efficiency  
MARS  
High retention time  
Fixed-bed  
digester  
Saturated region  
Difficult to design accurately  
High removal efficiency  
Expanded bed  
and/or  
fluidized-bed  
digesters  
Fixed-bed  
digester  
High removal efficiencies  
Can control and optimize the biological film thickness  
Elimination of bed clogging  
Low hydraulic head  
Greater surface area  
Capital cost is lower  
Problems of channeling  
Plugging  
Gas hold-up  
Poor settling properties  
High removal efficiencies  
Varies temperature ranges  
No oxygen requirements  
Ethane is a useful end product  
Anaerobic  
contact process  
High retention time  
Poor settling properties  
124  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
Table 6: Operating conditions and anaerobic filter performances for dairy effluent treatment (40).  
Feed type  
Wastewater  
Packing  
media  
Temp.  
( C)  
pH  
HRT  
(d)  
OLR (kg Influent COD CH  
COD m3 COD (g Remova (m  
-1 1  
4
3
yield  
Reference  
o
kg1  
d )  
L )  
l (%)  
CH  
4
COD)  
Up-flow  
Up-flow  
Up-flow  
Up-flow  
Whey  
Whey  
Dairy  
Polyethyle 37  
ne/clay  
7
10-15  
1-5  
2.2-3.3  
1-4  
33  
90  
_
(144)  
(97)  
Flocor  
35  
5.7-  
7
6.8-  
7.2  
_
5-20  
2-6  
72-90.2  
0.089-0.28  
0.32-0.34  
0.32-0.39  
0.236-0.26  
0.158-0.35  
.5  
Polypropy 32-34  
lene  
PVC rings 35  
0.83-  
12.5  
2
0.5-6.5  
1.44-6.29  
2.6  
(95)  
>80  
97.9-  
98.8  
Synthetic  
dairy  
Simulated  
whey  
3-12  
13  
(145)  
(146)  
(147)  
Down-  
flow  
Polyethyle 35  
ne  
5.9-  
7.8  
6.9  
5
1
66-93.6  
Horizontal Synthetic  
flow whey  
Ceramic  
40  
1-10.2  
1-10.2  
85-93.8  
-
Methane gas contains high calorific level; thus, by  
utilizing this type of reactor, the produced methane is  
separated and used as an alternative energy source. This  
system, therefore, is feasible and efficient for the waste  
contains a high level of BOD. The rather simple design of  
the UASB digester (Fig. 9) is according to the premier  
settling properties of granular sludge. The granules growth  
and development are keys to the success of the UASB  
reactor. Note that the presence of granules in the UASB  
digester eventually contributes to removing the HRT from  
the SRT. Therefore, efficient granulation is necessary to  
achievie a short HRT without inducing biomass washout.  
The effluent is fed from bottom and exits at the top through  
an internal baffle system to separate the gas, sludge, and  
liquid phases. The granular sludge and biogas are separated  
percentages of COD with an organic loading rate of 31 g/L/D  
of COD were 90 percent (148). An anaerobic upflow filter  
was used in a 2008 study on the treatment of whey. In 2008,  
a UASB system was used to evaluate the removal efficiency  
of whey. With a concentration of 5000 mg/L and an HRT  
variety of 1 to 4 days, the removal efficiency was increased  
dramatically from 70% to 90% (6). Performance evaluation  
of the dairy wastewater treatment using UASB reactors  
under various experimental conditions and at various scales  
are summarized in Table 7. As shown in this Table, COD  
removal from dairy wastewaters in UASB reactors changes  
from 50% to 98%.  
3
using this device. A COD loading of 30 kg/m day can be  
treated with a COD separation efficiency of 85%95% at  
optimal conditions. The methane level of the produced  
biogas ranges from 80% to 90% (v/v). HRTs of as low as 4  
hours are practical, with superior settling sludge and SRT of  
greater than 100 days. The UASB is highly economical  
because it uses less pump energy for the recirculation of  
effluent and does not require other expenses. The UASB  
system is greatly relies on its granulation process with a  
particular organic wastewater in comparison with other  
anaerobic technologies. Removal efficiencies of 95%99%  
can be obtained by employing the UASB. The main point of  
the UASB system is that it does not need support material  
for retaining high-density anaerobic sludge. But, the absence  
of carriers makes the availability and maintenance of  
biomass that settles easily, either as flocs or as dense  
granules (0.52.5 mm in size) necessary. In order to separate  
biogas and bacterial mass which are returned into the active  
lower zone of the reactor on the other side, a three-phase  
separator (biogas, liquid, and biomass) is required.  
Fig. 9: Schematic diagram of a UASB system (48, 149). (Reprinted  
from Biological Wastewater Treatment in Warm Climate Regions,  
p. 723, ISBN 9781843390022 with permission from the copyright  
holders, IWA).  
In 1991, UASB reactor performance was evaluated in  
the anaerobic wastewater treatment of cheese. The  
125  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
Table 7: Results of the UASB reactors performance for the dairy wastewater treatment (150)  
Reactor  
volume (L)  
_
COD IN (mg/L)  
COD removal (%)  
Reference  
1440  
700-1200  
_
1500-2000  
4056  
101-541  
2038-4728  
1250-2250  
800-4080  
5240  
20,314  
1000-2000  
500-3300  
53-91.5  
50-93  
96-98  
90  
79.4/85.5  
98  
(151)  
(152)  
(6)  
3
6
1
1
6
5
1
1
4
4
1
6
1.7  
.8  
0/2  
(153)  
(154)  
(155)  
(156)  
(157)  
(158)  
(159)  
(160)  
(161)  
(162)  
69  
20,120  
4
.32  
8,000  
20  
.6  
78.78-87.06  
64  
78  
88.23  
95  
67  
3
3.3.4 Upflow anaerobic filter  
yield (YCH4/COD removed) of 0.327 m /kg COD removed  
Young and McCarty developed the upflow anaerobic  
was achieved.  
filter in 1969 (163). Its mechanism is like the aerobic  
trickling filter mechanism. The upflow anaerobic filter is  
loaded with inert support material, like gravel, rocks, coke,  
or plastic media; therefore, the system does not require  
biomass removal or sludge recycling. The AFR can be  
functioned as a downflow or an upflow filter reactor with an  
OLR ranging from 1 kg/m to 15 kg/m day COD and COD  
separation efficiencies of 75%95%. The treatment  
temperature is between 20 °C and 358 °C with HRTs ranging  
from 0.2 to 3 days. The potential risk of clogging via  
undegraded SS, mineral precipitates, or bacterial biomass is  
the major disadvantage of the upflow anaerobic filter. Their  
usage is also limited to effluents with COD ranging from  
3.3.5 Membrane anaerobic reactor system  
The digester effluent is filtered via a filtration membrane  
in a membrane anaerobic reactor system (MARS). Li and  
Corrado (167) investigated the MARS (well mixed digester  
with an operation volume of 37,850 L integrated with a  
microfiltration membrane process) on cheese whey  
including up to 62,000 mg/L of COD. The digester effluent  
was filtrated by the membrane and permeate was released.  
The retentate, which contained biomass and SS, was  
recycled to the digester. The COD separation efficiency was  
99.5% at an HRT of 7.5 days. The most important  
achievement of the study was that the process control  
parameters attained in the pilot plant could adequately be  
employed to their industrial-scale plant. The anaerobic  
digestion ultrafiltration system (ADUF) similar to  
membrane system has successfully been employed in lab-  
scale and pilot-scale investigations of dairy wastewaters  
(168). The ADUF process does not employ microfiltration,  
but rather an ultrafiltration membrane. Therefore, far better  
biomass retention efficiency is achievable with the ADUF.  
Prieto et al. (169) developed a composite bioactive  
membrane for wastewater treatment and used it to produce  
3
3
1000 to 10,000 mg/L (139). Bonastre and Paris (164)  
reported 51 anaerobic filter applications, of which 5 were  
applied for pilot plants and 3 were used for industrial-scale  
dairy effluent treatment. The anaerobic filters were worked  
at HRTs ranging from 12 to 48 hours, while COD separation  
ranged from 60% to 98%. The organic loading rate changed  
3
from 1.7 to 20.0 kg COD/m day.  
Separated phase digesters are developed to spatially  
remove acid-forming bacteria and acid-consuming bacteria.  
Separated phase digesters are beneficial for treating effluents  
either with unbalanced ratios of carbon to nitrogen (C:N),  
like effluents with high protein concentrations, or effluents  
that acidify quickly, like dairy effluents (165). The main  
points of these digesters are high OLRs and short HRTs.  
Burgess (166) presented two cases where dairy effluents  
were treated applying a separated phase industrial-scale  
process. One dairy had an effluent with a COD content of  
2
and capture hydrogen (H ) which is a source of energy.  
3.3.6 Fixed-bed digester  
The fixed-bed digester (Fig. 10) includes permanent  
porous carrier materials. Through extracellular  
polysaccharides, bacteria are able to attach to the surface of  
the packing material and still stay in tight contact with the  
passing effluent. The wastewater is fed either at the bottom  
or at the top to make upflow or downflow arrangements,  
(170) employing a downflow fixed-film digester for treating  
deproteinized cheese whey with an average COD of 59,000  
mg/L. The digester obtained a COD decrement of 90%95%  
50,000 mg/L and a pH value of 4.5. Two phases of digester  
were worked at 35°C. The acidogenic reactor was functioned  
at an HRT of 24 hours, and the methanogenic reactor was  
operated at an HRT of 3.3 days. 50% of the COD was  
transformed to organic acids in the acidification tank, while  
only 12% of the COD was separated. The OLR for the  
3
at an HRT and OLR of 2.02.5 days and 12.5 kg COD/m  
3
acidification and methane reactors were 50.0 kg COD/m  
day respectively. The deproteinized cheese whey had a mean  
pH of 2.9 although the digester pH was frequently above 7.0  
(171). De Haast et al. (172) employed a bench-scale fixed-  
bed digester including an inert polyethylene bacterial carrier  
for treating cheese whey. They achieved best results at an  
3
day and 9.0 kg COD/m day respectively. A total COD  
decrement of 72% was obtained. The methane content in  
biogas was 62% and the supplied data showed that a methane  
126  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
HRT of 3.5 days, with 85%87% COD separation. The  
wastewater, this specific dairy wastewater seems to be at the  
bottom end of the scale in terms of its COD content and  
organic load. The dairy effluent was apparently generated by  
a dairy with very good product-loss control and a relatively  
great level of water use (165).  
3
organic loading rate was 3.8 kg COD/m day, and biogas  
3
yield amounted to 0.42 m /kg COD added per day. The  
biogas contained a methane level of between 55% and 60%,  
and 63.7% of the calorific value of the substrate was  
conserved in the methane.  
Biogas  
Biogas  
Effluent  
Effluent  
Bed  
Trap  
Pump  
Feed  
Fig. 10: A simplified illustration of anaerobic wastewater  
treatment processes: fixed-bed digester.  
Feed  
3
.3.7 Expanded bed and/or fluidized-bed digesters  
In comparison with the fixed-bed reactor, anaerobic  
Fig. 11: A simplified illustration of anaerobic effluent  
treatment processes: fluidized-bed digester.  
fluidized bed reactor has superior mass and heat transfer  
characteristics. Furthermore, it has a great level of attached  
biomass, which is rich in microbial diversity. It becomes  
stable quickly after changing operational conditions (40,  
3
.3.8 Anaerobic contact process  
The anaerobic contact system (Fig. 12) was built in 1955  
177). This system is basically an anaerobic ASP that  
comprises of a well-mixed anaerobic reactor followed by a  
model of biomass separator. The removed biomass is  
returned back to the reactor, therefore decreasing the  
retention time from the typical 2030 days to 10 days. Given  
that the bacteria are maintained and recycled, this model of  
plant would be capable of treating medium-strength effluent  
(
173, 174). Operating conditions and evaluation of anaerobic  
fluidized bed reactors for treating of dairy industry  
wastewater are summarized in Table 8. As shown in Fig. 11,  
in fluidized bed digesters, effluents pass upwards via a bed  
of suspended media to which bacteria attach (175). The  
carrier medium continuously remains in suspension through  
strong, efficient liquid phase recirculation. The carrier media  
consist of plastic granules, sand particles, glass beads, clay  
particles, as well as activated charcoal fragments.  
Parameters that contribute to having an efficient fluidization  
system for this process are (a) utmost contact between the  
liquid and the fine particles carrying the bacteria; (b)  
avoiding issues of channeling, plugging, and gas hold-up,  
generally occurring in packed beds; and (c) the ability to  
control and optimize the thickness of biological film (138).  
Toldra et al. (176) applied this process for treating dairy  
effluent with a COD of only 200500 mg/L at an HRT of 8.0  
hours and a COD separation of 80%. Note that with the  
fundamental changes found between different types of dairy  
(
20020,000 mg/L COD) very effectively at great organic  
loading rates (138). The organic loading rate can change  
3
3
between 1 kg/m .day and 6 kg/m .day COD with COD  
separation efficiencies of 80%95%. The treatment  
temperature varies between 30°C and 40°C. A main  
drawback of this process is the poor settling properties of the  
anaerobic biomass from the digester effluent. Dissolved air  
(
178) and biogas flotations methods (179) were used as  
alternative sludge removal methods in this system. Although  
the contact digester is assumed to be obsolete, numerous  
dairies throughout the world still use this system (180).  
127  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
Table 8: Anaerobic fluidized bed reactors performances at different operating conditions for dairy effluent treatment (40)  
128  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
Mixing  
Biogas  
Degassifier  
Feed  
Clarifier  
Solids recycle  
Fig. 12: A simplified illustration of anaerobic effluent treatment processes (Contact digester).  
3
.3.9 Factors influencing choice of anaerobic reactor  
Compared to the established technologies in the market,  
Factoring all of the findings, the maximum loading rates  
that may be achieved with soluble wastewater is highest in  
UASB, followed by EGSB, fluidized bed reactor, and  
anaerobic filter. Accordingly, Rajeshwari et al. (187) held  
the same order in terms of the requirements of land area and  
the capital cost of the reactors. Moreover, only minimum  
maintenance and digester operation are required, provided  
that the process is adequately stable against the changes in  
conditions of environment and fluctuations in the  
wastewater characteristics. The potential utilization of a  
reactor determines the susceptibility of the process and,  
consequently, a system that operates at loading conditions  
near the maximum level has higher sensitivity as compared  
to the other systems. Table 9 outlines the recommendations  
in choosing a reactor based on the comparison of numerous  
types of reactors (187).  
industries prefer a better and more dependable technology  
that would need minimal land area and capital. In terms of  
an AD system, a process capable of running at high loading  
rates of organic and hydraulic, fits the technology criteria.  
Ideally, this process requires minimal maintenance and  
operation. In order to determine an ideal reactor type for a  
certain application, a systematic evaluation must be  
conducted on several configurations between the reactor and  
the wastewater stream. Notably, three factors influence the  
organic and hydraulic loading potential of a reactor, namely  
(
i) the amount of active biomass per unit volume that can be  
retained by a reactor, (ii) contact opportunity between the  
retained biomass and the incoming wastewater, and (iii)  
diffusion of the substrate within the biomass.  
Considering the determinants, the most prominent  
option is the granular sludge UASB reactor. Prominently, the  
only constraints that the reactor has are its granules’  
propensity to float at high loading rates [the granules tend to  
shear]. To a smaller extent, these limitations also apply to  
attached biomass reactors such as fluidized bed, fixed film,  
and rotary biological contactors. The media occupy the  
space, causing the attached biomass reactors to have a  
relatively lower capacity for biomass retention of the reactor  
per unit volume. This capacity is determined by the film  
thickness whilst the fluidized bed reactor has the highest rate  
because it has a large surface area for the attachment of the  
biomass. Furthermore, the fluidized bed and expanded  
granular sludge bed (EGSB) systems demonstrate further  
contact between the retained biomass and the incoming  
wastewater. Nevertheless, the diffusion of the substrate  
within the biomass in these configurations is restricted  
because of the high upflow velocity.  
3.4 Major combined biological treatment methods  
Depending on the type of pollution and based on  
biological treatment methods, wastewater treatment systems  
are categorized into aerobic, anaerobic, and combination  
methods. As mentioned above, dairy industrial wastewater  
with a high organic concentration always encounters  
significant complications. Thus, aerobic and anaerobic  
methods cannot sufficiently remove all low- and high-  
loading combinations. As a result, combining two methods  
or multi-stage methods can compensate for the weaknesses  
of each individual method and improve the performance of  
processes (188). Recently, combined anaerobic reactors  
have been widely used for the treatment of dairy wastewater  
and performance evaluation and operating conditions of  
theses reactors are listed in Table 10.  
129  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
Table 9: Recommended factors to choose anaerobic reactors.  
Grade order  
Factors  
Operational competence  
Fixed film < UASB < RBC < fluidized bed  
Energy usage  
UASB <fixed film < EGSB < fluidized bed < RBC  
RBC < fixed film < UASB < EGSB < fluidized bed  
Capital cost, land area demand, operation and maintenance  
Table 10: Anaerobic integrated reactors performances at different operating conditions for dairy effluent treatment (40).  
3
.4.1 Anaerobic RBC and aerobic SBR systems  
In an RBC system, microorganisms form a biological  
illustrates a diagram of an anaerobic RBC system. Both  
anaerobic and aerobic RBC reactors have a similar  
configuration with the exception of a covered tank in the  
former, which prevents contact with air (193). Notably, the  
sole application of anaerobic RBC in the treatment of highly  
polluted synthetic wastewater yields a final COD of the RBC  
film and attach to an inert support medium that has a  
sequential disc configuration. The support medium is  
submerged partly or totally; it also gradually rotates around  
a horizontal axis in a tank with flowing wastewater. Fig. 13  
130  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
effluent that is still deemed as excessively high. The initial  
COD concentrations of the synthetic wastewater were  
between 3248 and 12,150 mg/L. Despite achieving  
satisfactory efficiencies of overall COD removal at an HRT  
of 32 h (ranging from 74 % to 82 %), it is necessary to  
perform more treatment (194).  
3.4.2 UASB and aerobic fluidized bed system  
Mobile supports fill the fluidised bed reactors; hence, the  
particles covered with biofilm are fluidized through the  
liquid recirculation. Consequently, the constraint of  
substrate diffusion which is common in the stationary bed  
process is eliminated. Fig. 14 depicts a graphic of an aerobic  
fluidised bed (AFB) system. Heijnen et al. (200) and Shieh  
and Keenan (1986) (201) outlined the advantages of the AFB  
reactor: (i) high biomass concentration, (ii) short HRT, (iii)  
high organic loading rate, (iv) small external mass transfer  
resistance, (v) large surface area for mass transfer, and (vi)  
no bed clogging. Contrary to this, Lazarova and Manem  
(202) and Saravanane and Murthy (203) stated that the  
system’s applicability on a large industrial scale would be  
hampered by a number of issues, namely the control of the  
biofilm’s thickness, oxygen distribution system, and bed  
expansion. In addition, the system also records elevated  
energy consumption as it operates on an exceedingly high  
ratio of liquid circulation.  
Typically, there are three phases in the general mode of  
operation for an AFB reactor in the treatment of wastewater:  
(1) the discrete solid phase of inert particles with  
immobilized microbial cells, (2) the discrete air bubbles, and  
(3) the continuous aqueous solution. A research by Tavares  
et al. (1995) showed that AFB process with the three phases  
resulted in the attainment of high percentage (82%) in the  
average COD removal efficiency during a synthetic  
wastewater treatment. It is to be noted that, the initial feed  
content was 180 mg/L and the process was performed at a  
low average HRT of 30 min. With this result, the reactor  
showed its potential in treating lowly polluted wastewater  
has COD content of 100 mg/L to 200 mg/L (204).  
Furthermore, a research by Yu et al. (65) on the treatment of  
synthetic textile medium-polluted wastewater with COD  
content of 2700 mg/L obtained a total of 75% COD removal  
efficiency. This result was achieved by combining UASB  
with the AFB reactor at an overall HRT of 14 h. Compared  
to the aerobic system, the combination of UASB and AFB  
generated 45% lower sludge volume. Nonetheless, the  
anaerobic biomass (1 g volatile solid [VS]/L) incorporated  
into the AFB reactor to improve the removal of COD led to  
an increasing level of suspended solids (SS). This is because  
the anaerobic biomass deactivates at a fast rate under aerobic  
conditions; consequently, the particular activity of aerobes is  
diluted by the dead anaerobic cells.  
The RBC system has several advantages: (i) short  
retention time, (ii) low energy requirements, (iii) low  
operating costs, (iv) excellent process control, and (v) ability  
to handle an extensive range of flows. On the contrary, the  
main disadvantage of the system is its susceptibility to  
wastewater characteristics. This causes restricted  
operational flexibility to different operating and loading  
conditions. Apart from these, frequent maintenance is also  
required on its mechanical drive units and shaft bearings.  
Furthermore, the fill- and draw-AS systems have an  
improved version, the aerobic SBR, which is comprised of  
one or more tanks. Each tank has the capability to perform  
solid separation and waste stabilization. Kim et al. (195)  
explained the advantages of the SBR process: (i) flexibility  
in the treatment of variable flows, (ii) providing options for  
aerobic or anaerobic conditions in the same tank, (iii)  
minimum operator interaction, (iv) efficient oxygen contact  
with microorganisms and substrates, (v) good removal  
efficiency, and (vi) small floor space. Due to these benefits,  
the process has been implemented at an increasing rate in the  
industrial (196-198) and municipal (199) wastewater  
treatment.  
A combination of the anaerobic RBC and aerobic SBR  
systems will lead to efficient bioenergy production and  
waste treatment system as high methane production rates can  
be achieved via anaerobic RBC, and diluted waste can be  
treated efficiently via the aerobic SBR. To that end, an  
integration of anaerobic RBC and three aerobic SBRs was  
adopted in the treatment of screened dairy manure and also  
in the treatment of a mixture of cheese whey and dairy  
manure. In general, this combination system is able to attain  
a significant reduction in COD (a minimum of 98%) and  
generate a considerable amount of methane gas.  
To that end, minimal cell mass from the UASB reactor  
has to be ensured prior to the process in the AFB reactor.  
This is to circumvent the anaerobes from having biological  
activity with high turbidity that does not have any  
contribution. The biological treatment of industrial  
wastewater of medium level of pollution may apply the  
UASB-AFB system due to its reduced sludge formation,  
high pH tolerance, and stable performance in the removal of  
COD. The UASB-AFB system is also ideal in economic,  
technical, and environment terms, particularly when space is  
a constraint.  
Fig. 13: Simplified diagram of an anaerobic RBC reactor (149).  
(Reprinted from Biological Wastewater Treatment in Warm  
Climate Regions, p. 719, ISBN 9781843390022 with permission  
from the copyright holders, IWA).  
131  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
of recirculation ratio (R/F) and anaerobic/aerobic volume  
ratio (Van:Vae). Accordingly, the downflow manner was  
applied for the FFBs, and recirculation of the aerobic  
effluent was done on the anaerobic FFB. Consequently, the  
removal of COD was prominently evident in the anaerobic  
FFB. Furthermore, this effect was inflated with an increase  
in the contribution of denitrification, namely as the R/F  
increased from 1 to 6. Apart from that, a smaller volume of  
aerobic FFB compared to the anaerobic FFB also led to an  
increase in the fraction of COD removed in the anaerobic  
FFB. This is explained by the large recirculation in the  
anaerobic FFB feed that favoured denitrification as opposed  
to the detriment of the methanogenic process and the  
generation of biogas.  
3.4.4 Anaerobic upflow bed filter and aerobic membrane  
bioreactor system  
An anaerobic hybrid reactor, the anaerobic upflow bed  
filter (UBF) is a combination of an anaerobic FFB and a  
UASB. UASB is installed at the lower part of the UBF  
reactor which develops the granular sludge. Conversely,  
FFB is found at the upper part of the UBF with the support  
of stationary packing material. Notably, the problems of  
clogging and biomass washout occur regularly in both  
anaerobic FFBs and UASBs; UBF is capable of eliminating  
these problems. In aerobic MBRs, membrane filtration is  
merged with biodegradation processes and sieving enables  
the occurrence of solid-liquid separation. MBR retains solid  
Fig. 14: Schematic diagram of an AFB reactor (149). (Modified  
from Biological Wastewater Treatment in Warm Climate Regions,  
p. 717, ISBN 9781843390022 with permission from the copyright  
holders, IWA).  
materials,  
pathogenic  
bacteria,  
biomass,  
and  
macromolecules while simultaneously tolerating smaller  
solution species and water to permeate the membrane (207,  
3
.4.3 Anaerobicaerobic fixed film bioreactor system  
Compared to suspension culture, the immobilized cells  
208). Consequently, the process ensures the production of  
high-quality effluent. Dhaouadi and Marrot (209), Muller et  
al. (210), and Wang and Wu (211) listed a number of  
advantages that MBR has: (i) separation of solid retention  
time (SRT) from HRT, (ii) high-quality effluent, (iii)  
reduced production of sludge due to the endogenous  
respiration during the long SRT, and (iv) low rate of sludge-  
loading. Normally, the membrane-retained aqueous and  
particulate-based enzymes disappear in the conventional  
step of sedimentation clarification. This situation is different  
in MBR, and hence, the metabolic rate with this process  
would be improved (212).  
on the surface of the media, or fixed film, are superior  
because they (i) have wider variation in population, (ii) have  
higher rate(s) of growth, (iii) demonstrate faster utilization  
of the substrate concerning free biomass, and (iv) are less  
sensitive to the variations in environment in terms of pH,  
temperature, and toxic substances. Bishop (205) stated that  
the fixed cells endure physiological modifications because  
of the increasing local concentration of enzymes and  
nutrients or the extracellular polymeric matrix, which have a  
selective effect on toxic or inhibitory substances.  
Consequently, these cells exhibit the outlined advantages.  
Apart from that, Del Pozo and Diez (206) examined a  
combination of two FFBs  anaerobic and aerobic  with  
arranged media, linked serially with recirculation for the  
treatment of wastewater from a poultry slaughterhouse. The  
implementation of FFB in the slaughterhouse wastewater  
was done due to the severe problems of flotation in the  
suspended biomass systems, which were caused by the  
substantial levels of grease and oil. Clogging was avoided by  
placing the long corrugated PVC tubes as the support media  
vertically. Moreover, the tubes have a rough structure that  
attributed to the increase in specific surface and acted as a  
protection from stress forces for the biomass attached. As a  
result, the overall COD removal efficiency of 92% was  
On the contrary, membrane fouling is  
a major  
disadvantage in the adoption of MBR. Generally, this issue  
is addressed by applying cross-flow filtration. A study by  
Ahn et al. (213) investigated the treatment of highly polluted  
wastewater with COD content range of 6000 mg/L to 14,500  
mg/L. The anaerobic UBF-aerobic MBR system was  
implemented at a relatively short HRT (24 h) and the results  
showed significant removal of COD at 99%. Fig. 16  
illustrates a diagram of this system. Apart from that, and  
despite the superiority of the system, membrane fouling was  
still evident. Compared to a unit MBR that was run under  
similar settings, the trans-membrane pressure was  
approximately nine times higher. The increased extracellular  
polymeric substance and hydrophobicity led to serious  
fouling in the system. In addition, the membrane-coupled  
ASP is a representative of the MBR system. It merges the  
AS system with membranes and performs specifically  
3
attained at an organic loading rate of 0.39 kg/m .day. Fig. 15  
depicts the illustration of the anaerobic-aerobic FFB.  
These having been said, analysis of the fraction of COD  
removed by every reactor was done by evaluating the effects  
132  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
efficiently in organic matter removal as an advanced  
secondary wastewater treatment process.  
Fig. 15: Schematic diagram of anaerobicaerobic FFBs (206). (Reprinted from Water Research, Organic matter removal in combined anaerobic-  
aerobic fixed-film bioreactors, 37 (2003) 35613568, with permission from the copyright holders, Elsevier).  
Fig. 16: Schematic representation of the UBF-aerobic MBR system (213). (Reprinted from Desalination, Simultaneous high-  
strength organic and nitrogen removal with combined anaerobic upflow bed filter and aerobic membrane bioreactor, 202 (2007)  
114121, with permission from the copyright holders, Elsevier).  
Nevertheless, the system is not effective for the  
elimination of other nutrients. Seghezzo et al. (214) claimed  
that phosphorus and nitrogen are the main causes of  
eutrophication and have detrimental effects on receiving  
water. Accordingly, the removal of biological nutrients via  
the MBR system has to be enhanced. On a separate note, Bae  
et al. (37) proved that the modes of operation do not  
influence the stable and high BOD removal of 97% or 98%  
for the MBR system. Moreover, membrane separation  
resulted in effluent free of SS. Other than these, the high  
133  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
BOD:TKN ratio of the influent caused the nitrifying bacteria  
not to be cultivated at an adequate rate. Thence, assimilation  
or synthesis of new cells devours nitrogen as its nutrient and,  
hence, the removal of nitrogen turned out to be fairly high  
during the operation, reaching 96%. Furthermore, the  
constraint of the biological removal process caused by the  
high concentration of phosphorus in the influent resulted in  
low removal efficiency. Nonetheless, optimization of the  
system enabled the removal efficiency to reach 80%.  
restrictions are addressed through the development and  
application of new high-rate bioreactors that provide higher  
yields of methane for the production of biogas and ensure  
better removal of organic matters at shorter HRTs. Special  
care has been paid to the integrated anaerobic-aerobic  
bioreactors  a combination of anaerobic and aerobic  
processes in a single bioreactor in an effort to minimize the  
limitations in terms of odors, minimal sludge production,  
and space. Compact integrated bioreactors are anticipated to  
treat an extensive range of industrial and municipal  
wastewater of high organic pollution. The simple, yet  
economical technology generates renewable energy, and has  
a remarkable efficiency of treatment. Nonetheless, the  
majority of the integrated bioreactors stated in this study are  
not implemented on a large scale in the industry. Thus, more  
extensive analysis on the performance and capability of  
these reactors is essential, particularly on a bigger scale.  
Improvements to the system are also fundamental with  
recommendations such as utilizing suspended carrier or  
packing mediums and installing a biogas capture system. In  
general, an anaerobic RBC integrated with aerobic SBR  
system can achieve a considerable COD reduction to  
produce remarkable amounts of methane gas. High pH  
tolerance, reduced sludge formation, and stable COD  
removal performance of the UASBAFB system make this  
system beneficial in the biological treatment of industrial  
wastewaters of medium-level pollution. Furthermore, the  
UASBAFB configuration emerges as an attractive  
alternative from the technical, economical, and  
environmental perspectives; especially when space is a  
limiting factor. A significant COD removal in the treatment  
of highly polluted wastewater with high COD content can be  
achieved by integration of an anaerobic UBF and aerobic  
MBR systems at a relatively short HRT. Although the  
performance of this system is impressive, membrane fouling  
is an issue that should be addressed in this process.  
Conducting various researches is required for current  
biological methods of dairy wastewater treatment in order to  
enhance energy production and organic removal efficiency  
as well as reduce the operating cost and environmental  
impact.  
4
Challenges of handling polluted dairy in  
future  
Demand for dairy products is foreseen to increase in the  
future and inevitably to gear up the amount of wastewater  
from the industry. Every year, this industry increases their  
usage of chemical materials. Serious consequences may be  
faced by future generations if no new improved technologies  
are developed at a fast rate. As the main user and the  
significant generator of wastewater, the dairy industry can  
potentially reuse the wastewater. Boilers, cooling systems,  
and washing of plants are a few examples for the utilization  
of purified wastewater. Additionally, the dairy industry will  
enjoy direct benefit from in-house treatment of wastewater  
with the prominent reduction in charge of levies for  
reception of wastewater. For instance, 70% of the total  
savings from AD in the United Kingdom are attributed to the  
lower costs for discharge. Apart from that, the dairy industry  
will gain indirect benefits from fields that use effluents for  
irrigation of pastures. Therefore, efficient management of  
wastewater in the dairy industry is essential for these  
reasons.  
5
Conclusion  
For choosing an appropriate wastewater treatment  
method, a process assessment in addition to an economic  
analysis are required. Effluent composition, concentrations,  
volumes produced, susceptibility to treatment, and the  
environmental impact are examples of important factors for  
selecting an efficient treatment method. The operational  
procedures and design must consider the fluctuation in the  
quantity and quality of wastewater from the dairy industry.  
According to the literature, the biological methods are  
revealed as the most economical approach in the organics  
removal since they are relatively easier to control.  
Nonetheless, the anaerobic methods are also outstanding as  
they have low rates of sludge production and have lower  
energy requirements. As no particular process of treating  
dairy wastewater may comply with the minimum  
requirements for discharge of effluent, application of a  
combined process that is particularly designed to treat  
specific dairy wastewater is necessitated. Over the past  
decades, awareness of the anaerobic-aerobic treatments has  
been increasing; this is actually attributed to a number of  
advantages: (i) low chemical consumption, (ii) low energy  
consumption, (iii) low sludge production, (iv) huge potential  
for resource recovery, (v) less equipment requirements, and  
References  
1.  
Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM.  
Aqueous NaHSO4 catalyzed regioselective and versatile  
synthesis of 2-thiazolamines. Monatshefte für Chemie -  
Chemical Monthly. 2008;139(10):1241-5.  
2.  
Lohrasbi S, Kouhbanani MAJ, Beheshtkhoo N, Ghasemi  
Y, Amani AM, Taghizadeh S. Green Synthesis of Iron  
Nanoparticles Using Plantago major Leaf Extract and  
Their Application as a Catalyst for the Decolorization of  
Azo Dye. BioNanoScience. 2019:1-6.  
3
4
.
.
Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A,  
Amani AM, Savar Dashtaki A, et al. Green synthesis of  
silver nanoparticles toward bio and medical  
applications:  
review  
study.  
Artificial  
cells,  
nanomedicine, and biotechnology. 2018:1-18.  
Mousavi SM, Hashemi SA, Esmaeili H, Amani AM,  
Mojoudi F. Synthesis of Fe3O4 nanoparticles modified  
(
vi) high operational simplicity. Nevertheless, operational  
limitations are evident in the conventional anaerobic–  
aerobic systems, namely requirements for space, facilities to  
capture biogas, and long HRT. Accordingly, these  
134  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
by oak shell for treatment of wastewater containing Ni  
in Mexico: The case of â€œEl Sauzâ€. Water Science  
and Technology. 1995;32(12):149-56.  
(
II). Acta Chimica Slovenica. 2018;65(3):750-6.  
5
.
Luostarinen SA, Rintala JA. Anaerobic on-site treatment  
of black water and dairy parlour wastewater in UASB-  
septic tanks at low temperatures. Water research.  
20. Meneses YE, Flores RA. Feasibility, safety, and  
economic implications of whey-recovered water in  
cleaning-in-place systems: A case study on water  
conservation for the dairy industry. Journal of Dairy  
Science. 2016;99(5):3396-407.  
21. Palmieri N, Forleo MB, Salimei E. Environmental  
impacts of a dairy cheese chain including whey feeding:  
An Italian case study. Journal of Cleaner Production.  
2017;140, Part 2:881-9.  
22. Mollea C, Bosco F, Marmo L. Valorisation of cheese  
whey, a by-product from the dairy industry: INTECH  
Open Access Publisher; 2013.  
23. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. An  
efficient one-pot procedure for the preparation of 1,3,4-  
thiadiazoles in ionic liquid [bmim]BF4 as dual solvent  
and catalyst. Heteroat Chem. 2008;19(3):320-4.  
24. Amani A. Synthesis and biological activity of piperazine  
derivatives of phenothiazine. Drug Res. 2015;65(01):5-  
8.  
25. Rostamizadeh S, Aryan R, Reza Ghaieni H, Mohammad  
Amani A. Efficient synthesis of 1, 3, 4thiadiazoles  
using hydrogen bond donor (thio) urea derivatives as  
organocatalysts. J Heterocycl Chem. 2010;47(3):616-  
23.  
26. Rostamizadeh S, Abdollahi F, Shadjou N, Amani AM.  
MCM-41-SO3H: a novel reusable nanocatalyst for  
synthesis of amidoalkyl naphthols under solvent-free  
2005;39(2):436-48.  
6
7
.
.
Nadais H, Capela I, Arroja L, Duarte A. Optimum cycle  
time for intermittent UASB reactors treating dairy  
wastewater. Water research. 2005;39(8):1511-8.  
Ramasamy EV, Gajalakshmi S, Sanjeevi R, Jithesh MN,  
Abbasi SA. Feasibility studies on the treatment of dairy  
wastewaters with upflow anaerobic sludge blanket  
reactors. Bioresource Technology. 2004;93(2):209-12.  
Doyle CJ, Gleeson D, Jordan K, Beresford TP, Ross RP,  
Fitzgerald GF, et al. Anaerobic sporeformers and their  
significance with respect to milk and dairy products.  
International Journal of Food Microbiology.  
8
9
1
1
.
.
2015;197:77-87.  
Indyk HE, Woollard DC. Contaminants of Milk and  
Dairy Products | Nitrates and Nitrites as Contaminants  
A2 - Fuquay, John W. Encyclopedia of Dairy Sciences  
(
9
Second Edition). San Diego: Academic Press; 2011. p.  
06-11.  
0. Hirota K, Yokota Y, Sekimura T, Uchiumi H, Guo Y,  
Ohta H, et al. Bacterial communities in different  
locations, seasons and segments of a dairy wastewater  
treatment system consisting of six segments. Journal of  
Environmental Sciences. 2016;46:109-15.  
1. Asadi A, Zinatizadeh AAL, Isa MH. Performance of  
intermittently aerated up-flow sludge bed reactor and  
sequencing batch reactor treating industrial estate  
conditions. Monatshefte für Chemie  
Monthly. 2013;144(8):1191-6.  
- Chemical  
wastewater:  
Technology. 2012;123:495-506.  
A
comparative study. Bioresource  
27. Habibi A, Tarameshloo Z, Rostamizadeh S, M Amani A.  
Efficient Synthesis of 3-Aminoimidazo [1, 2-a]  
Pyridines Using Silica-Supported Perchloric Acid  
(HClO4-SiO2) as a Novel Heterogenous Catalyst. Lett  
Org Chem. 2012;9(3):155-9.  
1
1
2. Wheatley A. Anaerobic digestion: a waste treatment  
technology: Chapman & Hall; 1990.  
3. Xie B, Liu H. Enhancement of biological nitrogen  
removal from wastewater by low-intensity ultrasound.  
Water, Air, & Soil Pollution. 2010;211(1-4):157-63.  
28. Mahdavinia GH, Rostamizadeh S, Amani AM,  
Mirzazadeh M. NH4H2PO4/SiO2:  
a
recyclable,  
1
1
4. Djelal  
H,  
Amrane  
A.  
Biodegradation  
by  
efficient heterogeneous catalyst for crossed aldol  
condensation reaction. Green Chemistry Letters and  
Reviews. 2012;5(3):255-81.  
bioaugmentation of dairy wastewater by fungal  
consortium on a bioreactor lab-scale and on a pilot-scale.  
Journal of Environmental Sciences. 2013;25(9):1906-  
29. Danalewich JR, Papagiannis TG, Belyea RL,  
Tumbleson ME, Raskin L. Characterization of dairy  
waste streams, current treatment practices, and potential  
for biological nutrient removal. Water research.  
1998;32(12):3555-68.  
30. Al-Shammari SB, Bou-Hamad S, Al-Saffar A, Salman  
M, Al-Sairafi A. Treatment of Dairy Wastewater  
Effluent Using Submerged Membrane Microfiltration  
System. Journal of Environmental Science and  
Engineering A. 2015:107.  
12.  
5. Mahdavinia GH, Rostamizadeh S, Amani AM,  
Sepehrian H. Fast and efficient method for the synthesis  
of 2-arylbenzimidazoles using MCM-41-SO3H.  
Heterocycl Commun. 2012;18(1):33-7.  
6. Yan JQ, Lo KV, Liao PH. Anaerobic digestion of cheese  
whey using up-flow anaerobic sludge blanket reactor.  
Biological wastes. 1989;27(4):289-305.  
7. Aydiner C, Sen U, Koseoglu-Imer DY, Can Dogan E.  
Hierarchical prioritization of innovative treatment  
systems for sustainable dairy wastewater management.  
Journal of Cleaner Production. 2016;112, Part 5:4605-  
1
1
31. Vidal G, Carvalho A, Mendez R, Lema JM. Influence of  
the content in fats and proteins on the anaerobic  
biodegradability of dairy wastewaters. Bioresource  
Technology. 2000;74(3):231-9.  
17.  
1
1
8. Xu B, Ge Z, He Z. Sediment microbial fuel cells for  
wastewater treatment: challenges and opportunities.  
Environmental Science: Water Research & Technology.  
32. Schwarzenbeck N, Borges JM, Wilderer PA. Treatment  
of dairy effluents in an aerobic granular sludge  
sequencing batch reactor. Applied Microbiology and  
Biotechnology. 2005;66(6):711-8.  
33. Kushwaha JP, Srivastava VC, Mall ID. Sequential batch  
reactor for dairy wastewater treatment: parametric  
2015;1(3):279-84.  
9. Derramadero JC, Guyot JP. Anaerobic-aerobic  
treatment of cheese wastewater with national technology  
135  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
optimization; kinetics and waste sludge disposal. Journal  
48. Chan YJ, Chong MF, Law CL, Hassell D. A review on  
of  
Environmental  
Chemical  
Engineering.  
anaerobicaerobic treatment of industrial and municipal  
2013;1(4):1036-43.  
wastewater.  
Chemical  
Engineering  
Journal.  
3
3
3
4. Sirianuntapiboon S, Jeeyachok N, Larplai R.  
Sequencing batch reactor biofilm system for treatment  
of milk industry wastewater. Journal of Environmental  
Management. 2005;76(2):177-83.  
5. Omil F, Garrido JM, Arrojo Bn, M
أ
©ndez Rn. Anaerobic  
filter reactor performance for the treatment of complex  
dairy wastewater at industrial scale. Water research.  
2009;155(1):1-18.  
49. Yeoh B, editor Anaerobic treatment of industrial  
wastewaters in Malaysia. Post conference seminar on  
industrial wastewater management in Malaysia, Kuala  
Lumpur, Malaysia; 1995.  
50. Grady Jr CL, Daigger GT, Love NG, Filipe CD.  
Biological wastewater treatment: CRC press; 2011.  
51. Bajpai P. Comparison of Aerobic Treatment with  
Anaerobic Treatment. Anaerobic Technology in Pulp  
and Paper Industry. Singapore: Springer Singapore;  
2017. p. 29-35.  
2003;37(17):4099-108.  
6. Gutierrez JLR, Encina PAG, Fdz-Polanco F. Anaerobic  
treatment of cheese-production wastewater using a  
UASB  
reactor.  
Bioresource  
Technology.  
1
991;37(3):271-6.  
52. Demirel B, Yenigun O, editors. Acidogenesis in two-  
phase anaerobic treatment of dairy wastewater.  
3
3
7. Bae T-H, Han S-S, Tak T-M. Membrane sequencing  
batch reactor system for the treatment of dairy industry  
wastewater. Process Biochemistry. 2003;39(2):221-31.  
8. Kolarski R, Nyhuis G, editors. The Use of Sequencing  
Batch Reactor Technology for The Treatment of High-  
European  
Symposium  
on  
Environmental  
Biotechnology-ESEB; 2004.  
53. Eroglu V, Ozturk I, Demir I, Akca L, Alp K, editors.  
Sequencing batch and hybrid anaerobic reactors  
treatment of dairy wastes. Proceedings of the Industrial  
Waste Conference (USA); 1992.  
54. Gavala H, Kopsinis H, Skiadas I, Stamatelatou K,  
Lyberatos G. Treatment of dairy wastewater using an  
upflow anaerobic sludge blanket reactor. Journal of  
Agricultural Engineering Research. 1999;73(1):59-63.  
55. Hwang S, Hansen C. Characterization of and  
Bioproduction of Short-Chain Organic Acids from  
Mixed Dairy-Processingwastewater. Transactions of the  
ASAE. 1998;41(3):795.  
Strength Dairy Processing Waste. Proceedings of the  
th  
5
1
0
Industrial Waste Conference May 8, 9, 10, 1995;  
997: CRC Press.  
3
4
4
4
4
9. Qasim W, Mane AV. Characterization and treatment of  
selected food industrial effluents by coagulation and  
adsorption techniques. Water Resources and Industry.  
2013;4:1-12.  
0. Karadag D, Köroğlu OE, Ozkaya B, Cakmakci M. A  
review on anaerobic biofilm reactors for the treatment of  
dairy industry wastewater. Process Biochemistry.  
2
015;50(2):262-71.  
56. Malaspina F, Stante L, Cellamare C, Tilche A. Cheese  
whey and cheese factory wastewater treatment with a  
biological anaerobicaerobic process. Water Science  
and Technology. 1995;32(12):59-72.  
57. Monroy O, Vazquez F, Derramadero J, Guyot J-P.  
Anaerobic-aerobic treatment of dairy wastewater with  
national technology in Mexico: the case of" El Sauz".  
1995.  
58. Öztürk I, Eroglu V, Ubay G, Demir I. Hybrid upflow  
anaerobic sludge blanket reactor (HUASBR) treatment  
of dairy effluents. Water Science and Technology.  
1993;28(2):77-85.  
1. Mohebi-Fard E. Performance evaluation of the  
wastewater treatment plant of Pelareh Dairy Industry,  
Iran. Journal of Advances in Environmental Health  
Research. 2015;3(4).  
2. Demirel B, Yenigun O, editors. Acidogenesis in  
anaerobic treatment of dairy wastewater. Proceedings of  
Asian Waterqual2003-IWA Asia-Pacific regional  
conference, Bangkok, Thailand; 2003.  
3. Kasapgil B, Anderson G, Ince O. An investigation into  
the pre-treatment of dairy wastewater prior to aerobic  
biological treatment. Water Science and Technology.  
1
994;29(9):205-12.  
59. Strydom12 J, Britz T, Mostert J. Two-phase anaerobic  
digestion of three different dairy effluents using a hybrid  
bioreactor. 1997.  
60. Van den Berg L, Kennedy K. Dairy waste treatment with  
anaerobic stationary fixed film reactors. Water Science  
and Technology. 1983;15(8-9):359-68.  
61. Guillen-Jimenez E, Alvarez-Mateos P, Romero-Guzman  
F, Pereda-Marin J. Bio-mineralization of organic matter  
in dairy wastewater, as affected by pH. The evolution of  
ammonium and phosphates. Water Research.  
2000;34(4):1215-24.  
62. Brown HB, Pico R, editors. Characterization and  
treatment of dairy wastes in the municipal treatment  
system. Proceedings-Industrial Wastes Conference,  
Purdue University (USA); 1979.  
4
4
4. Luo J, Ding L. Influence of pH on treatment of dairy  
wastewater by nanofiltration using shear-enhanced  
filtration system. Desalination. 2011;278(13):150-6.  
5. Kushwaha JP, Srivastava VC, Mall ID. An overview of  
various technologies for the treatment of dairy  
wastewaters. Critical reviews in food science and  
nutrition. 2011;51(5):442-52.  
6. Mousavi SM, Hashemi SA, Amani AM, Esmaeili H,  
Ghasemi Y, Babapoor A, et al. Pb (II) Removal from  
Synthetic Wastewater Using Kombucha Scoby and  
Graphene Oxide/Fe3O4. Physical Chemistry Research.  
4
4
2018;6(4):759-71.  
7. Rostamizadeh S, Amani AM, Aryan R, Ghaieni HR,  
Norouzi L. Very fast and efficient synthesis of some  
novel substituted 2-arylbenzimidazoles in water using  
ZrOCl 2· nH 2 O on montmorillonite K10 as catalyst.  
63. Fang HH, Yu H. Effect of HRT on mesophilic  
acidogenesis of dairy wastewater. Journal of  
environmental engineering. 2000;126(12):1145-8.  
Monatshefte  
für  
Chemie-Chemical  
Monthly.  
2009;140(5):547-52.  
136  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
6
4. Angelidaki I, Ellegaard L, Ahring BK. A comprehensive  
model of anaerobic bioconversion of complex substrates  
to biogas. Biotechnology and bioengineering.  
Symposium Environmental Biotechnology; Oostende,:  
Technologisch Institut; 1997. p. 521-4.  
82. Alves M, Vieira JM, Pereira RÁ, Pereira M, Mota M.  
Effects of lipids and oleic acid on biomass development  
in anaerobic fixed-bed reactors. Part II: Oleic acid  
toxicity and biodegradability. Water Research.  
2001;35(1):264-70.  
83. Rinzema A, Alphenaar A, Lettinga G. Anaerobic  
digestion of long-chain fatty acids in UASB and  
expanded granular sludge bed reactors. Process  
Biochemistry. 1993;28(8):527-37.  
84. Sayed S, van der Zanden J, Wijffels R, Lettinga G.  
Anaerobic degradation of the various fractions of  
slaughterhouse wastewater. Biological Wastes.  
1988;23(2):117-42.  
85. Demirel B, Yenigun O, Onay TT. Anaerobic treatment  
of dairy wastewaters: a review. Process Biochemistry.  
2005;40(8):2583-95.  
86. Droste RL. Theory and practice of water and wastewater  
treatment: John Wiley & Sons Incorporated; 1997.  
87. Hemming ML. The treatment of dairy wastes. In Food  
Industry Wastes: disposal and Recovery: Ltd; 1981.  
88. Hafner SC, Watanabe N, Harter T, Bergamaschi BA,  
Parikh SJ. Effects of solid-liquid separation and storage  
on monensin attenuation in dairy waste management  
systems. Journal of Environmental Management.  
2017;190:28-34.  
1999;63(3):363-72.  
6
6
6
5. Yu H, Fang H. Thermophilic acidification of dairy  
wastewater. Applied microbiology and biotechnology.  
2000;54(3):439-44.  
6. Yu J, Pinder KL. Intrinsic fermentation kinetics of  
lactose in acidogenic biofilms. Biotechnology and  
bioengineering. 1993;41(4):479-88.  
7. Kisaalita W, Lo K, Pinder K. Influence of dilution rate  
on the acidogenic phase products distribution during  
twophase lactose anaerobiosis. Biotechnology and  
bioengineering. 1989;34(10):1235-50.  
6
6
7
8. Kisaalita W, Lo K, Pinder K. Influence of whey protein  
on continuous acidogenic degradation of lactose.  
Biotechnology and bioengineering. 1990;36(6):642-6.  
9. McInerney MJ. Anaerobic hydrolysis and fermentation  
of fats and proteins. Biology of anaerobic  
microorganisms. 1988;38:373-415.  
0. Gallert C, Bauer S, Winter J. Effect of ammonia on the  
anaerobic degradation of protein by a mesophilic and  
thermophilic  
biowaste  
population.  
Applied  
Microbiology and Biotechnology. 1998;50(4):495-501.  
1. Gavala H, Lyberatos G. Influence of anaerobic culture  
acclimation on the degradation kinetics of various  
7
substrates.  
Biotechnology and  
bioengineering.  
2
001;74(3):181-95.  
89. Wendorff WL. Treatment of dairy wastes. In Applied  
Dairy Microbiology. New York: Marcel Dekker Inc;  
2001.  
90. Borja R, Banks CJ. Response of an anaerobic fluidized  
bed reactor treating ice-cream wastewater to organic,  
hydraulic, temperature and pH shocks. Journal of  
biotechnology. 1995;39(3):251-9.  
91. Hawkes FR, Donnelly T, Anderson G. Comparative  
performance of anaerobic digesters operating on ice-  
cream wastewater. Water Research. 1995;29(2):525-33.  
92. Wang S, Rao NC, Qiu R, Moletta R. Performance and  
kinetic evaluation of anaerobic moving bed biofilm  
reactor for treating milk permeate from dairy industry.  
Bioresource technology. 2009;100(23):5641-7.  
93. Bezerra Jr RA, Rodrigues JA, Ratusznei SM, Zaiat M,  
Foresti E. Whey treatment by AnSBBR with circulation:  
effects of organic loading, shock loads, and alkalinity  
7
7
2. McCarty PL. Environmental biotechnology: principles  
and applications: Tata McGraw-Hill Education; 2012.  
3. Ramsay IR, Pullammanappallil PC. Protein degradation  
during anaerobic wastewater treatment: derivation of  
stoichiometry. Biodegradation. 2001;12(4):247-56.  
4. Tommaso G, Ribeiro R, Varesche M, Zaiat M, Foresti  
E. Influence of multiple substrates on anaerobic protein  
degradation in a packed-bed bioreactor. Water Science  
7
7
&
Technology. 2003;48(6):23-31.  
5. Perle M, Kimchie S, Shelef G. Some biochemical  
aspects of the anaerobic degradation of dairy  
wastewater. Water Research. 1995;29(6):1549-54.  
6. Petruy R, Lettinga G. Digestion of a milk-fat emulsion.  
Bioresource technology. 1997;61(2):141-9.  
7. Koster I. Abatement of long-chain fatty acid inhibition  
of methanogenesis by calcium addition. Biological  
wastes. 1987;22(4):295-301.  
7
7
supplementation.  
Applied  
biochemistry  
and  
7
7
8
8
8. Hanaki K, Matsuo T, Nagase M. Mechanism of  
inhibition caused by longchain fatty acids in anaerobic  
digestion process. Biotechnology and bioengineering.  
biotechnology. 2007;143(3):257-75.  
94. Pretti AA, Moreno JG, Santana R, Pinho S, Tommaso G,  
Ribeiro R, editors. Effect of configuration of biomass on  
the behaviour of anaerobic batch reactors in pilot-scale  
treating dairy wastewater. 11th international congress on  
engineering and food; 2011.  
95. Ince O. Potential energy production from anaerobic  
digestion of dairy wastewater. Journal of Environmental  
Science & Health Part A. 1998;33(6):1219-28.  
96. Banu JR, Anandan S, Kaliappan S, Yeom I-T. Treatment  
of dairy wastewater using anaerobic and solar  
photocatalytic methods. Solar Energy. 2008;82(9):812-  
9.  
1981;23(7):1591-610.  
9. Hanaki K, Matsuo T, Kumazaki K. Treatment of oily  
cafeteria wastewater by single-phase and two-phase  
anaerobic filter. Water science and technology.  
1990;22(3-4):299-306.  
0. Komatsu T, Hanaki K, Matsuo T. Prevention of lipid  
inhibition in anaerobic processes by introducing a two-  
phase system. Water Science and Technology.  
1991;23(7-9):1189-200.  
1. Alves M, Pereira R, Vieira J, Mota M. Effect of lipids on  
biomass development in anaerobic fixed-bed reactors  
97. Gannoun H, Khelifi E, Bouallagui H, Touhami Y,  
Hamdi M. Ecological clarification of cheese whey prior  
treating  
a
synthetic dairy waste. International  
137  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
to anaerobic digestion in upflow anaerobic filter.  
Bioresource Technology. 2008;99(14):6105-11.  
8. Traversi D, Bonetta S, Degan R, Villa S, Porfido A,  
Bellero M, et al. Environmental advances due to the  
integration of food industries and anaerobic digestion for  
biogas production: perspectives of the Italian milk and  
114. Samkutty P, Gough R, McGrew P. Biological treatment  
of dairy plant wastewater 1. Journal of Environmental  
Science & Health Part A. 1996;31(9):2143-53.  
115. Torrijos M, Vuitton V, Moletta R. The SBR process: an  
efficient and economic solution for the treatment of  
wastewater at small cheesemaking dairies in the Jura  
9
dairy  
product  
sector.  
Bioenergy  
Research.  
mountains.  
Water  
science  
and  
technology.  
2013;6(3):851-63.  
2001;43(3):373-80.  
9
1
9. Mansoorian HJ, Mahvi AH, Jafari AJ, Khanjani N.  
Evaluation of dairy industry wastewater treatment and  
simultaneous bioelectricity generation in a catalyst-less  
and mediator-less membrane microbial fuel cell. Journal  
of Saudi Chemical Society. 2014.  
116. Li X, Zhang R. Aerobic treatment of dairy wastewater  
with sequencing batch reactor systems. Bioprocess and  
biosystems engineering. 2002;25(2):103-9.  
117. Yamamoto K, Hiasa M, Mahmood T, Matsuo T. Direct  
solid-liquid separation using hollow fiber membrane in  
an activated sludge aeration tank. Water Science and  
Technology. 1989;21(4-5):43-54.  
00. Rezaee S, Zinatizadeh A, Asadi A. Comparative study  
on effect of mechanical mixing and ultrasound on the  
performance  
of  
a
single  
up-flow  
118. Ueda T, Hata K, Kikuoka Y. Treatment of domestic  
anaerobic/aerobic/anoxic bioreactor removing CNP  
from milk processing wastewater. Journal of the Taiwan  
Institute of Chemical Engineers. 2016;58:297-309.  
01. Goli A, Shamiri A, Talaiekhozani A, Eshtiaghi N,  
Aghamohammadi N, Aroua MK. An overview of  
biological processes and their potential for CO2 capture.  
J Environ Manage. 2016;183:41-58.  
02. Smith PG. Dictionary of water and waste management:  
Butterworth-Heinemann; 2005.  
03. Donkin M. Bulking in aerobic biological systems  
treating dairy processing wastewaters. International  
journal of dairy technology. 1997;50(2):67-72.  
sewage from rural settlements by a membrane  
bioreactor. Water Science and Technology.  
1996;34(9):189-96.  
1
119. Fraga FA, García HA, Hooijmans CM, Míguez D,  
Brdjanovic D. Evaluation of a membrane bioreactor on  
dairy wastewater treatment and reuse in Uruguay.  
International Biodeterioration  
2017;119:552-64.  
&
Biodegradation.  
1
1
120. Ueda T, Hata K, Kikuoka Y, Seino O. Effects of  
aeration on suction pressure in a submerged membrane  
bioreactor. Water Research. 1997;31(3):489-94.  
121. Visvanathan C, Yang B-S, Muttamara S,  
Maythanukhraw R. Application of air backflushing  
technique in membrane bioreactor. Water Science and  
Technology. 1997;36(12):259-66.  
1
1
04. Lever M. Operator’s Guide to Activated Sludge  
Bulking. 35th Annual Qld Water Industry. 2010.  
05. Liu Y, Guo J, Wang Q, Huang D. Prediction of  
Filamentous Sludge Bulking using  
Gaussian Processes Regression Model. Scientific  
Reports. 2016;6:31303.  
a
State-based  
122. Randall CW, Barnard JL. Design and Retrofit of  
Wastewater Treatment Plants for Biological Nutritient  
Removal: CRC Press; 1998.  
1
06. Donkin MJ, Russell JM. Treatment of  
milkpowder/butter wastewater using the AAO activated  
sludge configuration. Water Science and Technology.  
a
123. Côté P, Buisson H, Pound C, Arakaki G. Immersed  
membrane activated sludge for the reuse of municipal  
wastewater. Desalination. 1997;113(2):189-96.  
1
997;36(10):79-86.  
124. Wichern M, Lübken M, Horn H. Optimizing  
sequencing batch reactor (SBR) reactor operation for  
treatment of dairy wastewater with aerobic granular  
sludge. Water Science & Technology. 2008;58(6).  
125. El Fantroussi S, Agathos SN. Is bioaugmentation a  
feasible strategy for pollutant removal and site  
remediation? Current opinion in microbiology.  
2005;8(3):268-75.  
126. Loperena L, Ferrari MD, Saravia V, Murro D, Lima C,  
Fernández A, et al. Performance of a commercial  
inoculum for the aerobic biodegradation of a high fat  
content dairy wastewater. Bioresource technology.  
2007;98(5):1045-51.  
1
1
07. Lateef A, Chaudhry MN, Ilyas S. Biological treatment  
of dairy wastewater using activated sludge. Science  
Asia. 2013;39(2):179-85.  
08. Thirumurthi D. Biodegradation of sanitary landfill  
leachate. Biological degradation of waste London:  
Elsevier Applied Science. 1991:207-30.  
09. Herzka A, Booth RG. Food industry wastes: disposal  
and recovery: Applied Science Publishers Ltd.; 1981.  
10. Kessler H-G. Food engineering and dairy technology.  
Food engineering and dairy technology. 1981.  
11. Maris P, Harrington D, Chismon G. Leachate treatment  
with particular reference to aerated lagoons. Water  
pollution control. 1984;83(4):521-38.  
1
1
1
127. Da Motta Marques D, Cayless S, Lester J. An  
investigation of startup in anaerobic filters utilising  
1
1
12. Rusten B, Ødegaard H, Lundar A. Treatment of dairy  
wastewater in a novel moving bed biofilm reactor. Water  
Science and Technology. 1992;26(3-4):703-11.  
dairy  
waste.  
Environmental  
Technology.  
1989;10(6):567-76.  
13. H. Gough R, Samkutty P, McGrew P, Arauz J,  
Adkinson R. Prediction of effluent biochemical oxygen  
demand in a dairy plant SBR wastewater system*.  
Journal of Environmental Science & Health Part A.  
128. Rajinikanth R, Ganesh R, Escudie R, Mehrotra I,  
Kumar P, Thanikal JV, et al. High rate anaerobic filter  
with floating supports for the treatment of effluents from  
small-scale agro-food industries. Desalination and  
Water Treatment. 2009;4(1-3):183-90.  
2000;35(2):169-75.  
129. Fia R, Schuery FC, De Matos AT, Fia FRL, Borges AC.  
Influence of flow direction in the performance of  
138  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
anaerobic filters-doi: 10.4025/actascitechnol. v34i2.  
activity segregation, hydrodynamic behaviour and  
performance. 1998.  
1
7
0353. Acta Scientiarum Technology. 2011;34(2):141-  
.
146. De Haast J, Britz TJ, Novello JC, Verwey EW.  
Anaerobic digestion of deproteinated cheese whey.  
Journal of dairy research. 1985;52(03):457-67.  
147. Cordoba P, Riera FS, Sineriz F. Treatment of dairy  
industry wastewater with an anaerobic filter.  
Biotechnology letters. 1984;6(11):753-8.  
1
1
30. Prazeres AR, Carvalho F, Rivas J. Cheese whey  
management: a review. Journal of Environmental  
Management. 2012;110:48-68.  
31. Weber H, Kulbe KD, Chmiel H, Trösch W. Microbial  
acetate conversion to methane: kinetics, yields and  
pathways in a two-step digestion process. Applied  
microbiology and biotechnology. 1984;19(4):224-8.  
32. Fyfe J, Hagare D, Sivakumar M. Dairy shed effluent  
treatment and recycling: Effluent characteristics and  
performance. Journal of Environmental Management.  
148. Sayed SKI. Anaerobic treatment of slaughterhouse  
wastewater  
using  
the  
UASB  
process:  
1
1
Landbouwuniversiteit te Wageningen; 1987.  
149. Von Sperling M, de Lemos Chernicharo CA. Biological  
wastewater treatment in warm climate regions: IWA  
publishing; 2005.  
2016;180:133-46.  
33. Mroczek E, Konieczny P, Lewicki A, Waśkiewicz A,  
Dach J. Preliminary study of acrylamide monomer  
decomposition during methane fermentation of dairy  
waste sludge. Journal of Environmental Sciences.  
150. Martín-Rilo S, Coimbra RN, Martín-Villacorta J, Otero  
M. Treatment of dairy industry wastewater by oxygen  
injection: performance and outlay parameters from the  
full scale implementation. Journal of Cleaner  
Production. 2015;86:15-23.  
2016;45:108-14.  
1
1
34. Strydom J, Mostert J, Britz T. Anaerobic treatment of a  
synthetic dairy effluent using a hybrid digester. Water  
SA. 1995;21(2):125-30.  
35. Britz T, Van Der Merwe M, Riedel K-H. Influence of  
phenol additions on the efficiency of an anaerobic hybrid  
digester treating landfill leachate. Biotechnology letters.  
151. Ramasamy E, Gajalakshmi S, Sanjeevi R, Jithesh M,  
Abbasi S. Feasibility studies on the treatment of dairy  
wastewaters with upflow anaerobic sludge blanket  
reactors. Bioresource Technology. 2004;93(2):209-12.  
152. Nadais H, Capela I, Arroja L, Duarte A. Treatment of  
dairy wastewater in UASB reactors inoculated with  
flocculent biomass. Water SA. 2005;31(4):603-8.  
153. Leal MC, Freire DM, Cammarota MC, Sant’Anna GL.  
Effect of enzymatic hydrolysis on anaerobic treatment of  
1992;14(4):323-8.  
1
1
36. Feilden N. The theory and practice of anaerobic  
digestion reactor design. Process biochemistry.  
1983;18(5):35-7.  
dairy  
wastewater.  
Process  
Biochemistry.  
37. Rico C, Muñoz N, Rico JL. Anaerobic co-digestion of  
cheese whey and the screened liquid fraction of dairy  
manure in a single continuously stirred tank reactor  
process: Limits in co-substrate ratios and organic  
loading rate. Bioresource technology. 2015;189:327-33.  
38. Sahm H. Anaerobic wastewater treatment. Eng.  
Biotech1984. 83-115 p.  
39. Ross WR. Anaerobic digestion of industrial effluents  
with emphasis on solids-liquid separation and biomass  
retention: University of the Orange Free State; 1991.  
40. Lebrato J, Rodríguez JP, Maqueda C, Morillo E. Cheese  
2006;41(5):1173-8.  
154. Jedrzejewska-Cicinska M, Kozak K, Krzemieniewski  
M. A comparison of the technological effectiveness of  
dairy wastewater treatment in anaerobic UASB reactor  
and anaerobic reactor with an innovative design.  
Environmental technology. 2007;28(10):1127-33.  
1
1
155. Nadais H, Barbosa M, Almeida A, Cunha A, Capela I,  
Arroja L, editors. Intermittent Operation of UASB  
Reactors as  
a Strategy to Enhance Anaerobic  
Degradation of Dairy Wastewaters. Proceedings of the 5  
th Conference on Environment, Ecosystems and  
Development (EED’08), Cairo, Egipt; 2008.  
1
factory  
wastewater  
treatment  
by  
anaerobic  
semicontinuous digestion. Resources, conservation and  
recycling. 1990;3(4):193-9.  
41. Lettinga G, Pol LH. UASB-process design for various  
types of wastewaters. Water science and technology.  
156. Tawfik A, Sobhey M, Badawy M. Treatment of a  
combined dairy and domestic wastewater in an up-flow  
anaerobic sludge blanket (UASB) reactor followed by  
activated sludge (AS system). Desalination.  
2008;227(1):167-77.  
1
1
1
1991;24(8):87-107.  
42. Hemens J, Meiring P, Stander G. Full-scale anaerobic  
digestion of effluents from the production of maize-  
starch. Wat Waste Treat. 1962;9:16-8.  
43. Lettinga G, Van Velsen A, Hobma SW, De Zeeuw W,  
Klapwijk A. Use of the upflow sludge blanket (USB)  
reactor concept for biological wastewater treatment,  
especially for anaerobic treatment. Biotechnology and  
bioengineering. 1980;22(4):699-734.  
157. Gotmare M, Dhoble R, Pittule A. Biomethanation of  
dairy waste water through UASB at mesophilic  
temperature range. Int J Adv Eng Sci Technol.  
2011;8(1):1-9.  
158. PANDYA P, Sharma A, Sharma S, Verma S. Effect of  
operational and design parameters on removal efficiency  
of a pilot-scale UASB reactor treating dairy wastewater.  
J Ind Pollut Control. 2011;27:103-11.  
1
1
44.  
Zayed G, Winter J. Inhibition of methane  
159. Thenmozhi R, Uma R. Treatability Studies Of Dairy  
Waste Water by 3uasb at Mesophilic Temperature For  
Different Olrr. Thenmozhi And Rn Uma. I Control  
Pollution. 2015;2012.  
160. Vlyssides AG, Tsimas ES, Barampouti EMP, Mai ST.  
Anaerobic digestion of cheese dairy wastewater  
production from whey by heavy metalsprotective effect  
of sulfide. Applied microbiology and biotechnology.  
2
45. Alves M, Pereira M, Mota M, Novais JM, Colleran E.  
Staged and non-staged anaerobic filters: microbial  
000;53(6):726-31.  
139  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
following chemical oxidation. Biosystems engineering.  
packinghouse wastes. Sewage and Industrial Wastes.  
1955:460-86.  
2012;113(3):253-8.  
1
61. Buntner D, Sánchez A, Garrido J. Feasibility of  
combined UASB and MBR system in dairy wastewater  
treatment at ambient temperatures. Chemical  
engineering journal. 2013;230:475-81.  
178. Speece RE. Advances in anaerobic biotechnology for  
industrial waste water treatment. Proc 2nd Int Conf  
Anaerobic Treat Ind Wast Wat,; Chicago, II, USA,1986.  
p. 6-17.  
1
1
1
1
62. Vijay Kaho, Ashok K. Sharma, Sarita Sharma, Verma  
S. UASB reactor efficiency for anaerobic treatment of  
dairy wastewater. Polution Research. 2013;32(1):71-4.  
63. Young JC, McCarty PL. The anaerobic filter for waste  
treatment. Journal (Water Pollution Control Federation).  
179. Ross W, De Villiers H, Le Roux J, Barnard J, editors.  
Sludge separation techniques in the anaerobic digestion  
of wine distillery waste. Fifth International Symposium  
on Anaerobic Digestion; 1988.  
180. Ross W. Anaerobic treatment of industrial effluents in  
South Africa. Water S A. 1989;15(4):231-46.  
181. Kundu K, Bergmann I, Hahnke S, Klocke M, Sharma  
S, Sreekrishnan T. Carbon sourcea strong determinant  
of microbial community structure and performance of an  
anaerobic reactor. Journal of biotechnology.  
2013;168(4):616-24.  
182. Toldra F, Flors A, Lequerica J, Valles S. Fluidized bed  
anaerobic biodegradation of food industry wastewaters.  
Biological wastes. 1987;21(1):55-61.  
183. Da Motta Marques DM, Cayless SM, Lester JN.  
Process aiders for startup of anaerobic fluidised bed  
systems. Environmental technology. 1990;11(12):1093-  
106.  
184. Haridas A, Suresh S, Chitra K, Manilal V. The Buoyant  
Filter Bioreactor: a high-rate anaerobic reactor for  
complex wastewaterprocess dynamics with dairy  
effluent. Water research. 2005;39(6):993-1004.  
185. Bialek K, Kim J, Lee C, Collins G, Mahony T,  
O’Flaherty V. Quantitative and qualitative analyses of  
methanogenic community development in high-rate  
anaerobic bioreactors. water research. 2011;45(3):1298-  
308.  
186. Arnaiz C, Buffiere P, Elmaleh S, Lebrato J, Moletta R.  
Anaerobic digestion of dairy wastewater by inverse  
fluidization: the inverse fluidized bed and the inverse  
turbulent bed reactors. Environmental technology.  
2003;24(11):1431-43.  
187. Rajeshwari K, Balakrishnan M, Kansal A, Lata K,  
Kishore V. State-of-the-art of anaerobic digestion  
technology for industrial wastewater treatment.  
Renewable and Sustainable Energy Reviews.  
2000;4(2):135-56.  
188. Büyükkamaci N, Filibeli A. Concentrated wastewater  
treatment studies using an anaerobic hybrid reactor.  
Process Biochemistry. 2002;38(5):771-5.  
1969:R160-R73.  
64. Bonastre N, Paris J. Survey of laboratory, pilot, and  
industrial anaerobic filter installations. Process  
biochemistry. 1989;24(1):15-20.  
65. Strydom JP, Mostert J, Britz T, Nutrition A. Anaerobic  
digestion of dairy factory effluents: Water Research  
Commission; 2001.  
1
1
66. Burgess S. Anaerobic treatment of Irish creamery  
effluents. Process Biochemistry. 1985;20.  
67. Li AY, Corrado J, editors. Scale-up of the membrane  
anaerobic reactor system. Proceedings of the Industrial  
Waste Conference, Purdue University (USA); 1985.  
68. Ross W, Barnard J, De Villiers H, editors. The current  
status of ADUF technology in South Africa. Proc 2nd  
Anaerobic Digestion Symp, University of the Orange  
Free State Press: Bloemfontein, South Africa; 1989.  
69. Prieto AL, Sigtermans LH, Mutlu BR, Aksan A, Arnold  
WA, Novak PJ. Performance of a composite bioactive  
membrane for H2 production and capture from high  
strength wastewater. Environmental Science: Water  
Research & Technology. 2016;2(5):848-57.  
70. Cánovas-Diaz M, Howell J. Downflow anaerobic filter  
stability studies with different reactor working volumes.  
Process biochemistry. 1987.  
71. CanovasDiaz M, Howell J. Stratified ecology  
techniques in the startup of an anaerobic downflow fixed  
film percolating reactor. Biotechnology and  
bioengineering. 1987;30(2):289-96.  
1
1
1
1
1
1
1
72. De Haast J, Britz TJ, Novello JC. Effect of different  
neutralizing treatments on the efficiency of an anaerobic  
digester fed with deproteinated cheese whey. Journal of  
dairy research. 1986;53(03):467-76.  
73. Malaspina F, Cellamare C, Stante L, Tilche A.  
Anaerobic treatment of cheese whey with a downflow-  
upflow hybrid reactor. Bioresource Technology.  
1996;55(2):131-9.  
189. Zielińska M, Cydzik-Kwiatkowska A, Zieliński M,  
Dębowski M. Impact of temperature, microwave  
radiation and organic loading rate on methanogenic  
community and biogas production during fermentation  
of dairy wastewater. Bioresource technology.  
2013;129:308-14.  
74. Borja R, Rincón B, Raposo F, Domınguez J, Millán F,  
Martın A. Mesophilic anaerobic digestion in a fluidised-  
bed reactor of wastewater from the production of protein  
isolates from chickpea flour. Process Biochemistry.  
2004;39(12):1913-21.  
1
1
1
75. Switzenbaum MS, Jewell WJ. Anaerobic attached-film  
expanded-bed reactor treatment. Journal (Water  
Pollution Control Federation). 1980:1953-65.  
76. Toldra´ F, Flors A, Lequerica JL, S.S. V. Fluidized bed  
anaerobic biodegradation of food industry wastewaters:  
Biol. Wast; 1987. 55-61 p.  
190. Ramasamy E, Abbasi S. Energy recovery from dairy  
waste-waters: impacts of biofilm support systems on  
anaerobic CST reactors. Applied energy. 2000;65(1):91-  
8.  
191. Belancon D, Fuzzato MC, Gomes DR, Cichello GC,  
PINHO D, Ribeiro R, et al. A comparison of two bench‐  
scale anaerobic systems used for the treatment of dairy  
effluents. International journal of dairy technology.  
77. Schroepfer GJ, Fullen W, Johnson A, Ziemke N,  
Anderson J. The anaerobic contact process as applied to  
2010;63(2):290-6.  
140  
Journal of Environmental Treatment Techniques  
2019, Volume 6, Issue 1, Pages: 113-141  
1
92. Kongsil P, Irvine JL, Yang P. Integrating an anaerobic  
Bio-nest and an aerobic EMMC process as pretreatment  
of dairy wastewater for reuse: a pilot plant study. Clean  
209. Dhaouadi H, Marrot B. Olive mill wastewater treatment  
in a membrane bioreactor: process feasibility and  
performances.  
Chemical  
Engineering  
Journal.  
Technologies  
and  
Environmental  
Policy.  
2008;145(2):225-31.  
2
010;12(3):301-11.  
210. Muller E, Stouthamer A, van Verseveld HWv,  
Eikelboom D. Aerobic domestic waste water treatment  
in a pilot plant with complete sludge retention by cross-  
flow filtration. Water Research. 1995;29(4):1179-89.  
211. Wang Z, Wu Z. Distribution and transformation of  
molecular weight of organic matters in membrane  
bioreactor and conventional activated sludge process.  
Chemical Engineering Journal. 2009;150(2):396-402.  
212. Cicek N, Winnen H, Suidan MT, Wrenn BE, Urbain V,  
Manem J. Effectiveness of the membrane bioreactor in  
the biodegradation of high molecular weight  
compounds. Water Research. 1998;32(5):1553-63.  
1
1
93. Sperling Mv, de Lemos Chernicharo CA. Biological  
wastewater treatment in warm climate regions: IWA  
London; 2005.  
94. Yeh AC, Lu C, Lin M-R. Performance of an anaerobic  
rotating biological contactor: effects of flow rate and  
influent  
organic  
strength.  
Water  
Research.  
1997;31(6):1251-60.  
1
95. Kim Y-H, Yoo C, Lee I-B. Optimization of biological  
nutrient removal in a SBR using simulation-based  
iterative dynamic programming. Chemical Engineering  
Journal. 2008;139(1):11-9.  
1
1
96. Lo K, Liao P. Anaerobic-aerobic biological treatment  
of screened dairy manure. Biomass. 1986;10(3):187-93.  
97. Lo K, Liao P. Anaerobic-aerobic biological treatment  
of a mixture of cheese whey and dairy manure.  
Biological wastes. 1989;28(2):91-101.  
213. Ahn Y, Kang S, Chae S, Lee C, Bae B, Shin H.  
Simultaneous high-strength organic and nitrogen  
removal with combined anaerobic upflow bed filter and  
aerobic  
membrane  
bioreactor.  
Desalination.  
2007;202(1):114-21.  
1
1
2
98. Mohan SV, Rao NC, Prasad KK, Madhavi B, Sharma  
P. Treatment of complex chemical wastewater in a  
sequencing batch reactor (SBR) with an aerobic  
suspended growth configuration. Process Biochemistry.  
214. Seghezzo L, Zeeman G, van Lier JB, Hamelers H,  
Lettinga G. A review: the anaerobic treatment of  
sewage in UASB and EGSB reactors. Bioresource  
Technology. 1998;65(3):175-90.  
2005;40(5):1501-8.  
99. Ni B-J, Xie W-M, Liu S-G, Yu H-Q, Wang Y-Z, Wang  
G, et al. Granulation of activated sludge in a pilot-scale  
sequencing batch reactor for the treatment of low-  
strength municipal wastewater. Water Research.  
2009;43(3):751-61.  
00. Heijnen J, Mulder A, Enger W, Hoeks F. Review on the  
application of anaerobic fluidized bed reactors in waste-  
water treatment. The Chemical Engineering Journal.  
1989;41(3):B37-B50.  
2
2
2
01. Shieh WK, Keenan JD. Fluidized bed biofilm reactor  
for wastewater treatment. Bioproducts: Springer; 1986.  
p. 131-69.  
02. Lazarova V, Manem J. Advances in biofilm aerobic  
reactors ensuring effective biofilm activity control.  
Water Science and Technology. 1994;29(10-11):319-27.  
03. Saravanane R, Murthy D. Application of anaerobic  
fluidized bed reactors in wastewater treatment: a review.  
Environmental Management and Health. 2000;11(2):97-  
117.  
2
04. Tavares C, Sant'Anna G, Capdeville B. The effect of air  
superficial velocity on biofilm accumulation in a three-  
phase fluidized-bed reactor. Water Research.  
1995;29(10):2293-8.  
2
2
05. Bishop PL. Biofilm structire and kinetics. Water  
Science and Technology. 1997;36(1):287-94.  
06. Del Pozo R, Diez V. Organic matter removal in  
combined anaerobicaerobic fixed-film bioreactors.  
Water Research. 2003;37(15):3561-8.  
2
2
07. Wen C, Huang X, Qian Y. Domestic wastewater  
treatment using an anaerobic bioreactor coupled with  
membrane  
999;35(3):335-40.  
08. Ueda T, Horan NJ. Fate of indigenous bacteriophage in  
filtration.  
Process  
Biochemistry.  
1
a
membrane  
bioreactor.  
Water  
Research.  
2000;34(7):2151-9.  
141