Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 142-149  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Green Synthesis and Characterization of  
Spherical Structure Silver Nanoparticles Using  
Wheatgrass Extract  
3
1,2  
1  
Mohammad Amin Jadidi Kouhbanani , Nasrin Beheshtkhoo , Gholamreza Fotoohiardakani ,  
4
5
1,6  
Hossein Hosseini-Nave , Saeed Taghizadeh , Ali Mohammad Amani *  
1-Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of  
Medical Sciences, Shiraz, Iran  
2
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran  
- Depatment of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran  
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, IR Iran.  
3
4
5- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical  
Sciences, Shiraz, Iran  
6
- Applied Nanobiophotonics Research Center, Shiraz University of Medical Sciences, Shiraz, Iran  
Received: 03/09/2018 Accepted: 10/02/2019 Published: 30/03/2019  
Abstract  
In this research, silver nanoparticles were successfully synthesized using green approaches. Biosynthesis using plant extract  
was applied as a green method to the preparation of silver nanoparticles. In this work, the effect of Wheatgrass extract was  
investigated as reducing an agent. As-synthesized silver nanoparticles were characterized using several physical methods such as,  
powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), FT-IR analysis, UV-vis spectroscopy and dynamic  
light scattering method (DLS). The result of TEM images showed that silver nanoparticles were formed as spherical particles with  
high monodispersity and size 21-32 nm. Additionally, the size distribution of these nanoparticles was calculated with DLS  
histogram which the result was in agreement with the result of TEM image with average size 28 nm. Since, the Wheatgrass extract  
play an important role as the capping agent, the present of this extract on the surface of silver nanoparticles was to study using  
FTIR analysis and the result approved the present of many functional groups on the surface of nanoparticles. Briefly, this strategy  
provides a simple, cost effect and eco-friendly way to prepare nanoparticles without using hazardous chemical agents.  
Keywords: Silver nanoparticles, Green synthesis, Biosynthesis, Wheatgrass extract  
1
as well as the presence of impurities (such as organic and  
1
Introduction  
inorganic materials) in final nanostructures. On the other  
hand, instead of chemical and physical methods, the  
replacement of green synthesis approaches is due to the  
advantages of this method, which includes simple, eco-  
friendly, inexpensive and availability (2). The green  
synthesis of the nanomaterials was carried out using the  
types of microorganism (8), plant (9), different fruit extracts  
Environmental engineering is an important field of study  
to increase the quality of human life. Nanotechnology has a  
wide range of applications in environmental engineering.  
Over the last few decades, green eco-friendly strategy has  
remarkably been considered for the synthesis of a wide range  
of nanostructures (1). Many types of nanostructures, such as  
metal nanostructures (2), magnetic nanoparticles (3),  
nanocomposite (4) and metal oxide nanoparticles (5), were  
synthesized using this method. The synthesis of  
nanomaterials by conventional methods have a fundamental  
challenge during synthesis procedures due to applying  
chemical substrate as the capping agent, surfactant and  
reducing the agent (6,7). These challenges include the  
introduction of harmful contaminations into an environment  
(
10) and biodegradable polymers (11). These natural agents  
greatly affect the particle size, stability and morphology of  
nanostructures (11).  
Nowadays, metal nanoparticles (MNPs) have  
dramatically attracted many researchers because of  
physicochemical properties and also an application in  
various fields (12,13). The size of nanoparticles are between  
3
to 100 nm that play a major role in properties and  
Corresponding author: Dr. Ali Mohammad Amani, Department of Medical Nanotechnology, School of Advanced Medical  
Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. E-mail: Amani_a@sums.ac.ir. Tel: +98  
9
171324701.  
These authors contributed equally to this work.  
142  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 142-149  
application of this material (14). Beside, large surface to  
volume ratio of nanoparticles has a significant effect on its  
activity and performance in all of applications (15,16). Some  
applications of these structures involve industrial (17),  
agricultural (18), water treatment (19) and medicine (20) and  
also these materials were used as computer transistors (21),  
medical imaging agent (22), chemical sensors (23) and  
filters (24).  
Noble metal nanostructures such as gold (Au) (25),  
silver (Ag) (26) and platinum (Pt) (27) were known as main  
nanoparticles in nanotechnology and nanomedicine fields  
because of surface plasmonic resonance (SPR) properties  
environment and also contrary to the principles of green  
chemistry. In this regard, applying microorganism and plant  
was developed as the green agent for the synthesis of silver  
nanoparticles (41,42). Additionally, some types of natural  
agents, such as fungus (43) and enzymes (43), were  
considered by researchers, while plant and plant extract has  
widely been progressed as the agent to achieve this aim.  
Plant extract can be played not only the capping agent but  
also the surfactant role in this synthesis method. In addition,  
the plant extract is a non-toxic and safe substitute for  
hazardous chemical reducing the agents in green synthesis  
of Ag nanoparticles (2). In previous literatures, several types  
of plant were reported such as Bamboo charcoal (44),  
marigold flower (45), Aloe vera (46), Tamarind fruiti (47),  
Diospyros paniculata (48), Azadirachta indicia (49) and  
Artocarpus heterophyllus (50).  
Wheatgrass plant was also known with other names such  
as Agropyron repens, Brote del Trigo, Agropyre, Doggrass,  
Elymus repens, Graminis Rhizoma, Quackgrass, Scotch  
Quelch, Triticum repens and Wheat Grass. This plant is  
formed in young grass of the common wheat plant that is  
usually called as triticum aestivum. Wheatgrass has many  
pharmaceutical properties as juice and powder for both  
humans and animals (51). Some medicines properties of this  
plant involve reducing high blood pressure and cholesterol,  
preventing tooth decay, heal wounds and antibacterial.  
(
28). In recent years, Ag NP has been considered in  
comparison with others due to its unique properties. This  
material was employed in various application as catalyst/  
photo-catalyst in combination with other materials (29,30),  
sensor/biosensor (31) and antimicrobial agent (32).  
According to previse literatures, silver nanoparticle can be  
an inhibitory effect on several types of gram positive and  
gram negative bacteria such as aureus, Syphillis,  
Escherichia coli, Vibria cholera, Bacillus subtilis,  
Staphylococcus typhus and Pseudomonas aeruginosa. Also,  
Ag NP was used in several drugs form such as topical  
ointments as antibacterial agent (33,34). Exceptional  
properties of Ag NPs are strongly related to the synthesis  
methods and strategies. Some physical and chemical  
approaches were employed for the preparation of silver  
nanoparticles using chemical agent and device. These  
methods included photochemical reduction (35),  
evaporation- condensation (36), laser ablation (37),  
electrochemical techniques (38), chemical reaction by  
organic and inorganic agents, gamma irradiation (39),  
thermal decomposition of silver oxide in water and ethylen  
glycol (15), microwave processing (40). All of chemical  
methods need to hazardous and toxic agent such as the  
surfactant and capping agent as well as in physical method  
need to high energy (such as microwave and UV irradiation)  
and complex device for synthesis of Ag NPs. Indeed, using  
these methods can be a threat to the health of the  
Extract wheatgrass was composed of  
a variety of  
compounds such as vitamin C, vitamin E, thiamin, niacin,  
pantothenic acid, protein, riboflavin, polyphenol, amino acid  
and so on (52). Although several studies have been carried  
out on syntheses of nanoparticles (5365), in this research,  
silver nanoparticle has been synthesized by the green  
strategy applying extract wheatgrass in mild condition.  
Aqueous wheatgrass solution provides a safe, cost effect and  
environment friendly approach for the green synthesis of Ag  
NPs in water media. Additionally, the final product was  
characterized by many types of the physical method.  
Fig. 1. Display of the important molecular structure in wheatgrass extract  
143  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 142-149  
distillated water and transferred to Soxhlet system for the  
extract and then the fresh extract was cooled at room  
temperature to use in next step.  
2
Material and Method  
2
.1 Instruments  
The powder X-ray diffraction (XRD) pattern  
measurements of the samples were recorded on a Holland-  
Philips X-ray powder diffractometer using Cu K radiation  
2
.2.2 Synthesis of silver nanoparticles  
At first, 20 ml different concentrations of Wheatgrass  
(λ= 0.1542 nm) with scattering angles (2) of 5-80◦,  
extract from 5% to 20% was prepared and also 5 ml an  
aqueous solution from Ag NO (0.01mM,) prepared for per  
synthesis of Ag NPs in separately backer. In each test, 20 ml  
of fresh Wheatgrass extract was added to 5 ml AgNO  
0.01nm) in round-bottom flask and stirred with magnetic  
operating at 40 kV and a cathode current of 20 mA.  
Additionally, some specimens of synthesized Ag NPs for  
TEM studies were prepared by ultrasonic dispersion of the  
NPs in ethanol, and the suspensions were dropped onto a  
carbon-coated copper grid. TEM was carried out using a  
3
3
(
stirrer under reflux condition for 30 min which after this  
time, the color of suspension changed from light- yellow to  
dark-brown. Specifically, changing the color in synthesis of  
Ag nanoparticle indicated that the Ag reduced to Ag in the  
presence of plant extracts. After this, suspension was cooled  
at room temperature and stocked to characterize.  
(
CM30 3000Kv). FT-IR spectra were recorded to investigate  
the functional group on samples which carried out on a  
Bruker VERTEX 80 v model using the KBr disk method.  
The size distribution of Ag NPs was characterized by the  
DLS approach, using a computerized inspection system  
+
0
(
MALVERN Zen3600) with DTS® (nano) software. UV-  
Vis spectroscopy (UV-Vis) analyses were taken using a  
Varian Cary 50 UVvis spectrophotometer. Spectra were  
recorded in a range of 350-800 nm.  
3
Result and Discussion  
3
Ag NPs was prepared by the reaction of AgNO while  
Wheatgrass extract was used as solvent and the capping  
agent. Therefore, in the first step, crystal structure of Ag NPs  
was determined by X-ray diffraction analyses which the  
results of this analysis were indicated in figure 2. The  
diffraction peaks are in agreement with a face-centered cubic  
(FCC) phase that this list peals matches the reference file  
with JCPD= 04-0873. The spectrum displays five diffraction  
peaks at 2θ˚= 38.22, 44.37, 64.54 and 77.47 represent as well  
as this peaks related to (111), (200), (220) and (311) planet  
of Ag NPs with FCC crystalline structure. Additionally, the  
unassigned predominant sharp peak in 2θ˚=32.40 and  
unassigned weak peaks in 2θ˚= 28, 46 and 65, which are  
marked with the mark (#), correspond to crystalline phase of  
bioorganic in Wheatgrass extract on surface of Ag NPs  
(48,66,67).  
2
.2 Materials  
Silver nitrate was purchased from Merck Company for this  
study and was used without any renewed purification. Fresh  
samples of Wheatgrass parts consisting of leaves and stems  
were identified and collected. To remove pollution, all of  
3
glassware were cleaned with dilute HNO acid and rinsed  
with distilled water as well as dried in an oven.  
2
.2.1 Preparation of Wheatgrass Extract  
It is preferable that fresh Wheatgrass extract be used to  
+
0
reduce Ag to Ag . The plant was collected from its growing  
area and then it was washed with distillated water to remove  
any pollution and dried in the dark place. The dried plant was  
grinded to obtain powders with mesh 20 for extract using  
Soxhlet system. Hence, 5 g powder plant was added to  
Fig. 2. XRD pattern of biosynthesized Ag NPs using wheatgrass extract.  
144  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 142-149  
Figure 3 show the comparison of UV-visible absorption  
crystalline structure. The images display the monodispersity  
in all of the particles without any aggregation which this  
concept demonstrates the successful synthesis of silver  
nanoparticles in the presence of plant extracts as the capping  
agent and surfactant to control the morphology and size of  
nanoparticles. The size distribution of spherical  
nanoparticles was considered about 26-30 nm in diameter.  
Fundamentally, monodispersity, small size and spherical  
structure for Ag nanoparticles are three important factors in  
medicine applications. Hence, table 1 compares the used  
plant and the particle size of the silver nanoparticles in the  
previous work with Ag nanoparticles synthesized in this  
work.  
spectroscopy diagram of Wheatgrass extract, AgNO  
solution and Ag NPs. According to the results, colorless  
AgNO solution hasn’t any obvious peak at 350-800 nm  
range and light-yellow Wheatgrass extract has a weak peak  
at 410 nm. While the reaction of colorless AgNO salt  
3
3
3
solution with light-yellow Wheatgrass extract solution led to  
formation a dark-brown suspension which this suspension  
has a sharp peak about 450 nm at 350-800 nm range.  
Therefore, changing the color and subsequently the  
appearance of the peak in visible range confirm the success  
synthesis of Ag NPs by this green method which this  
observed peak is compatible with the previous report at 400-  
500 nm range (50).  
Fig.4: FTIR spectroscopy of prepared silver nanoparticles by green  
synthesis.  
3
Fig. 3: UV-vis spectroscopy of AgNO wheatgrass extract and Ag  
NPs.  
Additional information on the particle size distribution  
was obtained using DLS analysis. DLS size distribution  
histogram of as-prepared Ag NPs was illustrated in figure 6.  
The results show that size distribution ranges of  
biosynthesized Ag NPs are from 21 to 36 nm which this  
range matches with the result of TEM image. The average  
particle size distribution was calculated that this value was  
28 nm for Ag NPs. Narrow DLS size distribution histogram  
in this case is approved the monodispersity of silver  
nanoparticle and the main role of Wheatgrass extract as the  
capping agent.  
Moreover, FTIR analysis was carried out to approve the  
-1  
formation of Ag NPs at 4000-500 cm range. Figure 4  
indicates many peaks which these peaks related to functional  
gropes of Wheatgrass extract on surface of Ag nanoparticles.  
-1  
According to figure 4, three peaks at 3500 to 3400 cm range  
are corresponded to N-H stretching of the amide group and  
-1  
observed band at 3232 cm is assigned to O-H stretching of  
the pantothenic acid group. In addition, the very weak band  
of alkane CH stretching vibrations of methyl, methylene,  
-1  
and methoxy groups can be observed at 2922 cm and also  
the binary peak at 1632 and 1616 can be assigned to C=O  
stretching vibrations of pantothenic acid. Moreover, the peak  
at 1383 represented the CH bending and peak in 1111 could  
be related to COH bond stretching. Finally, the vibration of  
-1  
aromatic ring in Wheatgrass extract can be seen at 616 cm .  
The result of the FTIR analysis approved the capping agent  
role of the extract in the formation of Ag NPs which scheme  
1
showed this role of the extract in the formation and growth  
of nanoparticles.  
As a general trend, the low and high-magnification TEM  
image was carried out to investigate the morphology and size  
distribution of as-synthesized silver nanoparticles. High-  
magnification TEM image in figure 5a reveals that Ag NPs  
were formed as a spherical particle with high high-quality  
Fig. 6: DLS of green synthesized Ag NPs by wheatgrass extract  
145  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 142-149  
0
Scheme 1. The role of polyphenolic structures as the capping agent to contorol of Ag crystal growgh  
Fig. 5: TEM image of synthesized AgNPs using wheatgrass extract (a) high-magnification and (b) low magnification.  
Table 1: Deference plant for biosynthesis of silver nanoparticle and their size and morphology compared to prepared silver  
nanoparticle in this study.  
Plant  
Catharanthus roseus  
Tamarind fruit  
Azadirachta indica  
Prunus japonica (Rosaceae)  
Type of Nanoparticle  
Size (nm)  
35-55 nm  
200 nm  
34 nm  
Morphology  
Spherical  
Triangles, Pentagons and Hexagons (68)  
Spherical  
Spherical  
References  
(42)  
silver  
silver  
silver  
(49)  
(69)  
silver  
24 nm  
gold, silver &  
silver-gold alloys  
silver  
Azadirachta indica (neem)  
535 & 50100  
Spherical, Triangular, Hexagonal  
(50)  
Carica papaya  
Agropyron repens  
6080  
21-39  
spherical  
spherical  
(70)  
This work  
silver  
solution in the presence of the Wheatgrass extract led to  
preparing Ag NPs. Different characterization methods, such  
as XRD, TEM, FTIR, DLS and UV-vis spectroscopy,  
confirmed the successful synthesis of Ag NPs. The result of  
TEM image and DLS analysis were in agreement and  
showed average particle size 28 nm. Similarly, the spherical  
structures for Ag NPs were indicated by TEM images.  
4
Conclusion  
Green synthesis of nanomaterials is one of the very  
interesting topics in nanotechnology field. In this regard,  
biosynthesis using the plant and plant extract was progressed  
in recent years. In this work, the Wheatgrass extract was  
applied as reducing the agent to convert the Ag cation in  
AgNO  
+
0
3
solution to Ag . Thus, the reaction of AgNO  
3
146  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 142-149  
Additionally, FTIR results displayed that Wheatgrass extract  
was as the capping agent and surfactant to control of  
morphology and particle size of these nanoparticles. Finally,  
this method can be employed to synthesis any types of metal  
nanoparticles in large scale as well as remove many toxic  
chemical reagents for the preparation of nanomaterials.  
2013;31(2):34656.  
10. Safaei E, Mohebbi S. Photocatalytic activity of  
nanohybrid Co-TCPP@ TiO 2/WO 3 in aerobic  
oxidation of alcohols under visible light. J Mater Chem  
A. 2016;4(10):393346.  
11. Virkutyte J, Varma RS. Green synthesis of metal  
nanoparticles: biodegradable polymers and enzymes in  
stabilization and surface functionalization. Chem Sci.  
Acknowledgments  
2011;2(5):83746.  
We gratefully acknowledge the support and generosity  
of department of Medical Nanotechnology, School of  
Advanced Medical Sciences and Technologies, Shiraz  
University of Medical Sciences, Shiraz, Iran without which  
the present study could not have been completed.  
1
1
2. Moghimi SM, Hunter AC, Murray JC. Nanomedicine:  
current status and future prospects. FASEB J.  
2
005;19(3):31130.  
3. Daniel M-C, Astruc D. Gold nanoparticles: assembly,  
supramolecular chemistry, quantum-size-related  
properties, and applications toward biology, catalysis,  
and nanotechnology. Chem Rev. 2004;104(1):293346.  
4. Schmid G. Nanoparticles. Wiley VCH; 2005.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
1
1
5. Hosseinpour-Mashkani SM, Ramezani M. Silver and  
(
avoidance of guest authorship), dual submission,  
silver and  
characterization by thermal decomposition. Mater Lett.  
014;130:25962.  
6. Zharov VP, Galitovskaya EN, Johnson C, Kelly T.  
Synergistic enhancement of selective  
oxide  
nanoparticles:  
Synthesis  
manipulation of figures, competing interests and compliance  
with policies on research ethics. Authors adhere to  
publication requirements that submitted work is original and  
has not been published elsewhere in any language.  
2
1
1
nanophotothermolysis with gold nanoclusters: potential  
for cancer therapy. Lasers Surg Med. 2005;37(3):219–  
Competing interests  
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
26.  
7. Stark WJ, Stoessel PR, Wohlleben W, Hafner A.  
Industrial applications of nanoparticles. Chem Soc Rev.  
2015;44(16):5793805.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
18. Lai F, Wissing SA, Müller RH, Fadda AM. Artemisia  
arborescens essential oil-loaded solid lipid  
L
nanoparticles for potential agricultural application:  
preparation and characterization. Aaps Pharmscitech.  
2006;7(1):E10.  
Reference  
1
. Raveendran P, Fu J, Wallen SL. Completely “green”  
synthesis and stabilization of metal nanoparticles. J Am  
Chem Soc. 2003;125(46):139401.  
19. Gemeay AH, Aboelfetoh EF, El-Sharkawy RG.  
Immobilization of Green Synthesized Silver  
Nanoparticles onto Amino-Functionalized Silica and  
Their Application for Indigo Carmine Dye Removal.  
Water, Air, Soil Pollut. 2018;229(1):16.  
2
3
.
Iravani S. Green synthesis of metal nanoparticles using  
plants. Green Chem. 2011;13(10):263850.  
Sajjadi M, Nasrollahzadeh M, Sajadi SM. Green  
synthesis of Ag/Fe3O4 nanocomposite using Euphorbia  
peplus Linn leaf extract and evaluation of its catalytic  
activity. J Colloid Interface Sci. 2017;497:113.  
.
20. Mutlak FAH, Jaber M, Emad H. Effect of Laser Pulse  
Energy on the Characteristics of Au Nanoparticles and  
Applications  
in  
medicine.  
Iraqi  
J
Sci.  
4.  
Zhang Y, Liu S, Wang L, Qin X, Tian J, Lu W, et al.  
One-pot green synthesis of Ag nanoparticles-graphene  
nanocomposites and their applications in SERS, H 2 O  
2018;58(4C):23649.  
21. Koo J, Yang J, Cho B, Jo H, Lee KH, Kang MS.  
Nonvolatile Electric Double-Layer Transistor Memory  
Devices Embedded with Au Nanoparticles. ACS Appl  
Mater Interfaces. 2018;  
22. Bounoure F, Skiba ML, Besnard M, Arnaud P, Mallet E,  
Skiba M. Effect of iontophoresis and penetration  
enhancers on transdermal absorption of metopimazine. J  
Dermatol Sci. 2008;52(3):1707.  
23. Shrivas K, Nirmalkar N, Thakur SS, Deb MK, Shinde  
SS, Shankar R. Sucrose capped gold nanoparticles as a  
plasmonic chemical sensor based on non-covalent  
interactions: Application for selective detection of  
vitamins B 1 and B 6 in brown and white rice food  
samples. Food Chem. 2018;  
2, and glucose sensing. Rsc Adv. 2012;2(2):53845.  
5
6
.
.
Mirzaei H, Darroudi M. Zinc oxide nanoparticles:  
Biological synthesis and biomedical applications. Ceram  
Int. 2017;43(1):90714.  
Yu H, Gibbons PC, Kelton KF, Buhro WE.  
Heterogeneous seeded growth: a potentially general  
synthesis of monodisperse metallic nanoparticles. J Am  
Chem Soc. 2001;123(37):91989.  
7.  
Zheng N, Fan J, Stucky GD. One-step one-phase  
synthesis of monodisperse noble-metallic nanoparticles  
and their colloidal crystals.  
J Am Chem Soc.  
2006;128(20):65501.  
8
9
.
.
Narayanan KB, Sakthivel N. Biological synthesis of  
metal nanoparticles by microbes. Adv Colloid Interface  
Sci. 2010;156(1-2):113.  
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic  
nanoparticles using plant extracts. Biotechnol Adv.  
24. Haider A, Haider S, Kang I-K, Kumar A, Kummara MR,  
Kamal T, et al. A novel use of cellulose based filter paper  
containing silver nanoparticles for its potential  
application as wound dressing agent. Int J Biol  
Macromol. 2018;108:45561.  
147  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 142-149  
2
5. Sun Y, Xia Y. Shape-controlled synthesis of gold and  
silver nanoparticles. Science (80- ).  
002;298(5601):21769.  
cellulose sodium and silver nitrate. Mater Chem Phys.  
2008;108(2-3):4214.  
41. Sadowski Z, Maliszewska IH, Grochowalska B,  
Polowczyk I, Kozlecki T. Synthesis of silver  
nanoparticles using microorganisms. Mater Sci.  
2008;26(2):41924.  
42. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi  
N, Kalimuthu K, Thangamani S. Synthesis of silver  
nanoparticles using leaves of Catharanthus roseus Linn.  
G. Don and their antiplasmodial activities. Asian Pac J  
Trop Biomed. 2012;2(7):57480.  
2
2
2
6. Panáꢀek A, Kvitek L, Prucek R, Kolář M, Veꢀeřová R,  
Pizúrová N, et al. Silver colloid nanoparticles: synthesis,  
characterization, and their antibacterial activity. J Phys  
Chem B. 2006;110(33):1624853.  
7. Wang C, Daimon H, Onodera T, Koda T, Sun S. A  
General Approach to the Sizeand ShapeControlled  
Synthesis of Platinum Nanoparticles and Their Catalytic  
Reduction of Oxygen. Angew Chemie Int Ed.  
2
008;47(19):358891.  
43. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan  
MI, Kumar R, et al. Extracellular biosynthesis of silver  
nanoparticles using the fungus Fusarium oxysporum.  
Colloids surfaces B Biointerfaces. 2003;28(4):3138.  
44. Yang F-C, Wu K-H, Liu M-J, Lin W-P, Hu M-K.  
Evaluation of the antibacterial efficacy of bamboo  
charcoal/silver biological protective material. Mater  
Chem Phys. 2009;113(1):4749.  
45. Padalia H, Moteriya P, Chanda S. Green synthesis of  
silver nanoparticles from marigold flower and its  
synergistic antimicrobial potential. Arab J Chem.  
2015;8(5):73241.  
2
2
8. Liao H, Nehl CL, Hafner JH. Biomedical applications of  
plasmon resonant metal nanoparticles. 2006;  
9. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J,  
Murakami H, Ohki Y, et al. A plasmonic photocatalyst  
consisting of silver nanoparticles embedded in titanium  
dioxide. J Am Chem Soc. 2008;130(5):167680.  
0. Kundu S, Mandal M, Ghosh SK, Pal T. Photochemical  
deposition of SERS active silver nanoparticles on silica  
gel and their application as catalysts for the reduction of  
aromatic nitro compounds. J Colloid Interface Sci.  
3
2004;272(1):13444.  
3
3
1. Luo X, Morrin A, Killard AJ, Smyth MR. Application of  
nanoparticles in electrochemical sensors and biosensors.  
Electroanalysis. 2006;18(4):31926.  
2. Castro-Mayorga JL, Freitas F, Reis MAM, Prieto MA,  
Lagaron JM. Biosynthesis of silver nanoparticles and  
polyhydroxybutyrate nanocomposites of interest in  
46. Chandran SP, Chaudhary M, Pasricha R, Ahmad A,  
Sastry M. Synthesis of gold nanotriangles and silver  
nanoparticles using Aloevera plant extract. Biotechnol  
Prog. 2006;22(2):57783.  
47. Jayaprakash N, Vijaya JJ, Kaviyarasu K, Kombaiah K,  
Kennedy LJ, Ramalingam RJ, et al. Green synthesis of  
Ag nanoparticles using Tamarind fruit extract for the  
antibacterial studies. J Photochem Photobiol B Biol.  
2017;169:17885.  
48. Rao NH, Lakshmidevi N, Pammi SVN, Kollu P,  
Ganapaty S, Lakshmi P. Green synthesis of silver  
nanoparticles using methanolic root extracts of  
Diospyros paniculata and their antimicrobial activities.  
Mater Sci Eng C. 2016;62:5537.  
49. Ahmed S, Ahmad M, Swami BL, Ikram S. Green  
synthesis of silver nanoparticles using Azadirachta  
indica aqueous leaf extract. J Radiat Res Appl Sci.  
2016;9(1):17.  
50. Jagtap UB, Bapat VA. Green synthesis of silver  
nanoparticles using Artocarpus heterophyllus Lam. seed  
extract and its antibacterial activity. Ind Crops Prod.  
2013;46:1327.  
51. Mazzeo MF, Di Stasio L, D’Ambrosio C, Arena S,  
Scaloni A, Corneti S, et al. Identification of Early  
Represented Gluten Proteins during Durum Wheat Grain  
Development. J Agric Food Chem. 2017;65(15):3242–  
50.  
antimicrobial applications. Int  
018;108:42635.  
J Biol Macromol.  
2
3
3
3. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al.  
Antimicrobial effects of silver nanoparticles.  
Nanomedicine  
007;3(1):95101.  
Nanotechnology,  
Biol  
Med.  
2
4. Qasim M, Udomluck N, Chang J, Park H, Kim K.  
Antimicrobial activity of silver nanoparticles  
encapsulated in poly-N-isopropylacrylamide-based  
polymeric nanoparticles. Int  
J
Nanomedicine.  
2018;13:235.  
3
3
3
5. Maretti L, Billone PS, Liu Y, Scaiano JC. Facile  
photochemical synthesis and characterization of highly  
fluorescent silver nanoparticles. J Am Chem Soc.  
2009;131(39):1397280.  
6. Raffi M, Rumaiz AK, Hasan MM, Shah SI. Studies of  
the growth parameters for silver nanoparticle synthesis  
by inert gas condensation.  
J
Mater Res.  
2007;22(12):337884.  
7. Pyatenko A, Shimokawa K, Yamaguchi M, Nishimura  
O, Suzuki M. Synthesis of silver nanoparticles by laser  
ablation in pure water. Appl Phys A. 2004;79(4-6):803–  
52. Ben-Arye E, Goldin E, Wengrower D, Stamper A, Kohn  
R, Berry E. Wheat grass juice in the treatment of active  
distal ulcerative colitis: a randomized double-blind  
6.  
3
3
8. Rodriguez-Sanchez L, Blanco MC, Lopez-Quintela MA.  
Electrochemical synthesis of silver nanoparticles. J Phys  
Chem B. 2000;104(41):96838.  
9. Hiramatsu H, Osterloh FE. A simple large-scale  
synthesis of nearly monodisperse gold and silver  
nanoparticles with adjustable sizes and with  
placebo-controlled trial. Scand  
J
Gastroenterol.  
2002;37(4):4449.  
53. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. An  
efficient onepot procedure for the preparation of 1, 3, 4‐  
thiadiazoles in ionic liquid [bmim] BF4 as dual solvent  
and catalyst. Heteroat Chem An Int J Main Gr Elem.  
2008;19(3):3204.  
exchangeable  
surfactants.  
Chem  
Mater.  
2004;16(13):250911.  
40. Chen J, Wang J, Zhang X, Jin Y. Microwave-assisted  
54. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM.  
green synthesis of silver nanoparticles by carboxymethyl  
Aqueous NaHSO  
4 catalyzed regioselective and  
148  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 142-149  
versatile synthesis of 2-thiazolamines. Monatshefte für  
Chemie/Chemical Mon. 2008;139(10):12415.  
63. Mousavi SM, Hashemi SA, Arjmand M, Amani AM,  
Sharif F, Jahandideh S. Octadecyl Amine Functionalized  
Graphene Oxide towards Hydrophobic Chemical  
Resistant Epoxy Nanocomposites. ChemistrySelect.  
2018;3(25):72007.  
64. Rostamizadeh S, Amani AM, Mahdavinia GH, Shadjou  
N. Silica supported ammonium dihydrogen phosphate  
(NH4H2PO4/SiO2): A mild, reusable and highly  
efficient heterogeneous catalyst for the synthesis of 14-  
aryl-14-H-dibenzo [a, j] xanthenes. Chinese Chem Lett.  
2009;20(7):77983.  
5
5. Talaiekhozani A, Banisharif F, Bazrafshan M, Eskandari  
Z, Heydari Chaleshtari A, Moghadam G. Comparing the  
ZnO/Fe (VI), UV/ZnO and UV/Fe (VI) processes for  
removal of Reactive Blue 203 from aqueous solution.  
Environ Heal Eng Manag J. 2019;6(1).  
6. Talaiekhozani A, Amani AM. Enhancement of cigarette  
filter using MgO nanoparticles to reduce carbon  
monoxide, total hydrocarbons, carbon dioxide and  
nitrogen oxides of cigarette. J Environ Chem Eng.  
5
2
019;7(1):102873.  
65. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM.  
Solventfree chemoselective synthesis of some novel  
substituted 2arylbenzimidazoles using amino acid‐  
based prolinium nitrate ionic liquid as catalyst. J  
Heterocycl Chem. 2009;46(1):748.  
5
5
5
7. Eskandari Z, Talaiekhozani A, Talaie MR, Banisharif F.  
Enhancing ferrate (VI) oxidation process to remove blue  
203 from wastewater utilizing MgO nanoparticles. J  
Environ Manage. 2019;231:297302.  
8. Mahdavinia GH, Rostamizadeh S, Amani AM,  
Sepehrian H. Fast and efficient method for the synthesis  
of 2-arylbenzimidazoles using MCM-41-SO3H.  
Heterocycl Commun. 2012;18(1):337.  
9. Lohrasbi S, Kouhbanani MAJ, Beheshtkhoo N, Ghasemi  
Y, Amani AM, Taghizadeh S. Green Synthesis of Iron  
Nanoparticles Using Plantago major Leaf Extract and  
Their Application as a Catalyst for the Decolorization of  
Azo Dye. Bionanoscience. 2019;16.  
0. Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A,  
Amani AM, Taghizadeh S. Green synthesis of iron oxide  
nanoparticles by aqueous leaf extract of Daphne  
mezereum as a novel dye removing material. Appl Phys  
A. 2018;124(5):363.  
1. Kouhbanani MAJ, Beheshtkhoo N, Amani AM,  
Taghizadeh S, Beigi V, Bazmandeh AZ, et al. Green  
synthesis of iron oxide nanoparticles using Artemisia  
66. Allafchian AR, Mirahmadi-Zare SZ, Jalali SAH,  
Hashemi SS, Vahabi MR. Green synthesis of silver  
nanoparticles using phlomis leaf extract and  
investigation of their antibacterial activity.  
J
Nanostructure Chem. 2016;6(2):12935.  
67. Karuppiah M, Rajmohan R. Green synthesis of silver  
nanoparticles using Ixora coccinea leaves extract. Mater  
Lett. 2013;97:1413.  
68. Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf  
extract mediated green synthesis of silver nanoparticles  
from widely available Indian plants: synthesis,  
characterization, antimicrobial property and toxicity  
analysis. Bioresour Bioprocess. 2014;1(1):3.  
69. Saravanakumar A, Peng MM, Ganesh M, Jayaprakash J,  
Mohankumar M, Jang HT. Low-cost and eco-friendly  
green synthesis of silver nanoparticles using Prunus  
japonica (Rosaceae) leaf extract and their antibacterial,  
antioxidant properties. Artif cells, nanomedicine,  
Biotechnol. 2017;45(6):116571.  
70. Mude N, Ingle A, Gade A, Rai M. Synthesis of silver  
nanoparticles using callus extract of Carica papayaa  
first report. J Plant Biochem Biotechnol. 2009;18(1):83–  
6.  
6
6
vulgaris leaf extract and their application as  
heterogeneous Fenton-like catalyst for the degradation  
of methyl orange. Mater Res Express.  
018;5(11):115013.  
a
2
6
2. Rostamizadeh S, Abdollahi F, Shadjou N, Amani AM.  
MCM-41-SO 3 H: a novel reusable nanocatalyst for  
synthesis of amidoalkyl naphthols under solvent-free  
conditions. Monatshefte für Chemie-Chemical Mon.  
2013;144(8):11916.  
149