Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 81-91  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
A Treatment Wetland Park Assessment Model  
for Evaluating Urban Ecosystem Stability using  
Analytical Hierarchy Process (AHP)  
7
1*  
2
3,4,5*  
6
, Amir Jamshidnezhad , M. Salim Ferwati ,  
2 5  
Arezou Shafaghat , Ooi Jin Ying , Ali Keyvanfar  
2
Hamidah Ahmad , Sapura Mohamad , Majid Khorami  
1
MIT-UTM MSCP Program, Institute Sultan Iskandar, Universiti Teknologi Malaysia, Skudai 81310, Malaysia  
Department of Landscape Architecture, Faculty of Built Environment, Universiti Teknologi Malaysia, Skudai 81310, Malaysia  
3
Department of Construction Management, Kennesaw State University, Marietta, GA 30060, United States  
4
Center for Energy Research, University of California, San Diego, CA 92093, United States  
5
Facultad de Arquitectura y Urbanismo, Universidad Tecnológica Equinoccial, Calle Rumipamba s/n y Bourgeois, Quito 170508,  
Ecuador  
6
Faculty of Civil Engineering, Khajeh Nasir Toosi University of Technology (KNTU), Tehran,1969764499 Iran  
7
Department of Architecture and Urban Planning, College of Engineering, Qatar University, 2713, Doha, Qatar  
Received: 20/09/2018  
Accepted: 05/01/2019  
Published: 30/03/2019  
Abstract  
The increased impervious and built-up urban areas threat ecosystem stability through major environmental problems, such as  
surface runoff, flooding, and wildlife habitat resource depletion. Hence, urban ecologists and planners are attempting to enhance  
the capacities of wetlands parks in urban ecosystem stabilization. They need an assessment tool to evaluate and quantify the  
performance of wetland parks on these issues, hereof this study has developed the Urban Wetland Park (UWP) index assessment  
model. The research conducted three phases; the requirement study to identify the features of wetland park design, formulating  
index model using Analytical Hierarchy Process method, and model validation using expert input. The UWP model identified  
eighteen features clustered into three criteria and fifteen sub-criteria and then determined the weights of features. For model  
validation, the UWP model was applied in Putrajaya wetland park. The UWP resulted with grade B (Good) for Putrajaya wetland  
park. It means the Putrajaya wetland park performs well in ecosystem stabilization, although the experts recommended few minor  
improvements regarding site selection (WC1.1.= 0.588), multi-cell and multi-stage design (WC1.5.= 0.604), depth proportion  
(
WC1.6.= 0.652), and biodiversity (WC2.1.= 0.691). Study proposed the UWP as a universal decision support tool to help urban  
authorities, urban planners and ecologists to assess the ecosystem stabilization of wetland parks.  
Keywords: Urban Ecology, Treatment Wetland, Wetland Park, Decision Support Tool, Analytical Hierarchy Process  
1
water, and flooding [3]. A continuously increasing runoff  
1
Introduction  
eventually erodes watercourses (i.e., streams and rivers)  
and causes flooding if the flow exceeds the maximum  
capacity of the stormwater collection system [4]. Runoff  
more often occurs in such developed than undeveloped  
urban areas. Before urban and land development (e.g.,  
buildings, roads, highways, and other land construction),  
the runoff may occur in a site which is called „pre-  
development runoff.‟ The natural site may expect low ratio  
runoff if rainfall intercepts and absorbed by the ground and  
vegetation (Figure 1). The runoff may also occur in a site  
during urban growth which is called „post-development  
runoff.‟ Urban growth essentially converts the green  
landscape into impervious surfaces with compacted soils  
(e.g., parking lots, roads, and buildings), and this scenario  
prevents rainfall absorption by the ground. As a result,  
Rapid population growth and built-up areas have  
increased demand for residential, commercial, industrial,  
and agricultural land users [1,2]. The increased impervious  
and built-up areas can restrict infiltration to the ground,  
which then results in major issues, such as increased  
surface runoff volume and speed, untreated channeled  
Corresponding authors: (a) Arezou Shafaghat: MIT-UTM  
MSCP Program, Institute Sultan Iskandar, Universiti  
Teknologi Malaysia, Skudai, JB 81310, Malaysia. E-mail:  
arezou.shafaghat@gmail.com.  
(b)  
Ali  
Keyvanfar:  
Department of Construction Management, Kennesaw State  
University, Marietta, GA 30060, United States, E-mail:  
akeyvanf@kennesaw.edu.  
8
1
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 81-91  
rainfall flows within site quickly. Hence the accumulated  
high-volume runoff may move in the site very rapidly  
parks. For example, Chen et al. [14] developed an  
ecological wetland risk assessment tool based on the  
information-based network method for environmental  
analysis. Cui et al. [18] designed a coastal wetland  
assessment model to evaluate the impact of coastal  
wetlands on the rising sea levels by using the spatial  
assessment method and by adopting the sourcepathway–  
receptorconsequence (SPRC) model. Guo et al. [19]  
assessed wetland‟s ecosystems through empirical  
geochemical analysis, and Garg [20] applied geospatial  
technology and landscape ecological metrics for wetland  
management. Chatterjee et al. [21] have applied the fuzzy  
Analytical Network Process (ANP) for analyzing the causes  
of wetland degradation.  
(Figure 1).  
In summary,  
development of  
a
a
crucial limitation exists in the  
scientific assessment model for  
measuring and evaluating urban wetland park‟s  
performances in ecosystem stabilization. In this regard, this  
research has developed the Urban Wetland Park (UWP)  
assessment model. The UWP model has applied the  
Waterfall Process method. Accordingly, the UWP model  
has been developed into three phases. Phase one is features  
identification through a critical literature review on the  
features of wetland park design. Phase two is a model  
design which develops the UWP index model and conducts  
AHP analysis to obtain the weight of each feature. And,  
phase three is model validation that implements the UWP  
model in a real case.  
Figure 1 Comparison of runoff behavior before and after  
urban development (Source: Adopted from PUB, Managing  
Urban Runoff Drainage Handbook [5])  
Urban wetland‟s functions and ecological processes are  
various with different services (e.g., habitat, hydrology, and  
water quality, etc.). Urban wetlands contribute significantly  
to flood reduction, groundwater recharge, stream bank  
stabilization, and fish and wildlife habitat resource  
conservation [6,7]. The urban wetlands typically aid to  
microclimate control, biodiversity support flood control,  
and pollutant removal from wastewater, aesthetic and  
recreation [8]. Regarding the structure and functionality,  
urban wetlands differ from constructed/natural wetlands  
2
Materials and Methods  
2
.1 UWP Model Features  
This section presents the features involved in the UWP  
assessment model. The UWP model as a decision support  
tool must constitute comprehensive features to evaluate the  
wetland park cases comprehensively and properly. The  
features have been investigated through reviewing the  
wetland park management literature. The features have  
been identified by the critical literature review applying the  
combinations of keywords; included, wetland assessment,  
wetland ecosystem, wetland park, wetland ecology, wetland  
physical design, wetland environmental design, and  
ecosystem stability in the available references. The critical  
literature review is a replicable and scientific method  
helped us to deal with a manageable number of references  
that critically studied these topics. Also, the critical  
literature review helped to identify the features with a  
minimize bias and errors. The references were extracted  
from our available sources; included, ScienceDirect,  
Scopus, Taylor and Francis, Emerald, Google Scholar, and  
the relevant journals, named, Wetlands, Wetlands ecology  
and management, Urban Forestry and Urban Greening,  
Science of the Total Environment, Aquatic Conservation,  
Journal of environmental management, and Water Science  
and Technology, in addition to government reports. The  
features are clustered into three criteria based on physical,  
ecological and environmental aspects as; Wetland Park  
Physical Design (C1), Wetland Park Ecological  
Approaches (C2), and Landscape Environmental Elements  
to Support the Wetland Park (C3). Each criterion involves a  
series of sub-criteria, totally fifteen sub-criteria have been  
[
9,10]. Most of the natural urban wetlands are remnants of  
larger wetlands where have been destroyed or modified  
through housing development, agricultural infills, drainage  
or other types of anthropogenic actions [11,12].  
The environment and urban planners are practicing the  
wetland park design where can simultaneously play the  
wetland and park roles. Such wetland park mimics the city  
parks and water park. The wetland park has aquatic plants  
and equipment. Literature shows that the ecological  
functions of urban wetland parks were often neglected,  
whereas the social (i.e., recreation and entertainment)  
function is over-emphasized. These issues convey the  
essential need for urban wetland parks development where  
they can emulate the environmental and ecological  
functions of the natural wetlands.  
The public and political knowledge of wetland park  
values have been increased. However, environmental  
planners and landscape designers need to enhance their  
knowledge in the assessment of capabilities and  
performances of urban wetland parks for ecosystem  
stabilization. Reviewing the literature shows that there are  
only few wetland assessment models (e.g., [13-17]) while  
no model for wetland park assessment. Those wetland  
assessment models differ in approaches and analytical  
methods, that are not specifically applicable for wetland  
8
2
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 81-91  
identified as follows;  
C1. Wetland Park Physical Design  
habitat and resting purposes; thus, biodiversity is rich along  
shorelines [33].  
C1.1. Site Selection: The urban wetland parks depend on  
the physical attributes of a site to function not only for  
human but also for wildlife habitat. Land use, access, and  
topography play key roles in the selection of a suitable site  
for wetland [22].  
C1.2. Wetland Shape Configuration: The shape of a  
wetland park not only considers aesthetic value but also  
mimics the image of natural wetlands which can enhance  
the ecology of wetland parks [23]. Additionally, irregular  
shorelines should be maximized to enhance water quality  
by increasing the contact sites for sediments and  
contaminant removal. Regarding habitat and floating island  
issues, the allocation of islands for wildlife habitat must be  
positioned away from the shoreline and separated from  
permanent water flooding [23].  
C3. Landscape Environmental Elements to Support the  
Wetland Park  
C3.1. Safety: Safety consideration is critical to good park  
design, not only from the viewpoint of liability but also  
because dangerous conditions may distract wildlife habitat  
[34].  
C3.2. Vegetation and Greening: Wetlands have diversity  
and beauty, and host various vegetation communities (e.g.,  
planting native flowering herbs or shrubs are common in  
these areas [35]).  
C3.3. Route Accessibility: The route for bicycles and  
walking should be designed as these options 201can  
minimize air pollution [34,36].  
C3.4. Site Furniture: Site furniture is needed to meet  
visitors‟ comfort, but the natural-made furniture is  
recommended as they can complement the natural identity  
of the wetland parks [37,38]. Furniture is normally  
incorporated to suit the surroundings, and the materials  
used should be made of natural materials [39].  
C1.3. Wetland Zoning and Water Treatment Processes: The  
integration of different spatial distributions of wetlands can  
affect stormwater treatment and ecosystem stabilization in  
different zones of the wetland park. In case of overflow or  
emergencies, water should be directed to an outlet zone  
through a bypass or spillway [24].  
2
.2 Analytic Hierarchy Process (AHP)  
The UWP model has applied the analytic hierarchy process  
AHP) decision-making method. The AHP conducts a  
C1.4. Wetland Surface Flow (SF) and Subsurface Flow  
(SSF) Systems: Water quality conservation and treatment  
(
performance are meaningful in the practice of urban  
wetland parks (Bao et al., 2007). In wetland park water  
treatment, the SF and SSF systems can conserve the water  
area, especially for wildlife habitat [9].  
C1.5. Wetland Multi-cell and Multi-stage Design: Urban  
wetlands can be designed based on the desired plant  
community and landscape position (linear or basin) [25].  
C1.6. Wetland Park Depth Proportion: The different water  
depths in each wetland cell should have different  
functionalities. For instance, stormwater retention,  
contaminant removal, and wildlife habitat are the main  
planning aspects of depth proportion designs [26,27].  
C2. Wetland Park Ecological Approaches  
series of pairwise comparisons to determine the weight of  
features and can prioritize ranking for decision-making  
situations [40]. The research has executed the following  
AHP steps to determine the weights of features (i.e., criteria  
and sub-criteria);  
Step 1. Hierarchy decomposition: Any decision-making  
problem must be interpreted into a hierarchy structure.  
Accordingly, the hierarchical structure of an urban wetland  
park design for ecosystem stabilization was formed based  
on the AHP structure. The top layer is the decision-making  
goal (i.e., developing an urban treatment wetland), the  
middle layer involves the urban treatment wetland criteria  
(
i.e., Wetland Park Physical Design (C1), Wetland Park  
Ecological Approaches (C2), and Landscape  
Environmental Elements to Support the Wetland Park  
C3)), and the bottom layer includes the sub-criteria of each  
C2.1. Biodiversity:  
It is defined as the variety of living organisms in the aquatic  
ecosystems (such as marine and terrestrial, and ecological  
complexes) [28].  
(
criterion.  
C2.2. Air Pollution Reduction: The landscape planting and  
Step 2. Pairwise comparison: To develop the UWP model,  
the research evaluated and rated the features through the  
AHP algorithm. The features were compared to each other  
pairwisely. An expert input study was conducted that five  
experts were involved. The experts have been selected  
based on the purposive sampling method of GGDM  
vegetation can help reduce CO and other hazardous gases  
2
emission in the atmosphere which contributes to climate  
change [29].  
C2.3. Wetland Plant Selection: The plant environment in  
urban wetland parks must incorporate wetland species,  
which are classified according to their ecological features  
and indigenous plants, which play an important role in  
increasing the wetland biodiversity [30,31].  
C2.4. Wetland Wildlife Habitat: The urban wetland design  
techniques involve the factors to enhance the surrounding  
wildlife habitat, such as the provision of nesting boxes,  
identification of depth zones to support plant and animal  
communities, and provision of buffers planted with  
buttonbush [32].  
(Grounded Group Decision-making) method [41].  
According to Dehdasht et al. [42] and Shafaghat [43] the  
MCDM techniques, such as AHP, do not need a big sample  
size while in-depth interviews will be performed with the  
experts. The experts had approximately ten years of  
experience in urban ecology, wetland park design, and  
decision-making from the United States, Malaysia, and  
Ecuador. We asked the experts to prioritize their judgments  
(e.g., valid importance) toward each pairwise comparison  
C2.5. Wetland Ecological Shoreline Revetment: Shoreline  
revetment is important for protection against floods,  
ecological compensation, and water purification [22]. The  
shoreline environment often becomes areas for wildlife  
criterion and sub-criterion. In this research, the n value for  
the features is 18 (3 criteria and 15 sub-criteria). The  
experts‟ inputs were plotted as a  matrix. In  , ꢅꢆꢇis  
ꢂꢃ  
8
3
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 81-91  
the influence level of feature on feature . The matrix size  
for the criteria is 3 ꢀꢇ3, and for the sub-criteria is 15 15.  
Each feature was rated by the experts using AHP 9-point  
scaling (9=extremely important to 1=equally important)  
through the input study questionnaires. For instance, the  
questionnaire asked them “to rate the importance degree of  
where, n, is the rating value and ꢧꢇ ꢇmaximum  
eigenvalue  
ꢝꢨꢩ  
Table 2: Random Inconsistency (RI) indices for n nodes  
(Adopted from Alonso and Lamata [45])  
n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
site selection‟ in respect to „biodiversity in urban wetland  
RCI  
park design for ecosystem stabilization purpose”.  
Step 3. Supermatrix development: The Output of  
comparisons has constructed the supermatrix. The AHP‟s  
supermatrix was developed using the AHP SCBUK  
software (which was developed by SCB Associates Ltd.  
2.3 Weighted Sum Method (WSM)  
The UWP model was implemented in a real case study  
(Putrajaya Wetland Park) for validation through an expert  
input. The same group of experts involved in phase two  
were invited for validation. The experts were asked to  
assess the Putrajaya Wetland Park by applying the  
Weighted Sum Method (WSM). The WSM method can  
convert the multi-objective optimization to a single-  
objective optimization [41,46]. Indeed, these experts were  
such end-users of the UWP model and would apply it  
practically. According to the WSM method instructions, the  
experts have rated the features in 5-point Likert scaling  
[44]). The AHP SCBUK software is a stand-alone AHP  
software for conducting decision-making analysis. The  
experts‟ pair-wise comparisons have been transformed  
from the survey forms to the software to construct the  
relative supermatrix and analyze them. The Wj is the  
weight of the feature. The AHP supermatrix has been  
developed by applying Equation 1;  
ꢎꢑꢒ ꢌꢎ ꢎ  
=∑ ꢍ ꢏ  
for i=1,2,3,..., n  
(1)  
ꢉꢊꢋ  
(
5=excellent to 1=weak). The WSM equations are as  
Table 1: AHP decision-making supermatrix of urban  
following;  
wetland park design  
Sub-criteria  
ꢪꢫꢬꢠꢭꢥꢮꢠ∑ ꢯ ꢥꢭꢇꢇꢇꢇꢇꢇꢇꢇꢇꢇꢇꢇꢇꢇfor i=1,2,3,…,n  
(5)  
ꢃꢑꢒ ꢃꢇ  
C
C
C
...  
...  
...  
...  
...  
C
15  
1
2
3
Alt. W1  
W2  
W3  
W
15  
where,  „, the assigned weight by the expert number „j‟  
in for the feature of discussion,ꢇꢍ‟, is a feature of  
discussion with the given ordering number of ꢲꢳand „n‟, is  
the number of features of discussion. Equation 6 indicates  
the consensus of WSM method. The consensus is accepted  
if more than 0.70 saturation on experts‟ judgments was  
observed.  
ꢎꢇ  
A
A
A
C11  
C12  
C13  
A1,15  
A2,15  
1
2
3
C
C
C
21  
22  
23  
C
C
C
A
31  
32  
33  
3,15  
Step 4. Normalization: It is to normalize the comparison  
supermatrix by summing up entries of the columns. First,  
each column entry will be divided to the column sum; then  
the normalization will be conducted by making the sum of  
ꢇꢪꢫꢬꢠꢭꢥ/ ꢪꢫꢬꢠꢭꢥ  
= Consensus  
(6)  
ꢵꢶꢷ  
each column equal to 1 (i.e., each entry  of the matrix of  
normalization) using Equation 2;  
where, ꢏꢸꢹꢠꢍꢥ, is the maximum sum of possible  
weight can be assigned for the feature. This research has  
applied the WSM to the Putrajaya Wetland Park in  
Malaysia. The Putrajaya wetland park is the first urban  
wetland park in Malaysia and largest fully constructed  
freshwater wetland in tropic (Figure 2). The Putrajaya  
wetland park also has received the Excellence Award in  
Green City Category in 2011 and 2012. It was mainly  
constructed to remove pollutants, and to clean catchment  
before entering the lake. The environmental management  
and modern technologies have implemented in the design  
and construction of this wetland [47].  
ꢖꢗ  
= ꢙ  
(2)  
ꢘꢗ  
ꢘꢚꢛ  
The criterion weight vector „w‟ will be calculated by  
averaging the entries each row using Equation 3;  
ꢜ  
ꢜꢚꢛ  
=  
(3)  
where Cij: entry of ith row and jth column of the  
normalized matrix and vi: ith feature v.  
3
UWP Model Development  
Step 5. Consistency analysis: It is to ensure that the initial  
rating is consistent. If the corresponding consistency ratio  
This section presents the model development phase of  
the UWP model. By applying the Equations 2 and 3 of the  
AHAP, first, the normalized supermatrices were computed  
for criteria, next for sub-criteria, and then for sub-criteria  
with respect to each criterion (Table 5). According to Table  
(CR) is less than 10% [40], then AHP output will be  
consistent. According to Table 2, dividing CI to RI will  
generate the CR (Equation 4);  
3
, the criterion Ecological Approach received the highest  
ꢕꢞ  
ꢟꢞ  
ꢠꢡꢇꢙꢢꢣꢤꢇꢔꢥꢦꢠꢔꢇꢤꢇꢒꢥ  
ꢟꢞꢇ  
CR =  
=
(4)  
normalized weight (WC.2=1.1035); in opposite the  
Landscape Elements (WC.3=0.8521).  
8
4
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 81-91  
were  
Site  
Furniture  
and Route Accessibility,  
WC3.2.=19.9885 and WC3.3=18.0280, respectively. The  
outputs of Table 5 were transferred to the linear equation  
index of the UWP model.  
Table 5: Integrated Normalized Supermatrix of Urban  
wetland park design sub-criteria with respect to criteria  
Criteria Sub-  
Criteria  
Sub-criteria  
Sub-criteria  
integrated  
Normalized  
Weightage vs.  
Criteria  
Criteria Normalized Normalized  
Weightage Weightage  
C1.  
C1.1.  
C1.2.  
C1.3.  
C1.4.  
C1.5.  
C1.6.  
C2.1.  
C2.2.  
C2.3.  
C2.4.  
C2.5.  
C3.1.  
C3.2.  
C3.3.  
C3.4.  
1.0532  
25.2759  
27.7670  
24.6267  
23.7204  
24.7539  
23.2589  
27.8401  
25.4756  
24.1702  
24.5783  
23.8753  
24.3286  
25.6431  
21.1561  
23.4568  
26.6206  
29.2454  
25.9380  
24.9835  
26.0709  
24.4964  
30.7227  
28.1135  
26.6719  
27.1234  
26.3476  
20.7313  
21.8514  
18.0280  
19.9885  
C2.  
C3.  
1.1035  
0.8521  
Figure 2 The Putrajaya wetland park, lake, and catchment area  
(Source: Adopted from Hassan et al. [47])  
The Consistency Index (CI) has been calculated (CI =  
Table 3: Normalized Supermatrix of wetland park design  
criteria  
0.139). According to Table 2, RI is 1.58; hence CR  
coefficient was calculated as CI/RI = 0.087. The result of  
AHP is consistent enough because this ratio is less than  
1
0% (< 0.10). Equation 7 presents the UWP index  
assessment model. The weights of sub-criteria have been  
extracted from Table 5 and applied as the coefficients in the  
UWP model;  
C1.  
C2.  
C3.  
0.6774  
0.0968  
0.2258  
0.5385  
0.0769  
0.3846  
0.7143  
0.0476  
0.2381  
1.9302  
0.2213  
0.8485  
1.0532  
1.1035  
0.8521  
Urban Wetland Park (UWP) Index Model  
= ꢺꢇ[Index Design+ Index Ecological Approaches+ Index  
Landscape Environmental Elements]  
(7)  
UWP Index = ∑ꢻꢠꢭ ꢽꢥꢾ(ꢭ ꣀ)ꢾꢠꢭ ꣂꢥꣃ  
Note C1. Wetland Park Physical Design, C2. Wetland Park Ecological  
Approaches, C3. Landscape Environmental Elements to Support the  
Wetland Park  
ꢒꢼꢂ  
ꢿꢼꢃ  
ꣁꢼꢄ  
where, a is coefficient of sub-criterion (Extracted from  
Table 5 column of Sub-criteria integrated Normalized  
Weight vs. Criterion), i is Physical Design sub-criterion  
Table 4 shows the normalized weight of sub-criteria.  
Table 4 determines that biodiversity is the most important  
sub-criterion (WC1.1.=27.8412). It was followed by Wetland  
Shape Configuration (WC1.2. =27.7681), and Vegetation and  
Greening (WC3.1.=25.6442). In contrast, the Depth  
Proportion and Route Accessibility have received the least  
important values among all sub-criteria, WC1.5.=23.2590  
and WC1.6.=21.1572, respectively. Indeed, the normalized  
weight of sub-criteria presented in Table 4 are not the final  
weights. The sub-criteria normalized weights must multiply  
to the corresponding criteria normalized weights. In this  
regard, Table 5 used the outputs of Table 3 and Table 4 to  
compute the integrated normalized supermatrix. According  
to Table 5, biodiversity and wetland shape configuration  
are the most important sub-criteria in urban wetland park  
design, WC1.1.=30.7227, and WC1.2.=29.2454, respectively.  
It was followed by Reducing Air Pollution  
(
(
for:1,2,3,4,5,6), j is Ecological Approaches sub-criterion  
for:1,2,3,4,5), k is Landscape Environmental Elements  
sub-criterion (for:1,2,3,4), X is Weight of Physical Design  
sub-criterion „i‟ assigned by the experts in the case survey,  
Y is Weight of Ecological Approaches sub-criterion „j‟  
assigned by the experts in the case survey and Z is Weight  
of Landscape Environmental Elements sub-criterion „j‟  
assigned by the experts in the case survey.  
(
WC2.2.=28.1135). Contrary, the least important sub-criteria  
8
5
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 81-91  
Table 4: Normalized Supermatrix of Urban wetland park design sub-criteria  
C1.6 C2.1. C2.2. C2.3. C2.4. C2.5. C3.1.  
Sub-  
criteria  
C1.1.  
C1.2.  
C1.3.  
C1.4.  
C1.5.  
C3.2.  
C3.3.  
C3.4.  
Weight Normalized  
vs.  
Weight vs.  
goal  
criteria  
C1.1.  
C1.2.  
C1.3.  
C1.4.  
C1.5.  
C1.6.  
C2.1.  
C2.2.  
C2.3.  
C2.4.  
C2.5.  
C3.1.  
C3.2.  
C3.3.  
C3.4.  
0.0374  
0.0120  
0.0331  
0.0264  
0.1175  
0.1194  
0.1104  
0.2178  
0.0941  
0.1225  
0.0933  
0.0780  
0.1979  
0.0825  
0.1215 0.1002  
0.0321 0.0769  
0.2541 0.1283  
0.0984 0.0770  
0.0054 0.0641  
0.0053 0.0342  
0.1215 0.0484  
0.0046 0.0239  
0.0045 0.0614  
0.0984 0.1032  
0.0082 0.0277  
0.1215 0.0413  
0.0054 0.0250  
0.0039 0.0476  
0.0652 0.1261  
25.2759  
27.7670  
24.6267  
23.7204  
24.7539  
23.2589  
27.8401  
25.4756  
24.1702  
24.5783  
23.8753  
24.3286  
25.6431  
21.1561  
23.4568  
0.0374  
0.3743  
0.0374  
0.0132  
0.0374  
0.0473  
0.0213  
0.0183  
0.0158  
0.0213  
0.0120  
0.0132  
0.0110  
0.0860  
0.1727  
0.0104  
0.1038  
0.1038  
0.0348  
0.0035  
0.0104  
0.1267  
0.1138  
0.0065  
0.0104  
0.0103  
0.0120  
0.1727  
0.0184  
0.0773  
0.0284  
0.0210  
0.0284  
0.0166  
0.0136  
0.0210  
0.0873  
0.0210  
0.0210  
0.0219  
0.0165  
0.5301  
0.0172  
0.1087  
0.0530  
0.3733  
0.0126  
0.0265  
0.0109  
0.0264  
0.1537  
0.0172  
0.0126  
0.0077  
0.0109  
0.1087  
0.1026  
0.1175  
0.0730  
0.0048  
0.1075  
0.1026  
0.0127  
0.0730  
0.0878  
0.0878  
0.0137  
0.0020  
0.0285  
0.0434  
0.1021  
0.1194  
0.1104  
0.0042  
0.0161  
0.0075  
0.1104  
0.0850  
0.0670  
0.0056  
0.1021  
0.0161  
0.0333  
0.0678  
0.0070  
0.0547  
0.0547  
0.0039  
0.0825  
0.0268  
0.0039  
0.1104  
0.1383  
0.1383  
0.0092  
0.0547  
0.1383  
0.0547  
0.0136  
0.1084  
0.0536  
0.0536  
0.0536  
0.0536  
0.0126  
0.0145  
0.1084  
0.0208  
0.0208  
0.0145  
0.2178  
0.0208  
0.0227  
0.0465  
0.1902  
0.0306  
0.0189  
0.0227  
0.0108  
0.0108  
0.1902  
0.0227  
0.0306  
0.0125  
0.0941  
0.1902  
0.1472  
0.0483  
0.0978  
0.0483  
0.0236  
0.0071  
0.0030  
0.1629  
0.0731  
0.0113  
0.1472  
0.0236  
0.0113  
0.0483  
0.0932  
0.1079  
0.0707  
0.0461  
0.0461  
0.0046  
0.0028  
0.1079  
0.0933  
0.0225  
0.0707  
0.0707  
0.0706  
0.0706  
0.0065  
0.1300  
0.1044  
0.0780  
0.0043  
0.0700  
0.0254  
0.1043  
0.1044  
0.0087  
0.0253  
0.0043  
0.0516  
0.1835  
0.1721  
0.1720  
0.0484  
0.1226  
0.0034  
0.0061  
0.0048  
0.0236  
0.0989  
0.0048  
0.0061  
0.0048  
0.0040  
0.1126  
0.1561  
0.0546  
0.0039  
0.0268  
0.0128  
0.1840  
0.0825  
0.0055  
0.1004  
0.0128  
0.0092  
0.1004  
0.0055  
0.1003  
Note: C1.1. Site Selection, C1.2. Wetland Shape Configuration, C1.3. Wetland Zoning and Water Treatment Processes, C1.4. Wetland Surface Flow (SF) and Subsurface Flow (SSF) Systems, C1.5. Wetland Multi-cell and Multi-stage  
Design, C1.6. Wetland Park Depth Proportion, C2.1. Biodiversity, C2.2. Reducing Air Pollution, C2.3. Wetland Plant Selection, C2.4. Wetland Wildlife Habitat, C2.5. Wetland Ecological Shoreline Revetment, C3.1. Safety, C3.2.  
Vegetation and Greening, C3.3. Route Accessibility, C3.4. Site Furniture.  
8
6
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 81-91  
4
UWP Model Validation  
This section presents the model validation phase of the  
Table 7: UWP index score calculation for the case study  
UWP model. The validation was to seek the unforeseen  
biases and errors of the UWP model. Although the UWP  
model could be applied in any wetland park, it was applied  
to Putrajaya Wetland Park. The same group of experts has  
been invited to for model validation. They were asked to  
evaluate the Putrajaya Wetland Park in respect to eighteen  
features of the UWP model using WSM method. According  
to the WSM instructions, the experts rated each feature using  
(
Putrajaya wetland park)  
Criteria  
C1.  
Sub-  
Sub-criteria  
Case  
study  
weights  
0.588  
0.846  
0.846  
0.883  
0.604  
0.652  
Sub-criteria  
index score  
Criteria Coefficient*  
C1.1.  
C1.2.  
C1.3.  
C1.4.  
C1.5.  
C1.6.  
26.6206  
29.2454  
25.9380  
24.9835  
26.0709  
24.4964  
15.65291  
24.74161  
21.94355  
22.06043  
15.74682  
15.97165  
5
-point scaling. The experts‟ inputs have been individually  
collected and then synthesized based on Equation 5 and  
Equation 6 (see Table 6). In Table 6 column „expert input‟  
presents the individual experts‟ judgments, and column  
UWP Index score C1. = 116.117  
C2.  
C3.  
C2.1.  
C2.2.  
C2.3.  
C2.4.  
C2.5.  
30.7227  
28.1135  
26.6719  
27.1234  
26.3476  
0.691  
0.846  
0.729  
0.809  
0.729  
21.22939  
23.78402  
19.44382  
21.94283  
19.2074  
„consensus‟ shows that cumulative judgment of all experts.  
The last column reveals the WSM final weight for each sub-  
criterion by multiplying the consensus values of criteria to  
the corresponding sub-criteria. Referring to WSM  
instructions, the features are approved with the saturation of  
more than 0.70. In the case of Putrajaya wetland park,  
almost all features have received the threshold saturation,  
except site selection (WC1.1.= 0.588), wetland multi-cell and  
UWP Index score C2. = 105.607  
C3.1.  
C3.2.  
C3.3.  
C3.4.  
20.7313  
21.8514  
18.0280  
19.9885  
0.739  
0.772  
0.772  
0.883  
15.32043  
16.86928  
13.91762  
17.64985  
UWP Index score C3. = 63.757  
Total UWP index score = 285.481  
multi-stage design (WC1.5.= 0.604), depth proportion (WC1.6.  
.652), and biodiversity (WC2.1.= 0.691).  
The UWP model calculates the index score for the  
=
0
Putrajaya wetland park. The weights of sub-criteria were  
extracted from Table 6 and then applied to Equation 7. Table  
3
2
2
1
7
01<s<380; Grade A: Superior (Well-designed urban  
wetland park where can effectively stabilize  
the ecosystem)  
51<s<300; Grade B: Good (Well-designed urban  
wetland park where can stabilize the  
ecosystem, but minor improvement is needed)  
01<s<250; Grade C: Fair (The urban wetland park can  
7
presents the index score calculation steps for the Putrajaya  
wetland park. Table 7 has extracted the coefficients from  
Table 5, and the case study weights from Table 6. The  
calculation results that Putrajaya wetland park received 285  
index scores.  
stabilize  
the  
ecosystem,  
but  
major  
Urban Wetland Park (UWP) Index = ꢺꢇIndex Design+ Index  
Ecological Approaches+ Index Landscape Environmental Elements  
improvement is needed)  
01<s<200; Grade D: Poor (Usable urban wetland park  
where can stabilize the ecosystem, but very  
significant improvement is needed)  
6<s<100; Grade E: Very Poor (Non-usable urban  
wetland park where cannot stabilize the  
ecosystem)  
UWP =  
26.6206*0.588)+(29.2454*0.846)+(25.9380*0.846)+(24.98  
5*0.883)+(26.0709*0.604)+(24.4964*0.652)=116.117  
Index  
implementation  
of  
Design  
Features  
(
3
UWP  
Index  
=
implementation  
of  
Ecological  
Approaches  
(30.7227*0.691)+(28.1135*0.846)+(26.6719*0.729)+(27.12  
3
4*0.809)+(26.3476*0.729)= 105.607  
Index  
Landscape  
UWP  
=
implementation  
of  
Elements  
As Putrajaya Wetland Park has earned 285 scores, it  
achieved grade B (Good). Means, it is a well-designed  
wetland park, while some features do not perform well for  
stabilizing the ecosystem. Accordingly, the evaluator experts  
had some corrective comments (see Discussion section).  
Moreover, the research has drawn a multi-scatter plot which  
depicts the correlation between sub-criteria coefficients  
(
8
20.71138*0.739)+(21.8514*0.722)+(18.0280*0.722)+(19.9  
85*0.883)= 63.757  
UWP Index implementation  
=
116.117+105.607+63.757=285.481285  
The UWP model labels the wetland park as grade A to E,  
(
(
AHP outputs) and sub-criteria consensus (WSM outputs)  
see Figure 3). The multi-scatter plot benchmarks the  
based on the index scores. As the maximum consensus for  
all sub-criteria (X, Y, and Z) can be 1, the maximum UWP  
index score equals to 380. The minimum index score is 0.2  
of the maximum index score which equals to 76. The UWP  
model has established the following grades for different  
score ranges;  
ecosystem stabilization performance of the wetland case  
study (here, Putrajaya wetland park) against ideal wetland  
park (i.e., the best practice). As can be seen in Figure 3, the  
association between sub-criteria coefficients and consensus  
was approximated with a straight line; thus, the result  
identifies the linear relationship (y=-0.004x+0.8607).  
UWP Index 160+154+65=380  
Max  
UWP Index Min = UFA Index Max = 380* 0.2= 76  
8
7
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 81-91  
Table 6: WSM data collection and analysis process of criteria and sub-criteria evaluation of UWP index model in Putrajaya wetland park  
Experts inputs Sum of Experts ꢏꢸꢹꢠꢍꢥ Consensus Experts inputs Sum of Experts ꢏꢸꢹꢠꢍꢥof Consensus for WSM final  
Input for  
Criteria  
of Criterion For criteria  
Input for Sub- Sub-criterion  
criteria  
sub-criteria  
Cons. of  
Sub-criterion  
Criteria  
Sub-criteria  
C1. Wetland  
Park Physical  
Design  
5
4
5
5
4
23  
25  
0.92  
C1.1. Site Selection  
3
5
4
4
5
5
3
4
4
2
4
5
4
5
5
16  
23  
23  
25  
25  
25  
0.64  
0.92  
0.92  
0.588  
0.846  
0.846  
C1.2. Wetland Shape Configuration  
C1.3. Wetland Zoning and Water  
Treatment Processes  
C1.4. Wetland Surface Flow (SF)  
and Subsurface Flow (SSF) Systems  
C1.5. Wetland Multi-cell and Multi-  
stage Design  
C1.6. Wetland Park Depth  
Proportion  
5
3
5
5
4
4
5
4
2
4
4
2
5
3
4
24  
18  
17  
25  
25  
25  
0.96  
0.72  
0.68  
0.883  
0.604  
0.652  
C2. Wetland  
Park Ecological  
Approaches  
4
5
5
5
5
4
5
4
5
3
24  
21  
25  
25  
0.96  
0.84  
C2.1. Biodiversity  
3
3
4
5
4
4
3
4
5
3
3
5
5
3
5
4
4
4
4
4
4
4
2
5
3
18  
19  
19  
22  
19  
25  
25  
25  
25  
25  
0.72  
0.76  
0.76  
0.88  
0.76  
0.691  
0.846  
0.729  
0.809  
0.729  
C2.2. Reducing Air Pollution  
C2.3. Wetland Plant Selection  
C2.4. Wetland Wildlife Habitat  
C2.5. Wetland Ecological Shoreline  
Revetment  
C3.1. Safety  
C3.2. Route Accessibilityy  
C3.3. Site Furniture  
C3. Landscape  
Environmental  
Elements to  
Support the  
Wetland Park  
5
4
5
5
4
5
4
4
5
5
4
5
5
4
3
4
3
5
5
5
22  
21  
21  
23  
25  
25  
25  
25  
0.88  
0.92  
0.84  
0.92  
0.739  
0.772  
0.772  
0.883  
C3.4. Vegetation and Greening  
Note. EX: Expert; Cons.: It refers to consensus calculated based on formula 6.  
8
8
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 81-91  
2
The case study regression coefficient (R ) was  
calculated as 0.0225 which shows the weak impact of  
measured sub-criteria in the regression analysis. The  
regression line for the ideal wetland (y=1) was calculated  
assuming all sub-criteria consensus equal to 1.000, means,  
all criteria and sub-criteria received the maximum rating  
value (i.e., 5) in the WSM survey. The comparison of two  
regression lines shows that Putrajaya consensus has a minor  
deviation with the ideal wetland park. The maximum  
deviation is 0.412 (by C1.1. Site Selection), and minimum  
deviation is 0.117 (by C1.4. Wetland Surface Flow (SF)  
and Subsurface Flow (SSF) Systems and C3.4. Vegetation  
and Greening), while the average deviation is 0.240.  
maximizing the shoreline length will benefit wildlife  
habitat, wildlife nesting, and resting areas.  
Besides, wetland parks have a positive impact on  
reducing air pollution levels and increasing carbon  
sequestration, which is essential in environmental  
protection. Urban wetland parks can bring much higher  
cooling to the residential areas [50], and reducing urban  
heat islands. Moreover, suitable site and planting selection  
can enhance the efficiency of wetland function. The  
wetland park design is integral to the planning process, as  
the parkland can infuse humannature interactions.  
By the end of UWP model validation, the experts have  
highlighted some bias in the model. The experts  
recommended the following comments should be  
incorporated in the revised UWP model;  
5
Discussion  
i) to amend the questionnaire survey form to semi-  
structured questionnaire form; hence, the model users  
can add some sub-criteria not included in the UWP list,  
and rate them as well. This amendment aids to adapt the  
UWP model much properly to each wetland cases.  
An urban wetland park can enhance the efficiency of  
wetland functions and indirectly attract aquatic and wildlife  
habitats to form a balanced ecosystem. An urban wetland  
park design essentially provides interactions between  
humans and nature through ecosystem stabilization, flood  
reduction, water quality improvement, stormwater  
treatment, and the creation of spaces for wildlife habitat, as  
well as recreational and educational facilities and  
amenities.  
ii) to develop the stand-alone or web-based UWP model  
(using Excel, Python, C++, etc.) to compute the real-  
time data for the wetland cases, and thus, to compare  
the computation results with the benchmark wetland.  
iii) to visualize the data manipulation of the wetland case  
through stand-alone or web-based UWP model, which  
aids to compare the real-time scatterplot results with the  
benchmark wetland.  
1
.2  
1
iv) to draw a table that sorts the outputs of wetland case  
y = 1  
(
i.e., outputs of WSM-survey form) to indicate the  
0
0
0
0
.8  
.6  
.4  
.2  
0
weights of the feature from maximum to minimum. The  
users then can understand strong to weak features of the  
wetland case.  
y = -0.004x + 0.8607  
R² = 0.0225  
v) to outline some recommendations/suggestions to release  
weaknesses of the wetland case.  
vi) to prepare a database based on the wetlands‟ survey  
reports and share them with local authorities, municipal,  
or other respected organizations for their future  
corrective actions.  
In the case of Putrajaya wetland park, the UWP model  
found out that Putrajaya wetland park is not functioning  
well in some aspects (according to Table 7); included, site  
selection, multi-cell and multi-stage design, depth  
proportion, and biodiversity. In this regard, the experts have  
suggested the following recommendations which can  
release the weaknesses at Putrajaya wetland park;  
0
10  
Sub-criteria coefficient  
Case Study Benchmark  
20  
30  
40  
Figure 3 The multi-scatter plot for benchmarking Putrajaya  
wetland park with the ideal wetland park  
The research found that biodiversity is one of the major  
benefits of wetland parks. Hansson et al. [47] state that the  
relationship between the environment and biodiversity in  
urban wetlands has a great value. Also, the research found  
that wetland shape can intensively affect ecosystem  
stabilization. Mitsch and Gosselink [48] state that wetland  
convoluted or irregular shapes can further enhance edge  
habitats as opposed to edges in a rectangular shape and  
regular morphology. Hence, hard edges, which are straight  
and lack transition in their design, are discouraged. Soft  
edges with convoluted shapes have more ecological  
benefits compared with straight boundaries [49]. The  
convoluted shapes eliminate right-angled corners may lead  
to the dead water areas for contaminant removal. Moreover,  
manipulating the inlet width and outlet zones must facilitate  
certain functions (i.e., food source provision). Indeed,  
.
Putrajaya wetland parks can follow a single cell  
strategy, known as a constructed wetland basin with a  
forebay and micropool outlet which has a uniform  
water depth, length/width ratio and flow path equal to  
2
:1 or more, and an emergent wetland design.  
Putrajaya wetland parks can follow a multi-cell strategy  
in two forms, either Multi-cell wetland or  
.
a
a
combination that has diverse micro-topography with  
varying depths, length/width ratio and a flow path equal  
to 3:1 or more.  
.
.
For cell separation, each cell must be separated by a  
weir or earth bund (200 meters width and 2-3 meters  
height).  
The buffer width needs a minimum of 25 feet for  
wildlife habitat purposes.  
8
9
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 81-91  
.
.
.
Putrajaya wetland park must provide the mudflat areas  
to attract shorebirds and waders.  
Putrajaya wetland park must increase lands for safe  
nesting areas.  
Putrajaya wetland park needs vertical revetment walls  
which require regular maintenance and inspection for  
those edge treatments.  
References  
1
Keyvanfar, A., Shafaghat, A., Mohamad, S., Abdullahi, M. A.  
M., Ahmad, H., Mohd Derus, N. H., & Khorami, M. (2018). A  
Sustainable Historic Waterfront Revitalization Decision  
Support Tool for Attracting Tourists. Sustainability, 10(2),  
215.  
2
Shafaghat, A., Ghasemi, M. M., Keyvanfar, A., Lamit, H., &  
Ferwati, M. S. (2017). Sustainable riverscape preservation  
strategy framework using goal-oriented method: Case of  
historical heritage cities in Malaysia. International Journal of  
Sustainable Built Environment, 6(1), 143-159.  
6
Conclusion  
The research has developed the UWP index assessment  
model to measure and quantify the performances of  
wetland parks in ecosystem stabilization. The model  
evaluates the urban wetland parks physically,  
environmentally, ecologically, and socially. The UWP  
model covers the ecosystem stabilization align with wildlife  
habitat conservation and recreational and educational  
activity improvements. The UWP model established a  
comprehensive list of wetland park design features  
clustered into three criteria (i.e., design application,  
ecological approaches, and landscape environmental  
elements), and fifteen sub-criteria. The UWP model has  
been designed based on the AHP methodology to measure  
the weight of each feature. The AHP analysis determined  
that the ecological approach is the most important criteria  
which play an essential role in ecosystem stabilization.  
Besides, the AHP analysis resulted that biodiversity and  
wetland shape configuration is the most important sub-  
criteria in urban wetland park design, while site furniture  
and route accessibility have minor effects on ecosystem  
stabilization. The UWP model has been validated through a  
case study to minimize the unforeseen biases. While it can  
be applied in many cases, it was implemented at Putrajaya  
wetland park. As UWP model rates the wetland parks in  
five grades, A to E, the validation study resulted that the  
Putrajaya wetland park rated as grade B (i.e., Good).  
3
4
Konrad, C. P. (2003). Effects of Urban Development on  
Floods. http://pubs.usgs.gov/fs/fs07603/pdf/fs07603.pdf  
accessed by September 2015.  
,
Hoyer, J., Dickhaut, W., Kronawitter, L., & Weber, B.  
2011). Water sensitive urban design: principles and  
(
inspiration for sustainable stormwater management in the city  
of the future. Hamburg, Germany: Jovis.  
Eagles-Smith, C. A., & Ackerman, J. T. (2014). Mercury  
bioaccumulation in estuarine wetland fishes: Evaluating  
habitats and risk to coastal wildlife. Environmental  
Pollution, 193, 147-155.  
Lait, Michael. Preserving Ottawa‟s Metropolitan Nature: How  
the 1970 Gatineau Park Planning Controversy Transformed the  
National Capital Commission and its Conservation  
Park. Canadian Journal of Urban Research, [S.l.], v. 25, n. 1,  
6
7
sep. at:  
Davis, L. (1995). A Handbook of Constructed Wetlands (Vol.  
). United States Environmental Protection Agency (USEPA).  
8
9
1
Bao, D. M., Dan, X. Q., Wu, H. J. (2007). Water quality and  
its restoration of Xinghu lake national wetland park in  
Guangdong Province. Wetland Science and Management, 3(3):  
18-22.  
10 Craig, S.C. and Michael H. O. (1999). Constructed Wetlands  
in the Sustainable Landscape. United States: John Wiley &  
Sons, Inc.  
Importantly, the UWP model is such a „qualitative‟  
model, since it is an opinion-based model incorporates  
direct observation, field notes (including, descriptions of  
activities, actions, interactions, and processes), and  
subjective features into wetland park assessment. This  
1
1 Ehrenfeld, J. G. (2000). Evaluating wetlands within an urban  
context. Ecological Engineering, 15(3), 253-265.  
2 Verlicchi, P., & Zambello, E. (2014). How efficient are  
constructed wetlands in removing pharmaceuticals from  
untreated and treated urban wastewaters? A review. Science of  
the Total Environment, 470, 1281-1306.  
1
„qualitative‟-based UWP model measures the weight of  
features through experts‟ judgmental, iterative expert group  
process, consensus panel approach, experts, and in-depth  
expert group discussion. While, the authors plan to  
develop the „quantitative-based UWP model in future  
works. The „quantitative‟-based UWP model would  
measure the ecosystem quantity impacts (e.g., increased  
runoff, reduced infiltration, reduced base flow, stream  
geomorphology changes, aquatic habitat effects, pollutant  
loads, etc.). The „quantitative‟-based UWP model shall be  
an experimental model to measure the ecosystem  
stabilization of wetland parks based on laboratory tests,  
numerical data, data manipulation, time-series, and causal  
forecasting methods.  
13 Stein, E. D., Fetscher, A. E., Clark, R. P., Wiskind, A.,  
Grenier, J. L., Sutula, M., Jashua NC, Grosso, C. (2009).  
Validation of a wetland rapid assessment method: use of EPA's  
level 1-2-3 framework for method testing and  
refinement. Wetlands, 29(2), 648-665.  
1
4 Chen, T. S., & Lin, H. J. (2013). Development of a framework  
for landscape assessment of Taiwanese wetlands. Ecological  
indicators, 25, 121-132.  
5 Zsuffa, I., Van Dam, A. A., Kaggwa, R. C., Namaalwa, S.,  
Mahieu, M., Cools, J., & Johnston, R. (2014). Towards  
decision support-based integrated management planning of  
1
papyrus wetlands: a case study from Uganda. Wetlands  
ecology and management, 22(2), 199-213.  
Also, as future works, the AHP method can be coupled  
with other methods to reduce its inconsistencies and errors,  
in turn increasing coefficients accuracy. In the future, the  
UWP model can be designed as standalone or web-based  
software for comparatively more convenient usage by more  
users around the world.  
16 Wentzell, B. M., Boylen, C. W., & Nierzwicki-Bauer, S. A.  
(2016). Wetland ecosystem comparison using a suite of plant  
assessment measures. Ecological Indicators, 67, 283-291.  
1
7 Odgaard, M. V., Turner, K. G., Bøcher, P. K., Svenning, J. C.,  
Dalgaard, T. (2017). A multi-criteria, ecosystem-service  
value method used to assess catchment suitability for potential  
&
9
0
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 81-91  
wetland reconstruction in Denmark. Ecological Indicators, 77,  
36 Lamit, H. B., Shafaghat, A., Majid, M. Z., Keyvanfar, A.,  
Ahmad, M. H. B., & Malik, T. A. (2013a). The Path  
Walkability Index (PAWDEX) Model: To Measure Built  
Environment Variables Influencing Residents' Walking  
Behavior. Advanced Science Letters, 19(10), 3017-3020.  
37 Lindberg, M., & Schipperijn, J. (2015). Active use of urban  
park facilitiesExpectations versus reality. Urban Forestry &  
Urban Greening, 14(4), 909-918.  
1
51-165.  
1
1
8 Cui, L., Ge, Z., Yuan, L., Zhang, L., 2015. Vulnerability  
assessment of coastal wetlands in the Yangtze Estuary, China  
to sea-level rise. Estuar. Coast. Shelf Sci. 156, 4251.  
9 Guo, X., Wang, X., Cui, Q., 2012. An ecosystem health  
assessment method integrating geochemical indicators of soil  
in Zoige wetland, southwest China. Procedia Environ. Sci. 13,  
1
5271534.  
38 Shafaghat, A., Keyvanfar, A., Manteghi, G., & Lamit, H. B.  
(2016). Environmental-conscious factors affecting street  
microclimate and individuals‟ respiratory health in tropical  
coastal cities. Sustainable Cities and Society, 21, 35-50.  
39 Choi, J., Maniquiz-Redillas, M. C., Lee, S., Mercado, J. M. R.,  
& Kim, L. H. (2013). Application of a gravel wetland system  
for treatment of parking lot runoff. Desalination and Water  
Treatment, 51(19-21), 4129-4137.  
2
2
0 Garg, J. K. (2015). Wetland assessment, monitoring and  
management in India using geospatial techniques. Journal of  
environmental management, 148, 112-123.  
1 Chatterjee, K., Bandyopadhyay, A., Ghosh, A., Kar, S. (2015).  
Assessment of environmental factors causing wetland  
degradation, using Fuzzy Analytic Network Process: A case  
study on Keoladeo National Park, India, Ecological Modelling,  
3
16, 113.  
40 Saaty TL. 1980. The analytic hierarchy process. Pittsburgh:  
RWS Publications.  
41 Lamit, H., Shafaghat, A., Majid, M. Z., Keyvanfar, A.,  
Ahmad, M. H. B., & Malik, T. A. (2013b). Grounded group  
decision making (GGDM) model. Advanced Science  
Letters, 19(10), 3077-3080.  
2
2
2 Wu, H., Zha, K., Zhang, M., & Yang, X. (2009). Nest site  
selection by Black-necked Crane Grus nigricollis in the  
Ruoergai Conservation  
International, 19(03), 277-286.  
3 Saeki, I., Murakami, N. (2009). Chloroplast DNA  
Wetland,  
China. Bird  
&
phylogeography of the endangered Japanese red maple (Acer  
pycnanthum): the spatial configuration of wetlands shapes  
genetic diversity. Diversity and Distributions, 15(6), 917-927.  
4 Reed, S. C., Crites, R. W. & Middlebrooks, E. J. 1995. Natural  
systems for waste management and treatment. Second edition.  
McGraw-Hill Inc. New York, NY. 433.  
5 Wang, J. L., Che, W., & Li, J. Q. (2011). Application of  
Constructed Wetland to Stormwater Management in New  
Urban Catchments. China Water & Wastewater, 27(6), 54-57.  
6 Schrage, L. J., & Downing, J. A. (2004). Pathways of  
increased water clarity after fish removal from Ventura Marsh;  
a shallow, eutrophic wetland. Hydrobiologia, 511(1-3), 215-  
42 Dehdasht, G., Mohamad Zin, R., Ferwati, M. S., Mohammed  
Abdullahi, M. A., Keyvanfar, A., & McCaffer, R. (2017).  
DEMATEL-ANP risk assessment in oil and gas construction  
projects. Sustainability, 9(8), 1420.  
43 Shafaghat, A. (2013). Path Walkability Assessment  
Framework Based on Decision Tree Analysis of Pedestrian  
Travelers' Retail Walking (Doctoral dissertation, Universiti  
Teknologi Malaysia.  
2
2
2
44 SCB Associates Ltd., 2016. Stoneleigh Abbey Mews,  
England  
45 Alonso, J. A., & Lamata, M. T. (2006). Consistency in the  
2
31.  
analytic hierarchy process: a new approach. International  
2
2
7 Casanova, M. T., & Brock, M. A. (2000). How do depth,  
duration and frequency of flooding influence the establishment  
of wetland plant communities?. Plant Ecology, 147(2), 237-  
journal of uncertainty, fuzziness and knowledge-based  
systems, 14(04), 445-459.  
46 Marler, R.T., Arora, J.S. (2010). The weighted sum method for  
multi-objective optimization: new insights. Structural and  
Multidisciplinary Optimization, 41(6):853-862.  
2
50.  
8 Hansson, L. A., Brönmark, C., Anders Nilsson, P.,  
&
Åbjörnsson, K. (2005). Conflicting demands on wetland  
ecosystem services: nutrient retention, biodiversity or  
both?. Freshwater Biology, 50(4), 705-714.  
47 Hassan, D. M. H., John, J. L., Ahammu, H., Arffin, H. S.J.,  
Loon, C. W. and Mohanlall, P. (1999). Putrajaya Wetlands.  
Perbadanan Putrajaya, Putrajaya, Malaysia.  
2
3
9 Dockery, D. W., & Stone, P. H. (2007). Cardiovascular risks  
from fine particulate air pollution.  
0 Xu, L.P. and Liu, H.C. (2006). Application of Ground Cover  
Plants in Xixi National Wetland Park of Hangzhou. Chinese  
Landscape Architecture, 11: 72-76.  
1 Ishikawa, N., & Fukushige, M. (2012). Effects of street  
landscape planting and urban public parks on dwelling  
environment evaluation in Japan. Urban Forestry & Urban  
Greening, 11(4), 390-395.  
48 Mitsch, W. J., & Gosselink, J. G. (2000). The value of  
wetlands:  
importance  
of  
scale  
and  
landscape  
setting. Ecological economics, 35(1), 25-33.  
49 Robert L.F. (2003). Wetland Design Principles and Practices  
for Landscape Architects and Land Use Planners. Havard  
Design School.  
50 Sun, R., Chen, A., Chen, L., & Lü, Y. (2012). Cooling effects  
of wetlands in an urban region: the case of Beijing. Ecological  
Indicators, 20, 57-64.  
3
3
3
3
3
2 Knight, R. L. (1997). Wildlife habitat and public use benefits  
of treatment wetlands. Water Science and Technology, 35(5),  
3
5-43.  
3 Wang, Y. H., & Wang, H. X. (2011). Analysis of types and  
selection of ecological-type revetment in town's river channel  
construction. In Advanced Materials Research. 225, 678-683.  
4 Raychaudhuri, S., Mishra, M., Salodkar, S., Sudarshan, M., &  
Thakur, A. R. (2008). Traditional aquaculture practice at East  
Calcutta Wetland: the safety assessment.  
5 Ishikawa, N., & Fukushige, M. (2012). Effects of street  
landscape planting and urban public parks on dwelling  
environment evaluation in Japan. Urban Forestry & Urban  
Greening, 11(4), 390-395.  
9
1