Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 92-102  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
An Urban River Park Restoration Assessment  
Model using Analytical Network Process (ANP)  
2
1
*
2
3,4,5*  
6
, Amir Jamshidnezhad , Hasanuddin Lamit ,  
5
Arezou Shafaghat , Kiu Sue Jing , Ali Keyvanfar  
Majid Khorami  
1
MIT-UTM MSCP Program, Institute Sultan Iskandar, Universiti Teknologi Malaysia, Skudai 81310, Malaysia  
Department of Landscape Architecture, Faculty of Built Environment, Universiti Teknologi Malaysia, Skudai 81310, Johor,  
Malaysia  
3
Department of Construction Management, Kennesaw State University, Marietta, GA 30060, United States  
4
Center for Energy Research, University of California, San Diego, CA 92093, United States  
5
Facultad de Arquitectura y Urbanismo, Universidad Tecnológica Equinoccial, Calle Rumipamba s/n y Bourgeois, Quito 170508,  
Ecuador  
6
Faculty of Civil Engineering, Khajeh Nasir Toosi University of Technology (KNTU), Tehran,1969764499 Iran  
Received: 10/07//2018  
Accepted: 30/12/2018  
Published: 30/03/2019  
Abstract  
The urban planners and developers are attempting to restore the river parks through sustainable and ecological approaches  
which return the encroached habitats and degraded ecosystems to a stable and healthy condition. However, they need an  
assessment model to measure and quantify the urban river park‘s ecological restoration performances and capabilities.  
Accordingly, this research has developed the Urban River Park Restoration (URPR) Assessment Model. The UPRP assessment  
model has been developed using the Analytical Network Process (ANP) method. The URPR model is a multi layered decision-  
making model involving four criteria and thirty sub-criteria. Among the criteria, the river slope stabilization techniques have  
gained the highest limited weight (W =0.844), followed by the stream buffer (WC1=0.0841). Within all sub-criteria, the  
C2  
vegetated geogrid has gained the highest limited weight (WC2.6=0.0442), followed by the vegetated gabion (WC2.2=0.037). The  
UPRP model aids urban professional to assess and improve the urban river park‘s ecosystem. This model can be applied to any  
river parks around the world, and this research implemented it to Bishan River Park in Malaysia. According to URPR model  
assessment results, the Bishan River Park earned Grade B (Good), means, some minor restoration improvements are needed.  
Keywords: River Park, Restoration, Ecological Assessment, Decision Making, Assessment Model, Analytical Network Process  
(
ANP)  
1
Introduction  
An urban revolution can be invasive, irrevocable and  
river ecosystems. The transition of river park management  
practice in the urban area presented in Figure 1.  
1
sometimes unrecognizable [1-3]. River transformation  
intends to achieve better management of the runoff water in  
order to prevent flooding in the urban areas. However, this  
is only for short-term effect. As the space along river parks  
is then occupied by parking lots, roads and other purposes,  
the river park‘s ecosystem is rapidly degraded. Urban  
ecologists are attempting to restore the river parks in a  
sustainable and ecological way in order to rehabilitate the  
Occupied  
Stream  
Disaster  
Ecological  
Natural  
Stream  
Prevention  
Stream  
Stream  
Park  
Stream  
Figure 1: The management practice of river park transition  
Restoration is defined as ―reestablishment of the  
structure and function of ecosystems‖ [4]. The restoration  
process re-establishes function, structure and dynamic by  
sustaining ecosystem behavior [5,6]. River restoration  
seeks to return encroached habitats and degraded  
ecosystems to a stable and healthy condition [7]. Landscape  
designers and planners are increasingly turning the rivers  
from hard engineering features to ecologically based using  
Corresponding authors: (a) Arezou Shafaghat: MIT-UTM  
MSCP Program, Institute Sultan Iskandar, Universiti  
Teknologi Malaysia, Skudai, JB 81310, Malaysia. E-mail:  
arezou.shafaghat@gmail.com.  
(b)  
Ali  
Keyvanfar:  
Department of Construction Management, Kennesaw State  
University, Marietta, GA 30060, United States, E-mail:  
akeyvanf@kennesaw.edu.  
9
2
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 92-102  
restoration strategies [8]. The ecological restoration of the  
urban river can promote long-term sustainable economic  
growth that extends beyond tourism. Thus, the river parks  
restoration through ecological landscape approach is  
beneficial to both human and environment. In recent years,  
some countries carried out the practice of river restoration  
by returning the concrete canals to an eco-corridor river or  
ecological river park where is accessible to public users as  
well [9]. The ecological river park is a string of parks near  
or along to the river linked by open space, pathways, and  
green corridors; it is a multi layered system that enhances  
the natural quantities of the river, and serves a variety of  
needs, offering recreational, environmental and habitat  
benefits [10]. The ecological restoration of river parks is to  
preserve and enhance the ecological function of the river.  
Furthermore, an ecological river park in an urban  
context functions to expand public connections and access  
into the city. In the United Kingdom, river restoration is  
also known as river reclamation,  
park assessment model adopted multi-criteria decision  
making (MCDM) method. According to the reviewed  
MCDM adopted studies, Analytical Network process  
(ANP) can properly evaluate problems involving a set of  
uncertain indicators. Accordingly, this study research has  
aimed to develop a scientific river assessment model, called  
‗An Urban River Park Restoration (URPR) Assessment  
Model‘, to measure and evaluate the urban river parks‘  
functionalities using ANP method. The ANP method  
conducts a pairwise comparison on urban river park  
restoration features with respect to the goal, urban river  
park restoration assessment, and pairwise comparison of  
sub-criteria with respect to the criteria and determining the  
weight value of each one. This research has two phases.  
Phase one will identify and investigate the urban river park  
restoration criteria and sub-criteria, and phase two will  
determine the weight value of each criterion and sub-  
criterion to develop the URPR assessment model. The  
URPR model will be implemented in a real study to be  
tested. The URPR model is a decision support tool which  
aids the urban ecologist and landscape designers and  
planners to benchmark and assesses the urban river park  
restoration around the world.  
The awareness of urban river park values is being  
increased. Landscape designers and planners need an  
assessment model to quantify and evaluate the ecological  
and biological restoration performances in urban river parks  
[11-13]. Reviewing the literature shows that although there  
are a few river assessment models. The previous research  
has applied value-based and Goal-Oriented decision-  
making process for strategic river assessment. Pflüger [14]  
has applied the value-based river‘s decision making for  
visitor management purpose. Pflüger [14] has particularly  
used GIS (Geographic Information System) spatial  
planning to identify the ecological and recreational values  
in the river‘s visiting area. Pflüger [14] has applied this  
methodical approach to analyze the current and future risks  
and conflicts of the river‘s visitor infrastructure. The  
similar approach has been conducted by Cerny [15] and  
Landmann [16] to analyze the sensitivity of the habitat and  
wildlife of the area through geographical map data  
2
Materials and Methods  
2
.1 Urban River Park Ecological Restoration Features  
The URPR model has to involve a comprehensive list  
of sustainability decision making criteria for both  
qualitative and quantitative analysis of urban river parks. In  
this section features for urban River Ecological Restoration  
is presented. All these features will be involved in phase  
two, weight analysis through ANP, and then be involved in  
the assessment model development. The features have been  
classified into four classes (i.e., Criteria), and each class  
included numbers of sub-classes (i.e., Sub-criteria) as  
following;  
C1. Stream Buffer: Stream buffers play an important role in  
river restoration, management, reducing the degrading  
effects of non-point pollution, flood control, and preserving  
wildlife habitat [22]. The C1. Stream Buffer includes these  
sub-criteria; C1.1. Minimum buffer width, C1.2. Three-  
zone buffer system, C1.3. Pre-development vegetative  
target, C1.4. Buffer expansion and contraction, C1.5.  
Buffer delineation, C1.6. Buffer crossings, C1.7.  
Stormwater runoff treatment.  
integration. Shafaghat et al. [17] have developed  
sustainable river development decision support tool. The  
tool has been developed based on goal-oriented  
a
a
knowledge-sharing assessment system. Using this tool aids  
urban developers in systematic decision making for  
riverscape rehabilitation and preservation. Moreover,  
Gwinnett County Parks and Recreation Division (GCPR)  
conducted a trail system sustainability assessment for  
Yellow River Park [18]. The purpose of this assessment  
process was to aid the County in management decisions  
C2. River Slope Stabilization Techniques: The individual or  
systematic slope stabilization techniques have been  
developed to reduce, offset or protect the impacts of urban  
development to river corridors. These are the most  
practiced techniques in support of river corridor restoration  
making  
and  
redevelopment  
recommendations  
identification. In particular, the river‘s water quality has  
been intensively studied using different decision-making  
methods and techniques. On the effect of anthropogenic  
influences and pollution on river‘s water quality the  
multivariate statistical decision-making methods have been  
applied; included, artificial neural networks, artificial  
intelligence, and Principal Component Analysis-PCA [19].  
Some researchers have studied the ecological quality  
assessment of the rivers and wetlands (e.g. [20]), and some  
of the research on the ecological and biodiversity integrity  
in riverscape preservation and rehabilitation assessment  
(
see Figure 2). The C2. River Slope Stabilization  
Techniques includes these sub-criteria; C2.1. Bank shaping  
and planting, C2.2. Vegetated gabion, C2.3. Tree-  
revetment, C2.4. Joint plantings on Riprap, C2.5. Live crib  
wall, C2.6. Vegetated geogrid, C2.7. Live stakes and live  
fascine, C2.8. Joint planting, C2.9. Brush mattress, C2.10.  
Branch packing, C2.11. Coconut fiber roll.  
C3. River Park Environmental Design: According to San  
Diego River Park Master Planning [23], there are five  
principles that have been identified in order to guide  
(
e.g. [21]).  
Reviewing the literature indicated that no urban river  
9
3
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 92-102  
ecological, social, cultural, and economic development of  
the river parks as following; C3.1. Restore and maintain a  
healthy river system, C3.2. Unify fragmented lands and  
habitats, C3.3. Create a connected continuum, C3.4. Reveal  
the river valley history, C3.5. Reorient development of  
river to create value.  
questionnaire. The questionnaire collects the experts‘  
judgments based on nine-point scaling (from equal  
importance to extreme importance).  
Step 2: Supermatrix development; this step the 1 step  
outputs will develop an unweighted supermatrix which  
indicates the priorities of all pairwise comparisons. The  
st  
C4. River Park Landscape Architectural Design: There are  
a few landscape elements or features commonly proposed  
in ecological river park by the Council of the City of San  
Diego [23]. They are listed down as the follows; C4.1. Path  
corridor, C4.2. River pathway, C4.3. Pedestrian trails, C4.4.  
Connecting pathway, C4.5. Bridges, C4.6. Boardwalks,  
C4.7. Picnic areas and overlooks.  
supermatrix of the current research is shown as Figure 3.  
th  
presents m cluster,  presents the th element in  
the th cluster, and  is the principle eigenvector of the  
influence of the elements that are compared between the th  
cluster and the th cluster [28].  
C
e
e
W
W
W
...  
W
1
11  
11  
12  
13  
1m  
1
2
e
1
n
C
e
W
W
W
...  
W
2
21  
21  
22  
23  
2m  
e
2
2
(
a)  
(b)  
(e)  
(c)  
e
2
n
C
e
W
W
W
...  
W
(
d)  
g)  
(f)  
(i)  
m
m1  
m2  
m1  
m2  
m3  
mm  
e
.
e
mn  
(
(h)  
(k)  
Figure 3: The ANP supermatrix of UPRP assessment model  
Step 3: Weighted supermatrix calculation; this step, firstly,  
normalizes the matrix by the sum to the value of each  
column to get unweighted supermatrix which the clusters  
are with equal weight. (since the clusters usually are  
interdependent in a network and elements in the columns  
are separated by the number of clusters). Next, the weight  
supermatrix will be calculated by multiplying the  
corresponding priority of each cluster to the unweighted  
values.  
(
j)  
Figure 2: River Slope Stabilization Techniques: a) Bank shaping and  
planting; b) Vegetated gabion; c) Tree-revetment; d) Joint plantings  
on riprap; e) Live crib wall; f) Vegetated geogrid; g) Lives stakes  
and live fascines; h) Joint planting; i) Brush mattress; j) Branch  
packing; k) Coconut fiber roll (Source: Adapted from [24])  
Step 4: Limit supermatrix calculation. As the final step, the  
weighted supermatrix will be raised to the sufficient power  
by using Equation 1 until stable enough to obtain overall  
priorities or donated ANP weight.  
2
.2 Analytic Network Process (ANP)  
The Analytic Network Process (ANP) as an MCDM  
method was developed by Saaty [25] used for complex and  
complicated decision-making problems. It can be used for  
developing a decision support tool, as well. ANP deals with  
the network of the decision-making components. The ANP  
is an advanced method of AHP resolves limitations of  
dependency among criteria in a system by dividing them  
into different decision clusters as well as embedded criteria  
k
lim  
(1)  
w
k    
2.3 Weighted Sum Method (WSM) application  
(
[25]. Hence, the ANP makes a connection network  
The research conducted an expert input study to  
validate the URPR index model through implementing it in  
a case study (here, Bishan River Park). The expert input  
study has performed the close group discussions with the  
same group of experts invited in phase one. The experts  
have followed the WSM instructions and 5-point scaling to  
rate the features for the Bishan River Park. The WSM  
formula used in the calculation procedure is shown in  
between clusters and criteria which indicates the  
dependencies (either, inner or outer dependencies).  
Dependencies among components (i.e., nodes) in a cluster  
indicates the inner dependencies; while the dependencies  
among criteria in a cluster as well as in other clusters  
express the outer dependencies [26]. So, the ANP copes  
with the complex interaction between criteria while several  
decision problems involve in the dependencies components  
equation 2 and equation 3 [29,30]:  
n
[27]. The research has followed the following ANP steps:  
W SM (a ) (  
w )a  
i
(for i=1,2,3,…, m)  
(2)  
Step 1: Pairwise comparison; this step will compare the  
interactions of elements pairwise using the ANS-formatted  
i
j
j 1  
9
4
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 92-102  
where,   is it extends to the assigned weight by the  
3.1 Developing the URPR Assessment Model  
ꢆꢊ  
expert for feature ‗j and ꢊꢋ ‘, is the feature with the  
ordering number ꢌꢇ .  
To develop the URPR index assessment model, the  
research had to determine the weight value of all criteria  
and sub-criteria. The ANP technique was applied to  
determine the weight value of four (4) river park restoration  
criteria and their sub-criteria. The following presents the  
ANP analysis steps.  
W SM (a ) / W SM (a )  C onsensus  
(3)  
i
m ax  
where, ꢎꢏꢐꢑꢋ, extends to the maximum sum of  
possible weight can be assigned for the feature ‘j’.  
The ANP decision model of the URPR index model  
was constructed based on the interactions between goal,  
criteria,  
and  
sub-criteria  
(see  
Figure  
4).  
Figure 4: The ANP structure of URPR assessment model  
important than C1.2. Three-zone buffer system?‖  
After completing all pairwise comparisons the  
weighted supermatrix was calculated, and then the  
limited supermatrix was computed which determined  
the weight value of each criterion and sub-criterion.  
During data computing, the software was analyzing  
the Consistency ratio (CR). The CR can confirm  
whether the original ratings by experts were consist  
3
Analysis and Results  
The Super Decisions software is an established  
platform developed by Saaty and colleagues to  
conduct the ANP decision model. The output from  
each expert in direct relation of a ꢕꢖꢕ matrix was  
designated  , where ꢇꢈꢊis the influence level of  
criterion  on criterionꢊꢈ. The ANP questionnaire with  
ꢅꢆ  
9
-point rating scale (1 refers to equally important to 9  
(
the CR should be less than or equal to 0.10). The  
Consistency Index (CI) has been calculated as CI/RI  
0.0876 (< 10%). Referring to Saaty [25]  
refers to extremely important) was distributed  
between the experts who had knowledge and  
experience in urban landscape design and planning  
urban ecology, natural source management, and  
urban resilience. The questionnaire survey has  
followed the ANP model instructions and network  
structure among criteria with six experts. According  
to Dehdasht et al. [31], Uygun et al. [32], and Lamit  
et al. [29], the sampling size of the ANP comparison  
procedure can be small if in-depth close-group  
discussions are conducted and well-knowledgeable  
experts are selected. Referring to ANP method the, an  
example of pairwise comparison question was ―With  
=
suggestion, the ratio was less than 10% (< 0.10), thus,  
the decision-making result is consistent enough.  
Following the ANP instruction, the pairwise  
comparison was firstly conducted for the criteria (C1.  
Stream Buffer, C2. River Slope Stabilization  
Techniques, C3. River Park Environmental Design,  
and C4. River Park Landscape Architectural Design).  
Accordingly, the unweighted supermatrix matrix has  
been developed (see Table 1).  
respect to C1.  
Minimum buffer width is (between  
Stream Buffer criterion, C1.1.  
to 9) more  
1
9
5
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 92-102  
Table 1: Normalized Weighted Supermatrix of URPR assessment model  
goal C1 C2 C3 C4 C1.1 C1.2 C1.3 C1.4 C1.5 C1.6 C1.7 C2.1 C2.2 C2.3 C2.4 C2.5 C2.6 C2.7 C2.8 C2.9 C2.10 C2.11 C3.1 C3.2 C3.3 C3.4 C3.5 C4.1 C4.2 C4.3 C4.4 C4.5 C4.6 C4.7  
C1  
C2  
C3  
C4  
0.2545 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.2555 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.2460 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.2438 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.1370 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.1430 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.1352 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.1470 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.1352 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.1406 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.1406 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
C1.1  
C1.2  
C1.3  
C1.4  
C1.5  
C1.6  
C1.7  
C2.1  
C2.2  
C2.3  
C2.4  
C2.5  
C2.6  
C2.7  
C2.8  
C2.9  
0.0000 0.0000 0.2909 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.3109 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0906 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.1504 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.1305 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.3201 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.2602 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.1700 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.2702 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
C2.10 0.0000 0.0000 0.1807 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
C2.11 0.0000 0.0000 0.0908 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
C3.1  
C3.2  
C3.3  
C3.4  
C3.5  
C4.1  
C4.2  
C4.3  
C4.4  
C4.5  
C4.6  
C4.7  
0.0000 0.0000 0.0000 0.2152 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.2159 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.1829 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.1856 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.2002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000 0.1431 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000 0.1517 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000 0.1485 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000 0.1392 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000 0.1360 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000 0.1362 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000 0.1451 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000 0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
9
6
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 92-102  
Next, pairwise comparisons have been conducted  
for the sub-criteria, then so, the unweighted  
supermatrix matrix has been computed (see Table 1).  
After computing the unweighted supermatrices, the  
limited supermatrices have been computed as shown in  
Table 2. The limited supermatrix shows the final weight  
values of sub-criteria with respect to the corresponding  
criterion. According to Table 2, among the criteria, the  
River Slope Stabilization Techniques has received the  
River, which used to be confined by a straitjacket of  
concrete had much worried by the local authority in term of  
the water management system and rapid urbanization. This  
is because the public had realized the importance of water.  
Therefore, the design approaches are first, restoring the  
concrete canal and second, soil bioengineering innovations.  
Through restoring and reclaiming the concrete canal into  
naturalized river park, it demonstrates the exciting changes  
that such revitalization could bring to both the environment  
and the communities around the park. It also can be known  
as a holistic approach that not only meets the functional  
drainage requirements of the river but also leverages on the  
integration of river and park to bring biodiversity back into  
the heart of a city and create open recreational spaces for  
the community. Next, the other approach of Bishan  Ang  
Mo Kio Park transformation is the soil bioengineering  
techniques for river embankment stabilization. Plants play  
an aesthetic role; plants have an important structural  
component in soil bioengineering in this park- their roots  
help stabilize the riverbanks. As a result, Kallang River is  
transformed into a linear stretch of ecological river park  
along the river plains.  
highest weight (W =0.844)), followed by the Stream  
C2  
Buffer (WC1=0.0841), and River Park Environmental  
Design, and Landscape Architectural Design respectively  
(
W =0.0813 and WC4=0.0806). Also, Table 4 shows that  
C3  
among the sub-criteria, the Vegetated geogrid has gained  
the highest weight (WC2.6=0.0442), followed by the  
Vegetated gabion (WC2.2=0.037)), In contrast, the Coconut  
fiber roll has received the lowest weight (WC2.11=0.0154).  
Referring to the limit supermatrix results in Table 1 and  
Table 2, the URPR index model was developed (see  
Equation 4). This URPR index is a linear formula involving  
sub-criteria and their corresponding coefficients (see  
Equation 4). The Limited weights were translated as a  
coefficient of each sub-criterion (see Table 3).  
U R P R Index   
[(a1.i X ) (a2. jY ) (a3.k Z ) (a4.lW )]  
(4)  
where,  
a; coefficient of urban river park restoration sub-criterion  
Extracted from Table 2)  
(
i; Stream Buffer sub-criterion (for:1,2,3, ...,7)  
j; Slope Stabilization Techniques sub-criterion (for:1,2,3,  
.
..,11)  
k; Environmental Design sub-criterion (for:1,2,3,…,5)  
l; Landscape Architectural Design sub-criterion  
(for:1,2,3,…,7)  
X; Limit weight value of criterion ‘i’ of Stream Buffer sub-  
criterion assigned by the experts  
Y; Limit weight value of criterion ‘j’ of Slope Stabilization  
Techniques sub-criterion assigned by the experts  
Z; Limit weight value of criterion ‘j’ of Environmental  
Design sub-criterion assigned by the experts  
Figure 5: Key plan and location map of Bishan  Ang Mo  
Kio river park (Source: Adapted from One Map [33])  
A questionnaire form was designed and filled up by the  
experts who have consecutively rated the criteria and sub-  
criteria. The experts had knowledge and experience in river  
park restoration, rehabilitation, reclamation, and  
revitalization. The URPR assessment model was calculated  
for the Bishan River Park referred to Table 3. As a result,  
Bishan River Park was received a 0.58183 index score.  
W; Limit weight value of criterion ‘j’ of Landscape  
Architectural Design sub-criterion assigned by the experts  
3
.2 Validating the URPR Assessment Model  
In this section, the research has tested and validated the  
URPR model by implementing it in a real case. URPR  
model applies to any city around the world. In this research,  
the URPR index was applied in the Bishan  Ang Mo Kio  
river park, Singapore (see Figure 5). It is one of the largest  
urban parks in Singapore having greenways and unique  
waterways. The Bishan river park has two main sites;  
Bishan Park 1 (Pond Gardens) and Bishan Park 2 (River  
Plains). Under the PUB‘s Active, Beautiful and Clean  
Waters programme [33], Bishan river park has a sustainable  
environment where integrates waterbodies, ecological  
environment, and community. The design concept of  
Bishan  Ang Mo Kio river park is ―Going with the Flow‖.  
The concept is formed based on the natural element: water.  
This is because the Kallang River is the significance water  
body in the park and it is in constant motion. The Kallang  
U R P R Indexim plem enttaion  
[(a1.i X ) (a2. jY ) (a3.k Z ) (a4.lW )]  
U P R P Index Im plem entationStreem B uffer  
(0.0203*0.588)+(0.0212*0.846)+(0.0200*0.846)+(0.0218*  
.883)+(0.0200*0.604)+(0.0208*0.652)+(0.0208*0.883)=0  
11004  
0
.
UPRP Index  
Im plementati onSlopeSta bilization Techniques  
(
0.0335*0.691)+(0.0379*0.846)+(0.0157*0.729)+(0.0218*  
0
0
.809)+(0.0199*0.729)+(0.0442*0.691)+(0.0321*0.729)+(  
.0175*0.614)+(0.0223*0.883)+(0.0189*0.691)+(0.0154*0  
.
691)=0.20680  
9
7
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 92-102  
Table 2: Limited Supermatrix of URPR assessment model  
C1 C2 C3 C4 C1.1 C1.2 C1.3 C1.4 C1.5 C1.6 C1.7 C2.1 C2.2 C2.3 C2.4 C2.5 C2.6 C2.7 C2.8 C2.9 C2.10 C2.11 C3.1 C3.2 C3.3 C3.4 C3.5 C4.1 C4.2 C4.3 C4.4 C4.5 C4.6 C4.7  
0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841 0.0841  
0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844 0.0844  
0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813 0.0813  
0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806 0.0806  
0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203  
0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212 0.0212  
0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200  
0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218  
0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200  
0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208  
0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208 0.0208  
0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335  
0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379  
0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0157  
0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218  
0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199  
0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442  
0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321  
0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175  
0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223 0.0223  
C1  
C2  
C3  
C4  
C1.1  
C1.2  
C1.3  
C1.4  
C1.5  
C1.6  
C1.7  
C2.1  
C2.2  
C2.3  
C2.4  
C2.5  
C2.6  
C2.7  
C2.8  
C2.9  
C2.10 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189  
C2.11 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154  
C3.1  
C3.2  
C3.3  
C3.4  
C3.5  
C4.1  
C4.2  
C4.3  
C4.4  
C4.5  
C4.6  
C4.7  
0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373  
0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375  
0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317 0.0317  
0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322  
0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347 0.0347  
0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248  
0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263  
0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257  
0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241  
0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236  
0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236 0.0236  
0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252  
9
8
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 92-102  
UPRP Index  
n
within the river valley. Moreover, the ecological river park  
benefits to social and cultural aspects. The river park itself  
Im plementati onEnvironm entalDesig  
(
0
0.0373*0.739)+(0.0375*0.772)+(0.0317*0.772)+(0.  
322*0.883)+(0.0347*0.729)=0.13471  
plays as  
a linkage to connect within and adjacent  
neighborhoods in an urban context by connecting the  
isolated pockets of development along the river with  
established neighborhoods, knitting the valley as a whole  
and cultivating a river valley identity. Apart from that, it  
offers many opportunities to educate communities about the  
river‘s natural systems and its historical significance. At the  
same time, it helps to become engaged with improving  
river resources by increasing visibility, access, and  
awareness. On the other hand, the economic benefited by  
increasing the land values by promoting the built  
environment quality and facilities. It can be rated by  
evaluating their contribution to the business, sales, and  
tourism tax revenues, and financial return on privately‐  
funded projects.  
In order to achieve ecological success in a river park,  
the process of the changes of riparian species structure with  
an ecological community is a long-term effect. The time  
scale is varied, depending on the scale of the river park.  
River restoration is rather a phenomenon or process by  
which river ecological community undergoes more  
vigorous growth of biodiversity of a specific area. First of  
all, a river must be restored or improved through technical  
aspects such as stream buffer, slope stabilization, and  
riparian restoration approaches. Then, the ecology result  
after the restoration such as the increase of biodiversity  
level has to be measured, or river rehabilitation is needed  
for the area where is less achieving ecological success.  
Once the ecology status of the river has reached its  
stability, park development into an ecological river park  
can proceed. However, only developments which caused  
minimal impact to the environment are allowed. The beauty  
and history of the restored river ecosystem are  
recommended to be preserved and conserved. Therefore, in  
order to transform urban rivers into ecological river park,  
three stages of restoration, rehabilitation, and reclamation  
are involved.  
UPRP Index  
n
Im plementati onArchitec turalDesig  
(
0.0248*0.809)+(0.0263*0.652)+(0.0257*0.883)+(0.0241*  
0
.652)+(0.0236*0.604)+(0.0236*0.809)+(0.0252*0.846)=0  
.
13028  
UPRP Index  
Im plementati on  
0
.11004+0.20680+0.13471+0.13028=0.58183  
The UPRP model has five grading levels. Grade A has  
the maximum limited weight value; while grade E has the  
lowest limited weight value. The maximum (Max) and  
minimum (Min) values calculation are presented as follows.  
For maximum value, if the limited weight of all sub-criteria  
is appointed as 1, then the maximum value equals to 0.750.  
The minimum (Min) value is 0.2 of the maximum (Max)  
value. Hence, the minimum value equals to 0.150.  
URPR model Max 160+154+65=380 =  
0
.170+0.260+0.165+0.155=0.750  
URPR model Min = URPR model Max * 0.2 = 0.750* 0.2=  
0.150  
=
According to URPR model‘s grading interpretations,  
Bishan River Park has earned Grade B: Good; this means  
that Bishan River Park is a constructed urban river park  
where accommodates users properly, but minor  
improvement is needed.  
0
0
.600 < G < 0.750: Grade A: Superior; Well-designed  
urban river park.  
.450 < G < 0.600: Grade B: Good; Constructed urban  
river park where minor improvements  
needed.  
0
0
0
.300 < G < 0.450: Grade C: Fair; Usable urban river  
park where major improvements needed.  
.150 < G < 0.300: Grade D: Poor; Usable urban river  
park numerous improvements needed.  
.000 < G < 0.150: Grade E: Very Poor; Non-usable  
urban river park.  
6
Conclusion  
It is important to restore, rehabilitate and reclaim the  
river and promote human activities with the naturalized  
river. Hence, ecological river park is strongly  
recommended to replace the concrete canal nowadays. A  
successful ecological river park helps to increase the  
biodiversity level in an urban context, introduce a series of  
recreational activities for the park users to enjoy the beauty  
of the naturalized river, and at the same time to educate the  
public in landscape appreciation. The study has come out  
with recommendation and design guideline of three stages  
of river restoration, rehabilitation and reclamation into an  
ecological river park.  
This research developed the Urban River Park  
Restoration (URPR) Assessment Model for measuring and  
quantifying the urban river park‘s ecological restoration  
performances and capabilities. The URPR model is a  
decision support tool aids urban designers and planners to  
assess and improve the river park‘s ecosystem by offering  
recreational, environmental and habitat benefits.  
5
Discussion  
Ecological river park can provide benefits for both  
residents and visitors. Benefits can be measured through the  
environmental, social and cultural, and economic value  
added to a community. Firstly, the environmental benefits  
added by improvements to the river can be measured by the  
degree to which the improvements add to the sustainability  
of the river corridor. A river park creates a healthy river  
system as it improves the water quality, sediment transport,  
and groundwater recharge. Also, the river park can  
encounter the large floods in heavy precipitation period  
rendering eco-engineering approach. Besides, it expands  
riparian habitat and reconnects existing wildlife habitats  
9
9
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 92-102  
Table 3: WSM data collection and analysis process of criteria and sub-criteria evaluation of URPRIndex model in Bishan Ang Mo Kio river park  
Expert Panels  
ꢚꢛꢜꢑꢝꢒCons.  
of Criterion  
Expert Panel  
ꢚꢛꢜꢑꢝꢒꢞꢟꢠ  
of  
Sub-Criterion  
Cons.  
WSM final Cons. Integrated URPR  
of  
coefficients to  
Sub-Criterion  
Criterion  
Sub-criterion  
Sub-Criterion  
C1. Stream Buffer 5  
4
5
4
4
5
5
4
5
25  
0.92 C1.1. Minimum buffer width  
C1.2. Three-zone buffer system  
C1.3. Pre-development vegetative target  
C1.4. Buffer expansion and contraction  
C1.5. Buffer delineation  
3
5
4
5
3
5
5
3
3
4
5
4
4
5
3
5
4
4
5
4
5
5
5
4
4
5
4
3
4
5
3
3
2
2
5
4
4
4
3
4
4
5
4
2
5
3
5
5
3
5
4
4
4
4
3
4
5
2
4
5
4
4
2
4
4
4
4
4
4
4
4
3
4
4
3
5
4
5
5
5
3
4
4
4
4
2
5
3
3
4
4
5
3
3
3
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
0.64  
0.92  
0.92  
0.96  
0.72  
0.68  
0.96  
0.72  
0.76  
0.76  
0.88  
0.76  
0.72  
0.76  
0.640  
0.92  
0.72  
0.72  
0.88  
0.588  
0.846  
0.846  
0.883  
0.604  
0.652  
0.883  
0.691  
0.846  
0.729  
0.809  
0.729  
0.691  
0.729  
0.614  
0.883  
0.691  
0.691  
0.739  
0.0119  
0.0179  
0.0169  
0.0192  
0.0121  
0.0136  
0.0184  
0.0231  
0.0321  
0.0114  
0.0176  
0.0145  
0.0305  
0.0234  
0.0107  
0.0197  
0.0131  
0.0106  
C1.6. Buffer crossings  
C1.7. Stormwater runoff treatment  
0.96 C2.1. Bank shaping and planting  
C2.2. Vegetated gabion  
C2. River Slope  
Stabilization  
Techniques  
4
25  
C2.3. Tree-revetment  
C2.4. Joint plantings on Riprap  
C2.5. Live crib wall  
C2.6. Vegetated geogrid  
C2.7. Live stakes and live fascine  
C2.8. Joint planting  
C2.9. Brush mattress  
C2.10. Branch packing  
C2.11. Coconut fiber roll  
0.84 C3.1. Restore and maintain a healthy  
river system  
C3. River Park  
Environmental  
Design  
5
5
5
3
4
3
4
4
3
3
25  
25  
0.0276  
C3.2. Unify fragmented lands and  
habitats  
C3.3. Create a connected continuum  
C3.4. Reveal the river valley history  
C3.5. Reorient development of river to  
create value  
4
5
4
3
5
25  
0.92  
0.772  
0.0290  
0.0245  
0.0284  
5
5
3
4
4
4
4
5
4
3
4
4
5
5
4
25  
25  
25  
0.84  
0.92  
0.76  
0.772  
0.883  
0.729  
0.0253  
0.0201  
0.0171  
0.0227  
0.0157  
0.0143  
0.0191  
0.0213  
C4. River Park  
Landscape  
Architectural  
Design  
0.72 C4.1. Path corridor  
C4.2. River pathway  
4
3
5
2
3
4
4
5
4
5
4
4
5
4
3
4
4
3
4
4
5
5
3
5
3
3
4
5
5
4
4
5
4
5
5
25  
25  
25  
25  
25  
25  
25  
0.88  
0.68  
0.96  
0.68  
0.72  
0.88  
0.92  
0.809  
0.652  
0.883  
0.652  
0.604  
0.809  
0.846  
C4.3. Pedestrian trails  
C4.4. Connecting pathway  
C4.5. Bridges  
C4.6. Boardwalks  
C4.7. Picnic areas and overlooks  
Note. EX: Expert; Cons.: refers to consensus calculated based on Equation 3.  
1
00  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 92-102  
The URPR model has identified that urban river park  
design criteria can be considered from four points of view;  
stream buffer, river slope stabilization techniques, river  
park environmental design, and river park landscape  
architectural design as each criterion involves numbers of  
sub-criteria. The research has applied the ANP method to  
determine the limited weight of criteria and sub-criteria.  
Among the sub-criteria, the vegetated geogrid and  
vegetated gabion have gained the highest limited weights.  
The URPR model can be applied to any urban river  
parks around the world, and this research implemented it to  
Bishan River Park in Malaysia. The URPR model verifies  
the river park base on five-layered grading index. As the  
model was implemented in Bishan River Park, it was  
earned Grade B; means Bishan River Park accommodates  
users properly, but minor improvement is needed. In future  
works, ANP may be merged with other decision making  
and planning methods to reduce uncertainties and errors.  
13 Peng, F. J., Pan, C. G., Zhang, M., Zhang, N. S., Windfeld, R.,  
Salvito, D., ... & Ying, G. G. (2017). Occurrence and  
ecological risk assessment of emerging organic chemicals in  
urban rivers: Guangzhou as a case study in China. Science of  
the Total Environment, 589, 46-55.  
1
1
1
4 Pflüger Y. 2004, Value based decision making process for  
strategic  
5 Cerny, K. 2000. Ergebnisse der Biotopkartierung von  
schutzwürdigen Flächen im Tiroler Lechtal. Biotopkartierung  
6 Landmann, A. 2002. Ökologische Grundlagen der  
Besucherlenkung im Natura 2000 Gebiet Lechtal. Im Auftrag  
der Tiroler Landesregierung, unveröff.  
17 Shafaghat, A., Ghasemi, M. M., Keyvanfar, A., Lamit, H., &  
Ferwati, M. S. (2017). Sustainable riverscape preservation  
strategy framework using goal-oriented method: Case of  
historical heritage cities in Malaysia. International Journal of  
Sustainable Built Environment, 6(1), 143-159.  
1
8 Diaz, M, 2012, Yellow River Park, Trail System  
References  
19 Saxena, S., Gangal, S., 2010. Assessment of drinking water of  
different localities in Brij region: a physico-chemical study.  
Arch. Appl. Sci. Res. 2 (4), 157-174.  
20 Williams, K.J.H., Cary, J., 2002. Landscape preferences,  
ecological quality, and biodiversity protection. Environ.  
Behav. 34, 257274.  
21 Duelli, P., Baur, P., Buchecker, M., Gugerli, F., Holderegger,  
R., Wohlgemuth, T., 2007. The role of value systems in  
landscape research. In: Kienast, F., Ghosh, S., Wildi, O. (Eds.),  
A Changing World: Challenges for Landscape Research.  
Springer Landscape Series.  
22 Wenger, S. and Fowler, L. (2000). Protecting stream and river  
corridors. 1st ed. [Athens, GA]: Carl Vinson Institute of  
Government, the University of Georgia.  
1
Liang, Y., & Liu, L. (2014). Modeling urban growth in the  
middle basin of the Heihe River, northwest China. Landscape  
ecology, 29(10), 1725-1739.  
2
Garcia, X., & Pargament, D. (2015). Rehabilitating rivers and  
enhancing ecosystem services in a water-scarcity context: the  
Yarqon River. International journal of water resources  
development, 31(1), 73-87.  
3
4
5
6
7
8
Ouyang, T., Zhu, Z., & Kuang, Y. (2006). Assessing impact of  
urbanization on river wter quality in the Pearl River Delta  
Economic Zone, China. Environmental Monitoring and  
Assessment, 120(1-3), 313-325.  
Department Of Natural Resources, Fisheries Division, Special  
Szałkiewicz, E., Jusik, S., & Grygoruk, M. (2018). Status of  
and Perspectives on River Restoration in Europe: 310,000  
Euros per Hectare of Restored River. Sustainability, 10(1),  
23 Council of the City of San Diego, (2010). San Diego River  
Park Master Plan. The City of San Diego.  
24 Morgan, R. P., & Rickson, R. J. (2003). Slope stabilization and  
erosion control: a bioengineering approach. Taylor & Francis.  
25 Saaty, T.L. Theory and applications of the analytic  
1
29.  
networkprocess:  
opportunities,costs, and risks. RWS publications 2005.  
26 Chemweno, P., Pintelon, L., Van Horenbeek, A., & Muchiri,  
P. (2015). Development of risk assessment selection  
decision  
making  
with  
benefits,  
Miguez, M. G., Veról, A. P., de Sousa, M. M., & Rezende, O.  
M. (2015). Urban floods in lowlandslevee systems,  
unplanned urban growth and river restoration alternative: a  
case study in Brazil. Sustainability, 7(8), 11068-11097.  
a
methodology for asset maintenance decision making: An  
analytic network process (ANP) approach. International  
Journal of Production Economics, 170, 663-676.  
Kolahi, M., Sakai, T., Moriya, K., Makhdoum, M. F., &  
Koyama, L. (2013). Assessment of the effectiveness of  
protected areas management in Iran: Case study in Khojir  
National Park. Environmental management, 52(2), 514-530.  
Palmer, M., Bernhardt, E., Allan, J., Lake, P., Alexander, G.,  
Brooks, S., Carr, J., Clayton, S., Dahm, C., Follstad Shah, J.  
and others, (2005). Standards for ecologically successful river  
restoration. Journal of applied ecology, 42(2), pp.208--217.  
Kim, C. and Woo, H. (2006). River Restoration in Korea - The  
past, the present and the future.  
27 Fazli, S., Mavi, R. K., & Vosooghidizaji, M. (2015). Crude oil  
supply chain risk management with DEMATELANP.  
Operational Research, 15(3), 453-480.  
28 Chen, I. S. (2016). A combined MCDM model based on  
DEMATEL and ANP for the selection of airline service  
quality improvement criteria: A study based on the Taiwanese  
airline industry. Journal of Air Transport Management, 57, 7-  
18.  
29 Lamit, H., Shafaghat, A., Majid, M. Z., Keyvanfar, A.,  
Ahmad, M. H. B., & Malik, T. A. (2013a). Grounded group  
decision making (GGDM) model. Advanced Science  
Letters, 19(10), 3077-3080.  
9
1
0 Kainzinger, S., Arnberger, A., & Burns, R. C. (2016). Setting  
Preferences of High and Low Use River Recreationists: How  
Different are They?. Environmental management, 58(5), 767-  
7
79.  
1
1
1 Yang, T., Liu, J., & Chen, Q. (2013). Assessment of plain river  
ecosystem function based on improved gray system model and  
analytic hierarchy process for the Fuyang River, Haihe River  
Basin, China. Ecological modelling, 268, 37-47.  
2 Wurbs, R. A. (2003). Modelling river basin management: an  
institutional perspective. Water Resources Development, 19(4),  
30 Lamit, H. B., Shafaghat, A., Majid, M. Z., Keyvanfar, A.,  
Ahmad, M. H. B., & Malik, T. A. (2013b). The Path  
Walkability Index (PAWDEX) Model: To Measure Built  
Environment Variables Influencing Residents' Walking  
Behavior. Advanced Science Letters, 19(10), 3017-3020.  
31 Dehdasht, G., Mohamad Zin, R., Ferwati, M. S., Mohammed  
Abdullahi, M. A., Keyvanfar, A., & McCaffer, R. (2017).  
5
23-534.  
1
01  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 92-102  
DEMATEL-ANP Risk Assessment in Oil and Gas  
Construction Projects. Sustainability, 9(8), 1420.  
3
3
2 Uygun, Ö., Kaçamak, H., & Kahraman, Ü. A. (2015). An  
integrated DEMATEL and Fuzzy ANP techniques for  
evaluation and selection of outsourcing provider for  
a
telecommunication company. Computers  
Engineering, 86, 137-146.  
&
Industrial  
3 Pub.gov.sg,  
(2014). PUB.  
[online]  
Available at:  
http://www.pub.gov.sg/abcwaters/ExploreABCAroundYou/Pa  
ges/KallangRiverBishanPark.aspx?Print2=yes [Accessed 31  
Oct. 2017].  
1
02