Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 103-108  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Potassium Halides - Impregnated Eggshell as a  
Heterogeneous Nanocatalysts for Biodiesel  
Production  
Mansoor Anbia*, Sholeh Masoomi, Sotoudeh Sedaghat, Mohammad Sepehrian  
Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-  
13114, Iran  
Received: 23/11/2018  
Accepted: 08/01/2019  
Published: 30/03/2019  
Abstract  
In this study, Potassium halides-doped Calcium Oxide (CaO) was synthesized as heterogeneous nanocatalysts for  
transesterification of waste cooking oil. The chicken eggshell wastes were used as raw materials to synthesize calcium oxide. The  
3
calcium carbonate (CaCO ), principal constituent in the eggshell, was changed to calcium oxide by calcining at 873 K for 4 h.  
After that, the calcium oxide was impregnated with potassium iodide (KI) and potassium fluoride (KF) via wet impregnation  
method. The textural properties of the solid oxide catalyst were characterized by base strength, field emission scanning electron  
microscopy (FE-SEM), powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The basic  
strengths of the catalysts were determined applying Hammett indicator. The yield of nanocatalysts evaluated by using the  
prepared catalysts in waste cooking oil transesterification with methanol for at 338 K 2 h. the catalytic activity depends on  
several factors such as, base strength, Impregnation and calcination processes and impregnated Compound. The formed KCaF3  
was the major active element for the catalytic activity in KF/CaO nanocatalyst, however, this activity was not observed in  
KI/CaO nanocatalyst. For the reason of presenting of this component, the Ca2+ in KF/CaO acts as a stronger Lewis acid and  
exhibits high catalytic activity. Biodiesel yield for KF/CaO catalyst and KI/CaO was 91.18 % and 87.69%, respectively.  
Keywords: Heterogeneous nanocatalyst, Eggshell wastes, Basic nanocatalyst, Biodiesel Production  
1
influential parameter in preparation of biodiesel. Catalysts  
1
Introduction  
can be either heterogeneous or homogeneous and basic or  
acidic. The reaction is carried out by homogeneous base  
catalysts faster than acidic catalysts. Homogeneous  
catalysts which are commonly used include sodium  
hydroxide and potassium hydroxide [3]. The homogeneous  
catalyst has many drawbacks such as instrument  
corrosiveness, difficulty in catalyst recovery, and health  
dangers to the operators because of the generation of  
enormous waste stream in washing steps [6].  
In comparison, heterogeneous catalysts have the  
advantage that separation and regeneration of the catalyst is  
easy and inexpensive, making the production process more  
economical, causing less environmental problems and the  
product is pure [7-10]. Heterogeneous basic catalysts  
contain alkaline earth metal oxides, like hydrotalcites,  
magnesium oxide (MgO) and calcium oxide (CaO) [11,  
Renewable energy expansion has been focused  
universal, because of the limited reserve of fossil fuels and  
increase in oil prices and the increasing emissions of  
polluting [1]. Biodiesel is one of the most substituted  
energy resources and is environmental friendly. Biodiesel  
can be synthesized by different methods such as Trans-  
esterification. In this method the material is converted to a  
desired product at a reasonable rate, using a catalytic  
process [2, 3]. Biodiesel, identified as the fatty acid methyl  
esters, is made by Trans-esterification of renewable  
biological resources such as for example vegetable oils  
with an alcohol in the presence of the catalysts and in this  
technique glycerol is really a useful byproduct [4, 5]. A  
novel approach in this process is to use “green” method  
based on heterogeneous catalyst. Nature of catalyst is an  
12].  
Corresponding Author: Mansoor Anbia, Research  
Laboratory of Nanoporous Materials, Faculty of Chemistry,  
Iran University of Science and Technology, Tehran 16846-  
Recently the application of natural calcium resources  
from waste materials for biodiesel production has been  
considered as a novel trend [13]. By using eggshell wastes  
as raw material to synthesize the desired catalysts, the  
heterogeneous catalysts can be produced with low cost and  
1
7
3114, Iran. Mobile: 0098 912 1104931; Tel: 0098 21  
7240516; Fax: 0098 21 772491204; Email:  
anbia@iust.ac.ir  
103  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 103-108  
eliminate the wastes [14]. The eggshells contain a network  
of protein fibers, in communication with crystals of  
comparable. The prepared CaO was powdered and  
immersed in 1520 mL potassium halides solution by the  
mass ratio of 0.25 (mass proportion of potassium halides to  
CaO) for 1 h. Finally, the samples were heated at 373 K for  
7 h followed by 4 h calcination in muffle furnace at 873 K  
[29].  
magnesium carbonate (MgCO  
CaCO ), calcium phosphate (Ca (PO  
and water. CaCO , the key constituent of the eggshell  
96%), can be an amorphous crystal that happens generally  
3
), calcium carbonate  
(
3
3
4 2  
) ), organic materials  
3
(
in the form of calcite [15, 16]. Using wastes draw great  
interest because of the eggshell waste as a renewable, low  
cost, Eco-material for synthesis of catalyst and eggs are  
part of daily meal the majority of the countries [17-19]. The  
catalytic activity of CaO can be enhanced with  
modification of CaO surface with potassium halides to  
create strong active basic sites [20-22].  
2.3 Characterization  
FT-IR spectra was recorded on Shimadzu  
-1  
spectrometer 8400 spectrometer in the 4000400 cm  
scanning range (KBr pellet technique). PXRD patterns  
were attained by a JDX-8030 diffractometer using Cu-K  
a
α
radiation operating at 30 kV and 20 mA over a wide angle  
Although the solid phase catalytic techniques have  
already been studied generally, the industrial applications  
are restricted [23, 24]. Heterogeneous catalytic techniques  
are often time consuming and mass transfer resistant [25].  
New research indicates that nanocatalysts may solve above  
problems, because they have numerous active sites and  
high catalytic activities [26, 27].  
The deposition of potassium halide nanoparticles  
increases the surface area of the catalyst and basic strength.  
2
Basic phases (like K O) are obtained from decomposition  
of potassium halides at high temperatures, associated with  
potassium halides which increase the activity of the catalyst  
(2θ range of 5–80°) with a step size of 0.015° at a scanning  
-1  
speed of 0.6° min . The morphology and surface features  
of the nanocatalysts and calcined eggshells were tested by a  
scanning electron microscope (SEM Camscan- Mira 3-  
XMU).  
Hammett indicator were applied to determine the basic  
strengths of the catalysts. The sample (100 mg) was shaken  
with cyclohexane (5 mL), then three drops of a Hammett  
indicator (0.1% w/w in benzene) was added to a suspended  
sample during shaking vigorously. After equilibration,  
indicators undergo the following color changes in the  
presence of the basic samples: Benzidine (H_ = 22)  
colorless to purple, 4-nitroaniline (H_ = 18.4) yellow to  
orange, 2,4-dinitroaniline (H_ = 15) yellow to violet, and  
Phenophtalein (H_ = 9.8) colorless to red.  
[28].  
herein, an eggshell has been utilized as a costless mean  
to introduce a heterogeneous catalyst for biodiesel synthesis  
of waste cooking oil. As mentioned earlier, potassium  
halides-doped CaO catalysts were well synthesized by wet  
impregnation method. The calcination and impregnation  
with particle sizes of (3040 nm) improved the activity of  
catalyst surface. The high activity of KF/CaO revealed by  
the transesterification at 338 K, 400 rpm, 12:1 methanol  
ratio, owing to the formation of KCaF3 as a novel  
crystalline phase, enhanced the activity and stability of  
catalyst. This paper is a sample of comprehensive report for  
management of municipal solid waste, which led to  
produce green fuel.  
2.4 Transesterification reaction  
The laboratory scale transesterification of waste  
cooking oil was carried out using a thermometer, magnetic  
stirrer and 250-mL 3-necked flask equipped with a water  
cooled condenser, in oil bath at a temperature of 338 K. At  
first 7.0 ml methanol was added to 0.2 g catalyst and stirred  
at 400 rpm. After a few minutes, 12.5 g heated refined oil  
was added to flask, this reaction lasted for 2 h. All  
experiments were performed under atmospheric pressure  
and repeated several times. Eventually, centrifuge is  
employed to separate the prepared catalyst.  
2
. Material and Methods  
2
.5 Methyl ester analysis  
A gas chromatograph equipped with a mass selective  
2
.1 Materials  
Eggshells were obtained as wastes from university  
detector (Agilent 7890/5975C VLMSD) was used to  
analyze the biodiesel samples and HP-5 MS column was  
applied to separate the FAMEs. FAMEs samples were  
diluted (1:1000) in N-Heptan that contains an internal  
standard (GLC 90, SUPELCO). The chromatographic  
conditions included: detector: 523 K, injector: 513 K,  
dormitory. To remove impurities and dust, the eggshell was  
washed with water. Finally, the eggshells were dried an  
oven. Waste cooking oil was purchased from Pastry factory  
in Tehran, Iran. Both potassium iodide and potassium  
fluoride were analytical grade (Merck, Germany).  
Methanol 99.5% and acetone 99.5% were purchased from  
Merck company, too. All solutions were prepared by using  
deionized water.  
-1  
-1  
column: 232-270 at 303 K min , 200-232 at 275 K min  
-1  
and 100-200 at 323 K min . The methyl ester band area  
ratio to the internal standard band area was estimated for  
each run [30].  
2.2 preparation of Catalyst  
In the CaO catalyst production, calcination method was  
used. The dried eggshell waste (100 mesh) was calcined in  
the atmosphere pressure at 1273 K for 4 h (heating rate  
3 Results and Discussion  
3.1 Characterization  
2
̊
C/min). Before usage, the resulting white powder was  
The activities of catalysts were related to their basic  
strength, i.e. the higher base strength of the catalyst can  
lead to the higher biodiesel yields [28]. Impregnated  
catalysts showed intense increase (87.69% and 91.18%) in  
biodiesel yield. In contrast, oil percent conversion of CaO  
preserved in the fastened vessel to prevent reacting with  
moisture and carbon dioxide in air. Subsequently, the CaO  
catalyst was impregnated with potassium halides. All  
Catalysts were synthesized under the same conditions to be  
104  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 103-108  
catalyst is 20.62%. While the base strengths of catalysts are  
nearly average and identical about 9.8 to 15. KF/CaO  
revealed base strength less than 15.0 while it exhibited high  
catalytic activity. Therefore, higher base strength is needed  
for the catalytic transesterification reaction, but it's not  
enough Thus, the catalytic activity depends on other factors  
that there is no external mass transfer limitation for  
impregnated catalysts.  
Figure 2 has shown the XRD pattern of CaO, KF/CaO  
and KI/CaO, in three catalysts which confirmed the  
existence of crystalline phase of CaO. Catalyst is composed  
of CaO (32.3º, 37.28º 53.9º, 64.2º, 67.34º) Ca(OH)2 (18º,  
29º, 47.2º, 50.82º, 63º) [31]. As can be seen, diffraction  
peaks of KF and KI in KF/CaO and KI/CaO, are  
disappeared respectively, and a new diffraction peak is  
detected which is attributed to KCaF3 (20º, 28.4º, 32.12º,  
37.28º, 40.5º, 79.7º) and KF (34.1º, 71.8º). This phase was  
created during the impregnation of the Potassium fluoride  
in the supported lattice through capillary action and later  
activation process [21]. The existence of other forms, such  
[21].  
Impregnation and calcination processes have allowed  
the creation of nanostructures with an average pore size that  
is recorded in Table 1. SEM analysis shows a layered  
structure of the calcined shells with a same irregular shapes  
Figure  
1 (A), and two images of nanostructured  
impregnated catalysts Figure 1 (B,c) . As can be ssen the  
crystal morphologies of KF/CaO) Figure 1 (B) and KI/CaO  
Figure 1 (C) are totally different.  
2 3  
as KO and KO in KF/CaO and KO3 in KI/CaO is owing  
In addition, the enormous catalytic active site could  
enhance the contact between oil and alcohol, leading to  
improve catalytic efficiency. These results also indicated  
that Potassium halide doped-CaO catalyst can inmprove  
higher TONs compared to that of CaO catalyst, meaning  
to the interaction between CaO and potassium halides.  
XRD patterns of nanocatalysts indicated the existence of  
calcium hydroxide, Ca(OH)2, which is completely  
vanished at 873 K and converted to CaO.  
Table 1: Basic strengths, particle size and catalytic performances of solid base catalysts  
Catalyst  
Tc (K)  
Basic strength  
Particle size (nm)  
Conversion (%)  
CaO  
1000  
600  
H_< 15.0  
28.72  
29.96  
20.62  
91.18  
KF/CaO  
9.8 < H_< 15.0  
KI/CaO  
600  
9.8 < H_< 15.0  
42.97  
87.69  
A
B
C
Figure 1: SEM images of catalysts; CaO (A), KF/CaO (B), KI/CaO (C).  
105  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 103-108  
However, this phase was generated by the reaction  
between water and calcined shells during wet impregnation.  
The crystallite sizes determined by XRD patterns of  
catalysts were all in the range of 30-40 nm [31, 32].  
Moreover, the occurrence of stretching vibrations of O\C\O  
in carbonates was established by the broad band appeared  
−1  
−1  
at 1460 cm and two stretching band at 712 cm and 875  
1
cm [30].  
Figure 3 has depicted the FT-IR spectrums of prepared  
1
catalysts over the range of 4000-400 cm . It can be seen  
that the sharp band at 3645 cm is assigned to the OH  
groups of Ca(OH) of each sample, which was primarily  
3.2 Catalytic activity  
−1  
The catalytic activity of CaO loaded with two  
potassium compounds in the waste cooking oil  
transesterification was done. For the suitable comparison,  
the same reaction conditions were applied for each  
prepared catalyst in all experiments (Table 1). Formation of  
Ca(OH)2, KO2 and KO3 enhanced Connecting locations  
for alcohol molecules, therefore increases catalytic activity.  
2
identified by the XRD results. Although this phase has an  
ability to improve the catalytic activity but a high amount  
2
of Ca(OH) could simply cause saponification in biodiesel  
preparation [32, 33]. Also, Broad band in the range of  
−1  
−1  
3
1003400 cm and band at 1640 cm are attributed to  
physically-sorbed water stretching vibrations [30].  
Figure 2: XRD patterns of catalysts, blue spectra for CaO, red spectra for KI/CaO and yellow spectra for KF/CaO  
Figure 3: FT-IR spectra of catalysts.  
106  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 103-108  
It can be suggested that the obtained active sites are  
sufficient to react with triglyceride, leading to the  
completion of the reaction. “F” element has higher  
electronegativity than “I”, for this reason “F” tends to form  
new structures with “Ca” and “K”, and the new structure is  
KCaF3 as active site. Based on eley-rideal mechanism,  
alcohol chemisorbed on to the single site of the catalyst  
surface, so presence of “F” causes the Ca2+ in KCaF3 to be  
a stronger Lewis acid that has stronger attraction for  
CH3O- [20]. The catalytic activity depends on ability to  
form methoxide ion. Also, F- is a stronger Lewis base with  
stronger attraction to H+, which makes it better to attack  
carbonyl group (C=O) and leads to further improve in rate  
and efficiency of transesterification. Accordingly, the  
KF/CaO with nanostructure and active KCaF3 has higher  
catalytic activity than KI/CaO. Superior activity and  
stability are because of active component and its structure.  
References  
1
.
Viriya-Empikul, N., Krasae, P., Nualpaeng, W., Yoosuk, B.  
and Faungnawakij, K., (2012). Biodiesel production over Ca-  
based  
solid  
catalysts  
derived  
from  
industrial  
wastes. Fuel, 92(1), pp.239-244.  
2
3
.
.
Demirbas, A., (2009). Biofuels securing the planet’s future  
energy needs. Energy Conversion and Management, 50(9),  
pp.2239-2249.  
Aransiola, E.F., Ojumu, T.V., Oyekola, O.O., Madzimbamuto,  
T.F. and Ikhu-Omoregbe, D.I.O., (2014). A review of current  
technology for biodiesel production: State of the art. Biomass  
and bioenergy, 61, pp.276-297.  
4. Hu, S., Guan, Y., Wang, Y. and Han, H., (2011). Nano-  
magnetic catalyst KF/CaOFe3O4 for biodiesel  
production. Applied Energy, 88(8), pp.2685-2690.  
Suryaputra, W., Winata, I., Indraswati, N. and Ismadji, S.,  
013. Waste capiz (Amusium cristatum) shell as a new  
5
.
2
heterogeneous catalyst for biodiesel production. Renewable  
Energy, 50, pp.795-799.  
6
7
.
.
Lee, D.W., Park, Y.M. and Lee, K.Y., (2009). Heterogeneous  
base catalysts for transesterification in biodiesel synthesis.  
Catalysis Surveys from Asia, 13(2), pp.63-77.  
Granados, M.L., Poves, M.Z., Alonso, D.M., Mariscal, R.,  
Galisteo, F.C., Moreno-Tost, R., Santamaría, J. and Fierro,  
J.L.G., (2007). Biodiesel from sunflower oil by using activated  
calcium oxide. Applied Catalysis B: Environmental, 73(3-4),  
pp.317-326.  
4
Conclusions  
In this study, a solid waste i.e. eggshell has been used  
as  
a
cheap resource to develop an inexpensive  
heterogeneous catalyst for biodiesel synthesis of waste  
cooking oil. In summary, potassium halides-doped CaO  
catalysts were successfully synthesized with wet  
impregnation method. Catalyst surface was consists of  
potassium halides and portlandite. The calcination and  
impregnation with particle sizes of 3040 nm) improved  
active surface. The high activity of KF/CaO revealed for  
transesterification at 338 K, 400 rpm, 12:1 methanol ratio,  
because of formation of KCaF3 as a new crystalline phase,  
which increased the catalytic activity and stability of  
catalyst. Catalyst activity is as follows: KF/CaO >KI/CaO.  
This paper is a comprehensive report for management of  
municipal solid waste used to produce green fuel.  
8. Kafuku, G. and Mbarawa, M., (2010). Alkaline catalyzed  
biodiesel production from Moringa oleifera oil with optimized  
production parameters. Applied Energy, 87(8), pp.2561-2565.  
9
.
Ma, H., Li, S., Wang, B., Wang, R. and Tian, S., (2008).  
Transesterification of Rapeseed Oil for Synthesizing Biodiesel  
by  
K/KOHAl2O3  
as  
Heterogeneous  
Base  
Catalyst. Journal of the American Oil Chemists' Society, 85(3),  
pp.263-270.  
1
1
0. Sharma, Y.C., Singh, B. and Upadhyay, S.N., (2008).  
Advancements in development and characterization of  
biodiesel: a review. Fuel, 87(12), pp.2355-2373.  
1. Marinković, D.M., Stanković, M.V., Veličković, A.V.,  
Avramović, J.M., Miladinović, M.R., Stamenković, O.O.,  
Veljković, V.B. and Jovanović, D.M., (2016). Calcium oxide  
Aknowledgment  
We thank Dr. Barat Ghobadian for his help for  
biodiesel analysis.  
as  
a
promising heterogeneous catalyst for biodiesel  
production: current state and perspectives. Renewable and  
Sustainable Energy Reviews, 56, pp.1387-1408.  
2. Liu, X., He, H., Wang, Y. and Zhu, S., (2007).  
Transesterification of soybean oil to biodiesel using SrO as a  
solid base catalyst. Catalysis Communications, 8(7), pp.1107-  
1111.  
1
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission,  
13. Hsieh, L.S., Kumar, U. and Wu, J.C., (2010). Continuous  
production of biodiesel in a packed-bed reactor using shell–  
core structural Ca (C3H7O3) 2/CaCO3 catalyst. Chemical  
Engineering Journal, 158(2), pp.250-256.  
manipulation of figures, competing interests and  
compliance with policies on research ethics. Authors  
adhere to publication requirements that submitted work is  
original and has not been published elsewhere in any  
language.  
1
4. Viriya-Empikul, N., Krasae, P., Puttasawat, B., Yoosuk, B.,  
Chollacoop, N. and Faungnawakij, K., (2010). Waste shells of  
mollusk and egg as biodiesel production catalysts. Bioresource  
technology, 101(10), pp.3765-3767.  
Competing interests  
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
15. Buasri, A., Chaiyut, N., Loryuenyong, V., Wongweang, C. and  
Khamsrisuk, S., (2013). Application of eggshell wastes as a  
heterogeneous catalyst for biodiesel production. Sustainable  
Energy, 1(2), pp.7-13.  
1
6. Oliveira, D.A., Benelli, P. and Amante, E.R., 2013. A  
literature review on adding value to solid residues: egg  
shells. Journal of cleaner production, 46, pp.42-47.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
17. Boro, J., Deka, D. and Thakur, A.J., (2012). A review on solid  
oxide derived from waste shells as catalyst for biodiesel  
production. Renewable  
and  
Sustainable  
Energy  
Reviews, 16(1), pp.904-910.  
107  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 103-108  
1
1
8. Sharma, Y.C., Singh, B. and Korstad, J., (2010). Application  
of an efficient nonconventional heterogeneous catalyst for  
biodiesel synthesis from Pongamia pinnata oil. Energy &  
Fuels, 24(5), pp.3223-3231.  
9. Mansir, N., Teo, S.H., Rashid, U., Saiman, M.I., Tan, Y.P.,  
Alsultan, G.A. and Taufiq-Yap, Y.H., (2018). Modified waste  
egg shell derived bifunctional catalyst for biodiesel production  
from high FFA waste cooking oil. A review. Renewable and  
Sustainable Energy Reviews, 82, pp.3645-3655.  
0. Gupta, J., Agarwal, M. and Dalai, A.K., (2017). Experimental  
evaluation of the catalytic efficiency of calcium based natural  
and modified catalyst for biodiesel synthesis. International  
Journal of Green Energy, 14(11), pp.878-888.  
1. Wen, L., Wang, Y., Lu, D., Hu, S. and Han, H., (2010).  
Preparation of KF/CaO nanocatalyst and its application in  
biodiesel production from Chinese tallow seed oil. Fuel, 89(9),  
pp.2267-2271.  
methanol. Applied Catalysis A: General, 334(1-2), pp.357-  
365.  
26. Lani, N.S., Ngadi, N., Yahya, N.Y. and Rahman, R.A., (2017).  
Synthesis, characterization and performance of silica  
impregnated calcium oxide as heterogeneous catalyst in  
biodiesel production. Journal of Cleaner Production, 146,  
pp.116-124.  
27. Shu, Q., Yang, B., Yuan, H., Qing, S. and Zhu, G., (2007).  
Synthesis of biodiesel from soybean oil and methanol  
catalyzed by zeolite beta modified with La3+. Catalysis  
Communications, 8(12), pp.2159-2165.  
28. Xie, W. and Li, H., 2006. Alumina-supported potassium  
iodide as a heterogeneous catalyst for biodiesel production  
from soybean oil. Journal of Molecular Catalysis A:  
Chemical, 255(1-2), pp.1-9.  
29. Vyas, A.P., Subrahmanyam, N. and Patel, P.A., (2009).  
Production of biodiesel through transesterification of Jatropha  
oil using KNO3/Al2O3 solid catalyst. Fuel, 88(4), pp.625-628.  
30. Kesić, Ž., Lukić, I., Brkić, D., Rogan, J., Zdujić, M., Liu, H.  
and Skala, D., (2012). Mechanochemical preparation and  
characterization of CaO· ZnO used as catalyst for biodiesel  
synthesis. Applied Catalysis A: General, 427, pp.58-65.  
31. Liu, H., Su, L., Shao, Y. and Zou, L., (2012). Biodiesel  
production catalyzed by cinder supported CaO/KF particle  
catalyst. Fuel, 97, pp.651-657.  
2
2
2
2
2. Yang, L., Zhang, A. and Zheng, X., (2009). Shrimp shell  
catalyst for biodiesel production. Energy & Fuels, 23(8),  
pp.3859-3865.  
3. Avhad, M.R. and Marchetti, J.M., (2015). A review on recent  
advancement in catalytic materials  
for  
biodiesel  
production. Renewable and Sustainable Energy Reviews, 50,  
pp.696-718.  
2
2
4. Liu, X., He, H., Wang, Y., Zhu, S. and Piao, X., (2008).  
Transesterification of soybean oil to biodiesel using CaO as a  
solid base catalyst. Fuel, 87(2), pp.216-221.  
5. Kouzu, M., Kasuno, T., Tajika, M., Yamanaka, S. and Hidaka,  
J., (2008). Active phase of calcium oxide used as solid base  
catalyst for transesterification of soybean oil with refluxing  
́
32. Vicente, G., Martınez, M., Aracil, J., (2004). Integrated  
biodiesel production: a comparison of different homogeneous  
catalysts systems. Bioresource Technology, 92(3), pp.297-305.  
33. Wu, X., Kang, M., Zhao, N., Wei, W. and Sun, Y., (2014).  
Dimethyl carbonate synthesis over ZnOCaO bi-functional  
catalysts. Catalysis Communications, 46, pp.46-50.  
108