Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 109-112  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Utilization Potential of Waste from Sugarcane  
Factory of Bangladesh as Partial Replacement of  
Cement in Concrete  
1
2
Shaikh Mohammad Shamim Reza *, Sherajul islam  
1- University of Asia Pacific, Dhaka Bangladesh  
2- Stamford University Bangladesh, Dhaka Bangladesh  
Received: 11/11/2018  
Accepted: 05/01/2019  
Published: 30/03/2019  
Abstract  
Sugarcane bagasse easily found in sugar factories of Bangladesh. Some of them are used as fuel in sugar mills and rest of  
them are dumped into environment without any commercial return. The disposal of this material is causing environmental  
problems around the sugar factories. On the other hand, urbanization and industrialization is rapidly increasing in Bangladesh.  
So, the construction industry is rapidly expanding. Currently large amount of cement is needed for this construction industry. It  
will be increasing day by day. The study examined the potentiality of using classified Sugarcane bagasse ash (SCBA) to replace  
some part of OPC cement in concrete. In this study, bagasse sample was collected from Natore sugar mill. After collecting the  
sugarcane bagasse, it was dried in sun for a week and then it burned in aggregate burning oven at 800°C to 1000°C temperature  
for 20 minutes. Ordinary Portland cement (OPC) was replaced by SCBA at different percentage ratios at 0%, 5%, 7.5%, 10 and  
12.5%. Normal consistency and setting time were investigated for these ratios. The compressive strengths of different concrete  
with SCBA addition were also investigated. Strength was tested for 7, 28 and 56 days. The test results indicated that up to 5%  
replacement of cement by bagasse ash results in better or similar concrete properties. It also showed the economic advantages by  
using SCBA as a partial cement replacement material.  
Keywords: Industrial Waste, Sugarcane Bagasse, Ash, Pozzolanic material, Cement replacement, Sustainable Concrete, Setting  
time, Compressive strength  
1
use in concrete as supplementary cementing materials due  
1
Introduction  
to its pozzolanic reactivity (Cordeiro et al., 2004). In this  
country sugarcane bagasse as natural agro-waste materials  
and it also obtained with requiring low cost, energy and  
time. As per study by Mahamud et.al, 2012, in Bangladesh  
around 425,000 acres of land are under sugarcane and the  
annual production is about 7.5 million tons, of which only  
Nowadays sustainable development and Environmental  
pollution are the major issues in the whole world. Over 5%  
of global CO emissions can be attributed to Portland  
cement production (Worrell et. al, 2001). Production of 1  
ton of cement contributes to about 1.25 ton of CO into  
2
2
atmosphere (Griffin, 1987). Demand for cement is  
increasing day by day in Bangladesh. Being a developing  
country urbanization and industrialization is rapidly  
increasing. The construction industry is rapidly expanding  
because of infrastructure development of the country. A lot  
of mega-structures such as tall buildings, bridges, offshore  
structures, dams, monuments, fly way over, metro rail,  
elevated express way etc. As most of structures are made  
by concrete so, it needs a large amount of cement  
production.  
2.28 million tons are used in sugar mills and the rest goes to  
molasses making. Bangladesh now produces about 150,000  
tons of sugar, 100,000 tons of molasses and 800,000 tons of  
bagasse per year. Bagasses are use as fuel in sugar mills  
(
Habibullah et.al, 2014). According to Cordeiro et al.,  
2
0
004, the resulting bagasse ash represents approximately  
.62% of the sugarcane weight. Unfortunately, having  
technical benefits, most of sugarcane bagasse are dumped  
into environment without any commercial return. In  
consequence, environmental pollutions are increased day  
by day.  
In Bangladesh, sugarcane bagasse ash (SCBA) can be  
Proper consumption of these sugarcane bagasse  
contributes in solving environmental pollution and  
production of cost-effective concrete; it can also play a vital  
role for the production of sustainable concrete.  
Corresponding author: Shaikh Mohammad Shamim  
Reza, University of Asia Pacific, Dhaka Bangladesh. E-  
mail: engr.shamim.ce@gmail.com.  
109  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 109-112  
2
Materials and Method  
2
.1 Background information  
The study was conducted to investigate the feasibility  
of using classified Bagasse Ash to replace some part of  
OPC cement in concrete. The effect of SCBA on concrete  
properties were analysed by means of the fresh properties  
of concrete and the mechanical properties i.e. Compressive  
strength, normal consistency and time of setting will study  
as the time dependent property.  
2
.2 Sugarcane Bagasse Ash (SCBA)  
Bagasse is a fibrous residue obtained from sugar cane  
during extraction of sugar juice at sugarcane mills. Due to  
the pozzolanic reactivity, Sugar Cane Bagasse Ash (SCBA)  
is used as supplementary cementing material in concrete.  
Based on the available documented literature, it was found  
that SCBA could be used as supplementary cementing  
material up to a certain level of replacement without  
sacrificing strength of concrete. Bagasse ash mainly  
contains aluminium ion and silica. As per study by Villar  
et.al (2008), SCBA produced by burning sugarcane bagasse  
at 800°C to 1000°C temperature for 20 minutes. SCBA  
contains 58.61% to 59.55% SiO2, 7.32% to 7.55% Al2O3  
and 9.45% to 9.83% Fe2O3. This gives the total amount of  
SiO2+ Al2O3+Fe2O3 which is in line with ASTM C618-  
Figure 2: Sugarcane Bagasse burning in oven at Lab  
2.4 Specimen preparation and testing  
In concrete specimen, the SCBA was used as a  
replacement of OPC by 0%, 5%, 7.5%, 10 and 12.5%.  
Concrete was tested for compressive strength. For this test  
6 in. x 12 in. concrete cylinder were casted. The mix design  
used for making concrete is given in Table 1. It is to be  
noted here that no admixture was used in this study.  
Compressive strength of the cylinder specimens were tested  
following the ASTM Standard C 39. For concrete 7,