Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 150-157  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Preparation and Characterization of Husk Based  
Carbons: Effect of the Temperature  
1*  
2, 3  
4
1
Yacouba Sanou , Mande Seyf-Laye Alfa-Sika , Ephraim Vunain , Samuel Pare  
1
- Laboratory of Analytical, Environmental and Bio-Organic Chemistry, UFR/SEA, University Ouaga 1 Prof. Joseph KI-  
ZERBO, 03 BP 7021, Burkina Faso.  
2
- Water Chemistry Laboratory, FAST, University of Lome, BP. 1515, Togo  
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing  
00083, P.R. China  
- Chancellor College, University of Malawi, Department of Chemistry, Malawi  
3
1
4
Received: 05/12/2018  
Accepted: 29/03/2019  
Published: 30/03/2019  
Abstract  
This study on the production of activated carbons (AC) prepared through chemical activation using sodium hydroxide  
solution consisted to evaluate the effect of temperature using two values (500°C and 650°C). The characterization of the AC were  
carried out using Brunauer-Emmett-Teller (BET) experiments, Scanning Electron Microscopy (SEM), Energy Dispersive  
Spectroscopy (EDS) and Fourier Transform- Infrared (FT-IR). A comparison of pore characteristics with UIPAC’s norms  
2
showed that all the produced carbons were mesoporous and both carbons had low surface areas of 12.13 and 29.45 m /g for AC1  
and AC2, respectively; AC1 and AC2 being AC prepared at 500°C and 650°C, respectively. Low surface areas were due to the  
activation solution and the temperature of pyrolysis of biomass which affect strongly the characteristics of carbon. At Zero Point  
Charge, pH of both carbons is too closed and basic indicating their ability to fix cationic species on their surface.  
Keywords: Activated carbon, Chemical activation, Rice husk, Temperature, Surface area.  
1
adsorbates. Activated charcoals are well known as an  
1
Introduction  
alternative to biological and physical-chemical methods in  
wastewater treatment due to its good adsorptive ability [5].  
Studies have been focused on the preparation of new  
composite adsorbents with low-cost materials that have the  
additional virtue of possessing improved adsorptive  
properties compared to other conventional adsorbents [6-8].  
Activated carbons can be used for the treatment of water,  
purification of petrol and adsorption of gas [9]. The use of  
activated carbons requires a knowledge of parameters such  
as microstructure, surface functional groups and elemental  
composition which will allow to explain the efficiency and  
sustainability of the carbons [10].  
Rice husk is of the interest as it is an agricultural by-  
product, non-toxic, bio-degradable, abundant and  
renewable resource [11, 12]. Rice husk yields a high ash  
content (19%) mainly consists of silica and carbon [13].  
Rice straw is one of the most abundant natural sources in  
the world. Its annual production is about 731 million  
tonnes, which is distributed in Asia (667.6 million tonnes),  
America (37.2 million tonnes), Africa (20.9 million  
tonnes), Europe (3.9 million tonnes), and Oceania (1.7  
million tonnes) [14, 15]. It is a kind of lignocellulosic  
biomass which contains about 3247% cellulose, 1927%  
hemicellulose, and 524% lignin [16, 17]. This material is  
one of the most agricultural wastes listed in Burkina Faso.  
Agriculture is one of the largest area of the economy of  
Burkina Faso. Agricultural by/products and wastes are  
discharged in the environment and can become a threat for  
the environment and human health. In the context of  
sustainable development, the protection of environment  
became a socio-economic challenge. Therefore, researches  
are looking for technical solutions to reduce or valuate solid  
wastes coming from human activities. Wastes from  
agricultural by products can be used for composting, biogas  
production and carbon preparation. In general, commercial  
adsorbents including carbons, granular ferric hydroxide,  
and others are described as limited in their use due to high  
operational cost for developing countries. For this reason,  
other economic and eco-friendly materials are looked for.  
Activated carbons (AC) can be produced from many  
lignocellulosic biomasses such as coconut shell [1], maize  
cob [2], Jatropha wood [3], apricot stone [4], etc. Many  
researches were focused on modifying AC surfaces that  
have the ability to interact with both organic and inorganic  
Corresonding author: Yacouba Sanou, Laboratory of  
Analytical, Environmental and Bio-Organic Chemistry,  
UFR/SEA, University Ouaga 1 Prof. Joseph KI-ZERBO,  
0
3
BP E-mail:  
7021,  
Burkina  
Faso.  
prosperyacson@gmail.com. Mobile: (+226) 72191530.  
1
50  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 150-157  
In this study, rice husk is catalyzed through a chemical  
activation in order to increase surface area and pores of the  
adsorbent. The general objective of this work is to prepare  
activated carbons based on rice husk using chemical  
activation. The effect of temperature on the prepared  
carbons will be studied.  
3.1.2. Porosity  
Pore dimensions of both carbons are listed in Table 1.  
As highlighted, the pore radius of two carbons are ranging  
between 10 and 250 Å indicating a mesoporous structure of  
both AC [21]. According to this classification, mesoporous  
materials have a smaller pore volume. Although being  
mesoporous, GAC2 has the higher pore volume due to the  
enhancement of pores by the high temperature. With the  
higher temperature of pyrolysis, the more the interaction  
between the rice husk and NaOH solution is high causing  
an increase of pore dimensions. At a higher temperature,  
the chemical activation affects significantly the  
development of surface area and the evolution of pore  
structure [20]. So, mesopores are predominant in both AC  
with some micropores.  
2
Material and Methods  
1
.1 Preparation of activated carbons  
Rice Husk (RH) of TS2 type was obtained from rice  
production fields at Koubri Village (12°10'3" N, 1°21'20"  
W) in Burkina Faso. RH was washed thoroughly to remove  
any dirt and then dried in a stove at 105°C during 2 h.  
Chemical activation of the dried RH was done using 0.16 N  
NaOH. Each activated RH was filtered and dried in an oven  
at 120°C for 4 h. The carbonization of dried activated RH  
was carried in an oven at 500°C (denoted as AC1 hereafter)  
or 650°C (denoted as AC2 hereafter) for 2 h using a heating  
speed of 30°C/min. This protocol is similar to the one  
described by Thajeel et al. [18] where the activated RH was  
washed before the pyrolysis step.  
Table 1: Pore dimensions of the AC  
3
Carbons  
Pore volume (cm /g) Pore radius (Å)  
AC1  
AC2  
0.016  
0.035  
10.5  
36  
Norm of UIPAC 0.1-0.4  
10-250  
2
.2. Characterization of prepared carbons  
The surface area and pore dimensions of carbons were  
Figure 1 shows the distribution of pore volume of AC2  
as obtaining by Barrett-Joyner-Halenda (BJH) method. The  
cumulative distribution of AC2 indicates a decrease of pore  
volume with pore radius increasing. The concentration of  
determined  
experiments with Quantachrome NovaWin  
Acquisition and Reduction for NOVA instruments ©1994-  
010 (Quantachrome Instruments, Version 11.0) at liquid  
using Brunauer-Emmett-Teller (BET)  
-
Data  
pore volume between  
2 and 15 nm indicates the  
2
predominance of mesopores. However, the presence of pore  
volume with a radius less than 2 nm indicates that there are  
some micropores on AC2 surface. The pore volume  
distribution of AC1 using Dubinin-Astakhov (DA) method  
is given in Figure 2 where the maximum pore volume is  
concentrated between 10 and 11 Å (fig. 2).  
nitrogen temperature. Elemental composition of carbons  
was analyzed with Energy Dispersive Spectroscopy (EDS)  
using a dimensional analyzer 7401F (JOEL, JED-2300  
analysis Station). While Scanning Electron Microscopy  
(SEM) was used to determine the surface morphology and  
microstructure of carbon particles using a microscope ICT-  
VAST. Fourier Transform-Infrared spectra of charcoal  
material were recorded to detect the surface functional  
groups with an infrared spectrophotometer (TENSOR 27-  
BRUKER GERMANY) operating in the range of 4000-  
0.04  
0
0
0
0
.035  
0.03  
.025  
EPV  
CPV  
-
1
4
00 cm using the potassium bromate pellet (KBr) method.  
The point of Zero Charge (pHPZC was determined  
according to the method described by Noh et al. [19].  
)
0
.02  
.015  
.01  
3
Results and Discussion  
3
3
.1. Microstructural characteristics  
.1.1. Surface area  
0
Prepared carbons have a granular form and BET  
surfaces obtained from multipoint plots showed a surface  
.005  
0
2
areas of 12.13 and 29.45 m /g for AC1 and AC2,  
respectively. The increase of temperature caused an  
increase of the surface area of the AC. Indeed, the increase  
of temperature during the carbonization of rice husk  
involves the development of many pores causing an  
increasing of surface area. The more the temperature of  
pyrolysis is high, the more the surface area is likely to be  
high. The chemical activation affects significantly the  
development of surface area and the evolution of pore  
structure [20].  
0
100 200 300 400 500 600  
Pore radius(Å)  
Figure 1: Distribution of pore volume for BJH adsorption of AC2  
(EPV: Excremental Pore Volume; CPV: Cumulative Pore Volume)  
To analyze the pores distribution of both AC, BJH  
desorption is applied in order to study the correlation  
between adsorption and desorption plots. The distribution  
of pores size from 20 to 150 Å is concentrated in the area of  
ultramesopores indicating the mesoporosity of both AC  
1
51  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 150-157  
(
figure 3). Maximum cumulative pores volume of AC1  
found between 10 and 100 Å indicates the mesoporous  
predominance (Figure 4).  
were developed from the decomposition of raw RH  
structure by heating and converted it to small particles with  
large surface area [23].  
0
0
.14  
.12  
Desorption  
Adsorption  
0
.1  
0
0
0
0
.08  
.06  
.04  
.02  
0
Figure 2: Distribution of pore volume for DA method of AC1  
3
.1.3. Surface morphology  
Figures 5 and 6 show the micrographs from scanning  
electron microscopy magnified at 2000 times of AC1 and  
AC2, respectively. At 50 magnifications (figure 5), a  
similar grain sizes are observed. When SEM images were  
magnified 2000 times, AC1 presents a fin structure and  
smaller pores indicating a low pore radius, while AC2 has a  
coarse structure with lager pores indicating a larger pore  
volume (figure 6). SEM micrographs of activated carbons  
show that they have averagely porous structures with  
regular mesopores. Similar structure of AC based on rice  
husk was found by Salame et al. [22]. All AC samples have  
a mesoporous structure with cracks and crevices. The pores  
0
200  
400  
600  
Pore radius (Å)  
Figure 3: Plot of distribution of pores size for BJH adsorption-  
desorption of AC2  
Figure 4: Plot of distribution of pores size for BJH adsorption-desorption of AC1  
1
52  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 150-157  
3
3
.2. Physical-chemical characteristics  
.2.1. Chemical composition  
Dimensional analysis showed  
elements as highlighted in EDS spectra (figure 7). At  
00°C, all oxides in raw rice husk couldn’t be destroyed  
a lot of chemical  
5
and transformed to the carbon element. The presence of  
calcium and magnesium in the composition of AC1 can be  
due to a low interaction at low temperature between NaOH  
solution and rice husk with the inorganic matter of raw RH  
containing 5.5% of the following mixture oxides: CaO,  
Fe O , MgO, Al O , Na O, K O, MnO [24].  
2
3
2
3
2
2
2
(a)AC1  
(a)AC1  
(b) AC2  
Figure 6: SEM images at 2000 magnifications  
The elemental composition (%, wt/wt) is determined by  
dimensional analysis (Table 2). Both ACs contain mostly  
carbon and silicon. High silicon content in AC2 could be  
due to the conversion of carbon content to quartz. The  
decrease of oxygen content in AC2 compared to AC1 is  
attributable to the breaking of oxygen bond in cellulose,  
hemicellulose and lignin structures at high temperature  
during the carbonization.  
(b) AC2  
Figure 5: SEM micrographs at 50 magnifications  
1
53  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 150-157  
3
.2.2. Chemical surface functions  
Analysis of both TF-IR spectra (Figures 8 to 9)  
-
1
showed that the band around 3419.68 cm would be  
the hydroxyl group of cellulose or hemicellulose. The  
band at 1589 cm can be attributed to the vibration of  
the aromatic C = C double bond of lignin [25]. The  
band at 1376.5 cm is attributed to the vibration of  
calcium or magnesium while the band at 1095 cm  
corresponds to of the C-O or Si-O bond [18]. The  
band around 795 cm was attributable to the Al-O  
bond and the one around 464 cm corresponds to the  
vibration of the Si-O-Si bond. The band around 693  
-
1
-
1
-
1
-
1
-
1
-
1
cm is the vibration of the Na-O bond. The existence  
of the hydroxyl group, the C-O bond and the aromatic  
C = C double bond suggest the presence of phenols  
and ether oxides indicating that the sites active on AC  
are mainly acid sites [23]. In addition, the correlation  
between IR spectra and elemental composition  
concludes that quartz is the main oxide in both ACs.  
(a)AC1  
3
.2.3. pH of zero point charge  
At the point of zero charge, pH of both AC was 7.97  
and 7.95 for AC1 and AC2, respectively. A higher  
temperature reduced traces of activation agent in the AC  
causing a slow decrease of pH. The closed pH of both AC  
could be due the low difference of temperature (500 and  
6
50°C). In addition, the use of the same chemical for the  
activation of rice husk contributed to reduce the difference  
between pH of both AC. The basic pH of both AC  
indicates their availability to fix dyes from water.  
Notwithstanding, the reactivity of adsorbent surface always  
depends on the pH of the operating environment.  
3
.3. Effect of the activation temperature on properties of  
AC  
Two values of temperature (500 and 650°C) are used to  
study the influence of the activation temperature on AC  
properties. When activation temperature was low (500°C),  
(
b) AC2  
Figure 7: Energy Dispersive Spectroscopy spectra of both AC  
the reaction between activated RH and CO was slow and  
2
the surface area, total volume and micro pore volume were  
relatively small. With increasing activation temperature  
Table 2: Elemental composition of the AC  
(650°C), the surface area, total volume and micro pore  
Carbons  
C (%)  
AC1  
46.13  
8.59  
2.36  
39.95  
0.85  
0.53  
1.59  
AC2  
40.35  
7.61  
1.94  
49.55  
0.55  
-
volume were increased because of the higher reaction rate  
between carbon and CO , and higher rate of releasing of  
2
volatile matter. At highest activation temperature, the  
O (%)  
reaction between carbon and CO was very faster. So, the  
2
Al (%)  
Si (%)  
speed of widening pores was faster than that of developing  
pores, resulting an increase of pore diameters and formation  
of mesopores. As such, the surface area, micropore volume  
and micropore percentage were decreased [26].  
Na (%)  
Mg (%)  
Ca (%)  
-
Table 3: Surface area and pore dimensions of ACs  
Surface area  
Pore volume Pore radius  
(
-): not detected  
Name of AC  
2
3
(
m /g)  
(cm /g)  
(Å)  
10.5  
36  
AC1  
AC2  
12.13  
29.45  
0.016  
0.035  
1
54  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 150-157  
Figure 8: FT-IR spectrum of AC1  
Figure 9: FT-IR spectrum of AC2  
1
55  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 150-157  
6
. A. A. Halim, H. A. Aziz, M. A. M. Johari, K. S. Ariffin.  
Int. J. Environ. Waste Manag. 4 (2009) 4, 399411.  
doi:10.1016/j.jhazmat.2009.10.103.  
4
Conclusions  
In this present study, both ACs are the mesoporous type  
with regular pores. Elemental analysis showed that both AC  
had a carbonaceous structure as highlighted by the high  
carbon content. Infrared spectra highlighted that prepared  
ACs have phenols and oxide ethers as chemical functions  
on their surface. These chemical functions show that both  
produced carbons could be used as potential adsorbents for  
the removal of dyes, heavy metals and other toxic  
pollutants in water / wastewater treatment. Most of active  
sites available on the surface of carbons are acid sites.  
7
8
9
(
1
. F. Derbyshire, M. Jagtoyen, R. Andrews, A. Rao, I.  
Martin Gullon, E. Grulke. In: Radovic, Editor.  
Chemistry and Physics of Carbon (2001) 27, Marcel  
Dekker, New York. 1-66.  
0. J. M. Cases, F. Villiéras, L. Michot. Compte Rendu.  
Académie des Sciences ; France. Sciences de la Terre  
et des planètes / Earth and Planetary Sciences. 331  
1
5
Acknowledgement  
This work was carried out in the Laboratory of  
(2000), 763773.  
Analytical, Environmental and Bio-Organic Chemistry,  
University Ouaga 1 Prof. Joseph KI-ZERBO (Burkina  
Faso). The authors would like to thank Exceed / Swindon  
and DAAD for the technical and financial support.  
Vietnamese Academy of Sciences and Technology is  
thankful for the help in the recording of EDS and IR spectra  
with SEM micrographs and BET experiments.  
1
1
1. D. Kalderis, S. Bethanis, P. Paraskeva, E.  
Diamadopoulos. Bioresource Technology. 99 (2008),  
6
809-6816. doi: 10.1016/j.biortech.2008.01.041.  
2. Y. Sanou, S. Pare, G. Baba, N. K. Segbeaya, L. Y.  
Bonzi-Coulibaly. Rev. Sci. Eau. 29(3) (2016), 265-277.  
1
1
3. I. Apichat, P. Eakachai. J. Hazard. Mater. 184 (2010)  
1
-3, 775-781. doi: 10.1016/j.jhazmat.2010.08.108.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
4. P. Binod, R. Sindhu, R. R. Singhania, S. Vikram, L.  
Devi, S. Nagalakshmi, N. Kurien, R. K. Sukumaran, A.  
Pandey. Bioresour. Technol. 101 (2010), 47674774.  
doi: 10.1016/j.biortech.2009.10.079.  
5. T. C. Hsu, G. L. Guo, W. H. Chen, W. S. Hwang.  
Bioresour. Technol. 101 (2010), 49074913. doi:  
(avoidance of guest authorship), dual submission,  
manipulation of figures, competing interests and  
compliance with policies on research ethics. Authors  
adhere to publication requirements that submitted work is  
original and has not been published elsewhere in any  
language.  
1
1
1
0.1016/j.biortech.2009.10.009.  
6. K. Karimi, S. Kheradmandinia, M. Taherzadeh. J.  
Biomass Bioenerg. 30 (2006), 247253.  
doi:10.1016/j.biombioe.2005.11.015.  
Competing interests  
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
17. S. Wattanasiriwech, D. Wattanasiriwech, J. Svasti.  
1
8. A. S. Thajeel, A. Z. Raheem, M. M. Al- Faize. J. Chem.  
Pharm. Res.5 (2013) 4, 251-259. Available online  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
https://www.researchgate.net/publication/286596077.  
9. J. S. Noh, J. A. Schwarz. J. colloid Interf. Sci. 130  
and  
1
2
2
0. S. B. Daffalla, H. Mukhtar, M. S. Shaharun. J. Appl.  
Sci. 10 (2010) 12, 1060-1067.  
References  
1
. S. P. Satya, J. Ahmed, K. Krishnaiah. Industrial and  
Engineering Chemistry Research Journal. 36 (1997) 9,  
3
625-3630. doi: 10.1021/ie970190v.  
2
. S.-L. Alfa-Sika Mande, M. Liu, F. Liu, H. Chen.  
1. International Union of Pure and Applied Chemistry.  
Pure and Applied Chemistry. 66 (1994) 8, 1739-1758.  
https://www.iupac.org/publications/pac/pdf/1994/pdf/6  
Adsorption Science and Technology. 27 (2010) 10, 964-  
9
74. Multi-Science Publishing Co. Ltd. 5 Wates Way,  
Brentwood, Essex CM15 9TB, United Kingdom.  
. M. Gueye. Thèse de doctorat, Institut International de  
l’Ingénierie de l’Eau et de l’Environnement, Burkina  
6
08x1739.pdf  
3
2
2. I. Salame, T. J. Bandosz. Second Conference on  
Adsorption Science and Technology. (2000), World  
Faso,  
(2015),  
80-169.  
Scientific,  
http://tbandosz.com/conferences-2.  
3. Y. Sanou. Thèse de doctorat unique, Université Ouaga  
Pr Joseph Ki-Zerbo, (2017) 548, 35-57.  
Hong  
Kong,  
61  
-
65.  
http://documentation.2ieedu.org/cdi2ie/opac_css/doc_n  
um.php?explnum_id=1944  
2
2
4
5
. C. A Philip, B. S. Girgis. Journal of Chemical  
1
http://www.univ-ouaga.bf/spip.php?article671  
4. S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha.  
Desalination.  
265  
(2011),  
159168.  
doi:  
1
0.1016/j.desal.2010.07.047.  
1
1
56  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 150-157  
2
5. W. K. I. Ouedraogo, E. Pehlivan, H. Tran, L.Y. Bonzi-  
Coulibaly, D. Zachmann, M. Bahadir. Journal of Water  
and  
Health.  
13  
(2015)  
3,  
726-736.  
doi:10.1080/02772248.2015.1133815.  
2
6. S. Guo, J. Peng, W. Li; K. Yang, L. Zhang, S. Zhang,  
H. Xia. Applied Surface Science. 255 (2009), 8443–  
8
Author Profile  
Yacouba SANOU was bornd on 31/12/1988. He  
started his PhD in Environmental Chemistry since  
2
2
014. He published a manuscript in Dormas Journal in  
016. Volume 4, Issue 3 (pp 62-70).  
1
57