Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Bioremediation of Crude Oil-Contaminated Soil  
in the Presence of Nickel, Zinc and Cadmium  
Heavy Metals Using Bacterial and Fungal  
Consortia-Bioaugmentation Strategy  
1
1
1
Samuel Enahoro Agarry *, Ganiyu Kayode Latinwo , Ebenezer Olujimi Dada , Chiedu  
Ngozi Owabor2  
1Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical Engineering, Ladoke Akintola University  
of Technology, Ogbomoso, Nigeria  
2
Department of Chemical Engineering, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria  
Received: 10/01/2019  
Accepted: 27/02/2019  
Published: 01/06/2019  
Abstract  
The study evaluated the effectiveness of indigenous bacterial consortia (Pseudomonas aeruginosa, Bacillus subtilis and  
Micrococcus letus) and fungal consortia (Aspergillus niger, Aspergillus carmari and Penicillium notatum) as well as their  
combination (bacterial-fungal consortia) as bioaugmentation agents in the soil bioremediation of petroleum hydrocarbons in the  
absence and presence of nickel, zinc and cadmium heavy metals. Bioremediation was carried out in 10% w/w crude oil-  
contaminated soil microcosms for 35 days in the absence and presence of nickel, zinc, and cadmium bioaugmented with or  
without bacterial, fungal and bacterial-fungal consortia, respectively. In the heavy metal-free soil microcosms, 72.5%, 64% and  
90.7% total petroleum hydrocarbon (TPH) biodegradation were attained with bacterial, fungal and bacterial-fungal consortia,  
respectively, while 45% TPH biodegradation was achieved in the non-bioaugmented soil microcosm. In the heavy metal-soil  
microcosms: nickel, zinc, cadmium and mixed form (nickel + zinc + cadmium), 79.2%, 81.4%, 75.3% and 68.2% TPH  
biodegradation was correspondingly obtained with bacterial consortia; 69.4%, 66.4%, 68.2%, and 60.6% with fungal consortia;  
while 99%, 98.5%, 95.7%, and 100% was respectively attained with bacterial-fungal consortia. The kinetics of TPH  
biodegradation were adequately described by the first-order kinetics and half-life times were estimated. Soil microcosm  
bioaugmented with bacterial-fungal consortia displayed the highest biodegradation rate constant with the lowest half-life times in  
the absence and presence of heavy metals. Therefore, the results suggest that microbial consortia (bacterial and fungal) could be  
very effective for soil bioremediation of crude oil in the presence of heavy metals.  
Keywords: Bacteria; Bioaugmentation; Bioremediation; Crude oil; Fungi; Heavy metals  
1
four thousand incidents of crude oil spills have been  
estimated to have occurred in the Niger Delta region of  
Nigeria, amounting to several million barrels of crude oil  
1
Introduction  
Nigeria is the largest oil producer in Africa with a  
maximum oil production capacity of 2.5 million barrel per  
day and the sixth largest oil producing country in the world  
[
3]. About 90% of the contaminated sites in the USA are  
soils that are contaminated with petroleum hydrocarbons  
4].  
[
1]. All over the world, oil is transported through pipelines,  
[
vessels/ships, road, and rail, and as a result poses serious  
danger to the environment in case of spills. In 2005, almost  
every day, about nine incidents of oil pollution were  
reported around the world [2]. Since 1960 till date, over  
Crude oil consists of complex mixture of aliphatic and  
aromatic hydrocarbons, asphaltene and resins which are  
considered to be environmental pollutants [5]. In addition,  
trace amount of heavy metals have been recognized to exist  
in crude oils [3, 6]. The metals commonly considered as  
pollutants includes aluminium, arsenic, cadmium,  
chromium, copper, mercury, nickel, lead, iron, zinc and  
some radionuclides [7]. These hydrocarbons and heavy  
metals have been found to be toxic, mutagenic and  
carcinogenic [8]. However, some of these metals such as  
Corresponding author: Samuel Enahoro Agarry,  
Biochemical  
and  
Bioenvironmental  
Engineering  
Laboratory, Department of Chemical Engineering, Ladoke  
Akintola University of Technology, Ogbomoso, Nigeria. E-  
mail: sam_agarry@yahoo.com.  
179  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
copper, chromium, nickel, zinc and iron play an integral  
role as micronutrients in the life metabolic processes of  
microbes and can as well at higher concentrations become  
toxic and inhibit various cellular or biochemical processes  
by forming unspecific complex compounds within the  
microbial cell [9]. While several other metals like  
cadmium, lead, silver and mercury are not essential, do not  
have any biological role and are potentially toxic to  
microorganisms [9].  
The toxicity of these hydrocarbons and metals  
necessitated the need to develop methods or technologies  
that are environmentally-friendly to remediate oil spills  
contamination of the environment (soil or water). One of  
such technology is bioremediation due to its efficiency and  
cost-effectiveness as compared to physicochemical  
technologies that are expensive [10]. Microbial species that  
utilizes hydrocarbons as a source of carbon and energy are  
referred to as hydrocarbonoclastic microorganisms. They  
are the major agents of bioremediation and thus petroleum  
hydrocarbons degradation due to their associated metabolic  
abilities [2]. Reviews of literature on the petroleum  
hydrocarbons degradation have confirmed that several  
microorganisms majorly bacteria and fungi are capable of  
utilizing petroleum hydrocarbons as the sole source of  
carbon and energy [2, 11, 12].  
The desire for environmentally-friendly and sustainable  
technology towards contaminated environment has made  
the evolving bioremediation technology a standard practice  
for the treatment and restoration of contaminated  
environment. Over three decades, considerable studies have  
been carried out in both the laboratory and field in the area  
of bioremediation with different modifications such as  
nutrient supplementation (biostimulation) [13] and  
microbial inoculation (bioaugmentation) for the  
remediation of diverse range of contaminants [14  16]. In  
all of these studies which did not involve heavy metals  
interference, bioaugmentation strategy has been found to be  
successful.  
Bioaugmentation is normally recommended for  
contaminated sites where the autochthonous microbial  
populations is insufficient for contaminants degradation  
and/or those in which the indigenous microorganisms do  
not possess the necessary catabolic pathways for  
contaminants metabolism [17, 18]. However, for  
environment such as soil and water co- contaminated with  
both metals and organic compounds, they are considered to  
be crucially difficult to treat due to the mixed nature of the  
pollutants [19]. Thus a co-contaminated environment  
represent a serious problem in the bioremediation processes  
[24] or the use of phytoremediation [25, 26].  
There are certain number of metal-resistant  
microorganisms that can detoxify metals, such as cadmium  
[27, 28]. These metal-resistant and detoxifying  
microorganisms possesses the capability to exhibit some  
metal resistance mechanisms that allows them to function  
in a metal co-contaminated environments and these include:  
intracellular and extracellular sequestration; extracellular  
precipitation; redox transformation; membrane efflux  
system; exclusion by permeability barrier; and enzymatic  
detoxification [9]. Despite the bioremediation successes  
that have so far been recorded using bioaugmentation  
strategies, very few studies involving bioaugmentation  
strategy with the use of either single strain/pure culture or  
mixed culture of two microbial strains for the  
bioremediation of petroleum hydrocarbons such as  
polycyclic aromatic hydrocarbons (PAHs) and heavy  
metals co-contamination have been carried out [20, 29 –  
32]. From these studies, varying forms and degrees of  
organic compound degradation have been reported. For  
instance, Alisi et al. [20] reported that complete  
degradation of hydrocarbon n-C1220 and total  
disappearance of phenanthrene in diesel oil as well as 75%  
diesel oil reduction was achieved by bacterial  
bioaugmentation in the presence of heavy metals. Owabor  
et al. [29] also reported that the degradation of naphthalene  
in soil by inoculated microbial consortium made up of  
Bacillus and Aspergillus niger species was gradually  
inhibited as the concentration of each of the heavy metals  
(Pb, Hg, Ni and Cr) increased from 40 to 200 mg/L.  
Bioaugumentation strategies involving the use of  
a
consortium consisting of Acremonium sp. and Bacillus  
subtilis demonstrated high degradation efficiency in soil  
that is heavily contaminated with crude oil [33], while the  
presence of heavy metals have been revealed to impact on  
the fungal-bacterial synergism in polycyclic aromatic  
hydrocarbons (PAHs) degradation [31].  
In spite of these information that revealed that soil  
bioremediation in the presence of heavy metals can be  
achieved with bioaugmentation strategy, the strategy is still  
faced with a number of challenges with regard to the  
presence of heavy metals, which often result in the toxicity  
and inhibition of microbial growth and limit degradation  
ability. There is still paucity of information on the influence  
of heavy metals as single or mixture form on  
bioaugmentation strategy using mixed bacterial consortia,  
fungal consortia and bacterial-fungal consortia in the  
bioremediation of petroleum hydrocarbons in crude oil  
contaminated soil.  
[
20]. This is because metals cannot be biologically  
Hence, this present study aimed to explore the  
effectiveness of mixed indigenous bacterial consortia,  
mixed indigenous fungal consortia and mixed bacterial-  
fungal consortia as bioaugmentation agents in the soil  
bioremediation of petroleum hydrocarbons in crude oil in  
the absence and presence of heavy metals (nickel, zinc and  
cadmium) in single or mixture form. The rates of petroleum  
hydrocarbons biodegradation were determined from the  
application of first-order kinetics and the biodegradation  
half-life times were estimated.  
degraded or modified like toxic organic compounds, but  
their speciation and bioavailability may change with  
varying environmental factors [21, 22]. Also, metals may  
inhibit the hydrocarbon biodegradation through its  
interaction with microbial enzymes that are directly  
involved in the biodegradation or through its interaction  
with microbial enzymes involved in general metabolism  
[23]. Nevertheless, to overcome this difficulty is to either  
employ the use of bioaugmentation with microorganisms  
that has the ability to resist and detoxify metal as well as  
the use of organic compound-degrading microorganisms  
180  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
2
. Materials and Methods  
isolated from the collected oil polluted soil samples using  
the serial dilution and pour or spread plate method [28].  
The soil samples were sieved and 10 g of it were added into  
90 mL de-ionized water in a conical flask, vigorously  
shaken and left overnight. For bacteria isolation, 0.1 mL  
2.1 Chemicals and Reagents  
All the chemicals and reagents are of analytical grade  
such as: n-hexane, calcium chloride solution, zinc chloride,  
cadmium sulphate, nickel nitrate, nutrient agar (NA), and  
potato dextrose agar (PDA).  
-1  
aliquots of clear soil suspension and its dilutions (from 10  
-3  
10 ) were poured and spread on a NA plate containing  
2
.2 Sample Collection  
Soil samples were obtained from a farmland in Oleh  
crude oil droplets, Nystatin (to prevent fungal growth) and  
the plate was then incubated at 37°C for 24 hours; and the  
grown bacterial colonies were isolated [35]. For fungi  
isolation, 0.1 mL aliquots of the soil suspension and its  
town (Latitude 5.4589° N and Longitude 6.2031° E) of  
Delta State in the Niger-Delta region of Nigeria. It has no  
pollution history and devoid of hydrocarbon contamination.  
It was the top soil layer of the farmland not exceeding a  
depth of 25 cm from the surface that was excavated with a  
shovel, collected into a black polyethylene bag and brought  
to the laboratory. Crude oil used for artificial pollution was  
obtained from Warri Refinery and Petrochemical Company  
located in Warri (5.5544° N, 5.7932° E) in the Niger-Delta  
region of Nigeria. The microbial strains used in this study  
were cultured from the soil sample obtained from a  
previously oil contaminated soil in the Niger-Delta region  
of Nigeria.  
-1  
-3  
dilution (10  10 ) were introduced into sterile Petri  
dishes containing PDA and droplets of crude oil and then  
o
incubated at ambient temperature (28 ± 2 C) for 72  120  
hours. Streptomycin antibiotic (10 mg/L) was added into  
the PDA medium to inhibit any form of bacterial growth.  
After 3-5 days of fungal growth, the spore bearing mycelia  
were then carefully sectioned, teased out and stained on a  
slide using lactophenol cotton blue stain and later observed  
with a light microscope. The bacterial and fungal colonies  
with different morphologies obtained after incubation were  
sub-cultured and purified repeatedly by streaking on sterile  
NA and PDA plates, respectively. Pure cultures of isolated  
bacterial species were identified and characterized on the  
basis of Bergey’s manual [36]. Standard conventional  
methods that involved various cultural, morphological,  
physiological and biochemical tests were performed  
namely gram staining, catalase test, indole test, citrate  
utilisation test, urease test, motility test, oxidase test,  
coagulase test, glucose utilization, fructose utilization,  
lactose utilization, lipase test [37]. The isolated bacterial  
species were identified as Pseudomonas aeruginosa,  
Bacillus subtilis, Staphylococcus aureus, Staphylococcus  
epidermidis, Escherichia coli and Micrococcus letus.  
Pseudomonas, Bacillus, Staphylococcus, E.coli and  
Micrococcus species have been reported to have the  
potential to biodegrade petroleum hydrocarbons [38, 39].  
The fungal isolates were identified and characterized on the  
basis of cultural, microscopic (septation of mycelium,  
shape, form, diameter and texture of spore/conidia), and  
macroscopic (pigmentation, shape, diameter, colony  
appearance and texture) features [28, 40]. The cultural and  
morphological features of the fungal isolates were then  
compared with those described by Samson et al. [41] as  
well as using the keys of Mackie and McCartney [42]. The  
fungal isolates were identified as Aspergillus niger,  
Aspergillus carmari, and Penicillium notatum. Aspergillus  
and Penicillium species have been confirmed to have the  
potential to biodegrade the petroleum hydrocarbons in  
crude oil [43, 44].  
2.3 Characterization of Soil  
Physical, chemical and microbiological properties of the  
top soil samples at the onset of the remediation were  
characterized. The soil samples were sieved, pulverized and  
air-dried. Then, the samples were analyzed for pH,  
moisture content, total organic carbon, total nitrogen, and  
available phosphorus using standard methods [34]. The soil  
was also analyzed for total hydrocarbon degrading bacteria  
(
THDB) and total hydrocarbon degrading fungi (THDF)  
count using pour plate method [28]. The metals (calcium,  
magnesium, nickel, zinc and cadmium) concentrations in  
the soil samples were determined after wet digestion of 0.5  
3 4  
g of the soil n 10 mL of concentrated HNO and HClO  
7:1 v/v) and the concentrations measured using atomic  
(
absorption spectrometry (AAS) with a flame furnace  
nebulizer (Perkin-Elmer). The physical and chemical  
characteristics of the soil were as follows: pH (6.8 ± 0.3),  
moisture content (10.2 ± 0.2%), total organic carbon (0.76  
±
0.03%), total nitrogen (0.12  
phosphorus (0.46 ± 0.24%), nickel (< 0.01 mg/kg), zinc (<  
.01 mg/kg), cadmium (< 0.01 mg/kg), calcium  
14.24meq/100g) and magnesium (9.85meq/100g). The  
± 0.01%), available  
0
(
microbiological properties of the soil were as follows:  
THDB count (0.8 ± 0.01 ×10 cfu/g) and THDF count (0.2  
±
hydrocarbon degrading microorganisms in the test soil  
sample is very small and thus there is the need to bio-  
augment the soil with more hydrocarbon degrading  
microorganisms.  
2
2
0.03 ×10 cfu/g). This revealed that the population of the  
2.5 Heavy Metal Tolerance Index of Bacterial and Fungal  
Isolates  
2
.4 Source of Bacterial and Fungal Consortia  
The bacteria and fungi species used for this study were  
Isolated bacterial and fungal species were assessed  
either as pure isolates or as mixed isolates (consortium) for  
181  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
2
+
2+  
their heavy metal tolerance or resistance to Cd , Zn and  
2.7 Experimental Design and Bioremediation Protocol  
The soil sample from the farmland was sieved with a 5  
mm mesh sieve to remove large stones and debris.  
Thereafter, the sieved soil samples were sun-dried by  
spreading on a flat clean surface for one week and then  
pulverized. A known weight of the soil sample (150 g) was  
each introduced into sixteen separate clean dry plastic  
containers (i.e. soil microcosm) and moistened to about  
20% water holding capacity with sterilized de-ionized  
water. Thereafter, 18 mL of crude oil corresponding to 15 g  
(i.e. 10% w/w) was measured and introduced into each of  
the soil in the sixteen plastic containers and the contents  
were thoroughly stirred. The sixteen soil microcosms were  
2+  
Ni . Eight mm diameter circular extract or disks from 10  
day old pure cultures of each bacterial isolates and fungal  
isolates were inoculated into separate corresponding NA  
and PDA Petri-dishes or plates supplemented with each of  
the sterilized 31.13 mg/L Ni (NO ) , 20.84 mg/L ZnCl and  
3 2 2  
8.55 mg/L CdSO salts solution corresponding to 10 mg/L  
each of Ni , Zn and Cd heavy metals, respectively. The  
inoculated plates were incubated at ambient temperature  
28±2°C) for at least 7 to 10 days to establish their growth.  
The experiments were performed in triplicates with  
bacterial isolates in NA plate and fungal isolates in PDA  
plate without supplementation with heavy metals that  
served as control. The radial growth was determined by  
measurement of the culture spread from the center of the  
colony or inoculated portion. The inoculated portion  
diameter was subtracted from the diameter of growth [45].  
The tolerance index (TI), which is an indication of the  
microbes response to the stress of heavy metal was  
calculated from the growth of microbial isolates exposed to  
the heavy metals divided by the growth of the microbial  
isolates in the absence of heavy metals [27]. The microbial  
isolates heavy metal tolerance can be rated as follows [28]:  
1
4
2+  
2+  
2+  
(
labelled B-T  
1
to B-T16  
.
The 10% w/w artificial  
contamination was adopted so as to achieve severe  
contamination because beyond 3% w/w concentration, oil  
has been reported to be increasingly deleterious to soil biota  
and crop growth [13, 46]. Soil microcosm B-T  
the control (i.e. natural bioattenuation). After the oil  
contamination, 31.13 mg/L of nickel nitrate (Ni(NO ),  
18.55 mg/L cadmium tetraoxosulphate (VI) (CdSO ), and  
20.84 mg/L zinc chloride (ZnCl ) solutions each of which  
2+  
corresponded to 10 mg/L of Ni , Cd and Zn  
1
served as  
3 2  
)
4
2
2+  
2+  
0
0
.000.39 (very low tolerance), 0.400.59(low tolerance),  
.600.79 (moderate tolerance), 0.800.99 (high tolerance)  
concentrations, respectively, were added singly into the  
contaminated soil microcosms while 70.52 mg/L of mixed  
2+  
heavy metal salts solution corresponding to 30 mg/L (Ni  
2+ 2+  
and 1.00- >1.00 (very high tolerance). The higher the TI  
values, the higher the microbial species tolerance or  
resistance to the heavy metal.  
+ Zn + Cd ) concentration was added as shown in Table  
1. The soil microcosms were left for 14 days to allow for  
aging or equilibration. After day 14, mixed bacterial  
(Pseudomonas aeruginosa, Bacillus subtilis and  
Micrococcus letus) and mixed fungal (Aspergillus niger,  
Aspergillus carmari, and Penicillium notatum) inoculums  
were inoculated into the contaminated soil microcosms as  
also shown in Table 1 and thoroughly mixed together with  
2
.6 Preparation of Bacterial and Fungal Inoculum  
The bacterial and fungal inoculums were prepared  
according to the method of Ma et al. [15]. To prepare and  
generate the bacterial inoculum required for  
bioaugmentation, the bacterial isolates were separately  
o
grown in a NA broth at 30 C and shaken in an orbital  
a
stirring rod. The inoculated contaminated soil  
shaker at 120 rpm for 24 h. Thereafter, the cultures were  
centrifuged at 10,000 rpm for 10 min. Then, the cell pellets  
obtained were washed twice with phosphate buffer (0.1 M,  
pH 7.0), and again re-suspended in a fresh phosphate buffer  
and the resulted suspensions were mixed together in equal  
proportions and used as mixed bacterial culture (bacterial  
consortia) for the study. Similarly, to prepare fungal  
inoculums for bioaugmentation, the fungal isolates were  
microcosms were covered with aluminum foil and then  
incubated for 35 days. At intervals of 3 days, small volume  
(30 mL) of sterilized de-ionized water was added to the  
contaminated soil microcosms and stirred together so as to  
maintain the moisture content. At intervals of 7 days, soil  
sample was taken to carry out analyses for residual TPH,  
microbial (bacterial and fungal) count and pH, respectively.  
o
grown separately in a PDA liquid medium at 30 C and  
2.8 pH Measurement  
shaken in an orbital shaker at 100 rpm for 72 h. Then, the  
cultures were centrifuged and the fungal mycelia obtained  
were washed twice with phosphate buffer, and thereafter re-  
suspended in a fresh phosphate buffer and the resultant  
suspensions were mixed in equal proportions and used as  
mixed fungal culture (fungal consortia). The volume of the  
liquid medium was 30 mL with 10 cfu/ml of either  
bacteria or fungi to be added to each of the contaminated  
soil microcosms.  
The pH of the soil samples was measured in the course  
of the bioremediation studies according to the following  
procedure: 10 g of the soil sample was accurately weighed  
and added into 10 mL of de-ionized water in a conical  
flask. The mixture was allowed to stand for 15 min after  
which the flask was placed in an orbital shaker (SSL1-  
model) and agitated at 150 rpm for 30 min. At the end of  
the agitation, the mixture was allowed to stand for 10 min  
and the pH value was read on an already calibrated pH  
meter (JENWAY 3020-model).  
6
182  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
Table 1: Soil microcosm artificially contaminated with crude oil and heavy metal and bioaugmented with microbial species  
Soil Microcosm Code  
Description  
B-T  
B-T  
B-T  
B-T  
B-T  
B-T  
B-T  
B-T  
B-T  
1
2
3
4
5
6
7
8
9
(Control)  
Soil + Oil (Natural Bioattenuation)  
Soil + Oil + Bacterial Consortium  
Soil + Oil + Bacterial Consortium + Nickel  
Soil + Oil + Bacterial Consortium + Zinc  
Soil + Oil + Bacterial Consortium + Cadmium  
Soil + Oil + Bacterial Consortium + Nickel + Zinc + Cadmium  
Soil + Oil + Fungal Consortium  
Soil + Oil + Fungal Consortium + Nickel  
Soil + Oil + Fungal Consortium + Zinc  
B-T10  
B-T11  
B-T12  
B-T13  
B-T14  
B-T15  
B-T16  
Soil + Oil + Fungal Consortium + Cadmium  
Soil + Oil + Fungal Consortium + Nickel + Zinc + Cadmium  
Soil + Oil + Bacterial- Fungal Consortium  
Soil + Oil + Bacterial-Fungal Consortium + Nickel  
Soil + Oil + Bacterial-Fungal Consortium + Zinc  
Soil + Oil + Bacterial-Fungal Consortium + Cadmium  
Soil + Oil + Bacterial-Fungal Consortium + Ni + Zn + Cd  
TPH TPH  
o
f
100  
2
.9 Determination of Total Petroleum Hydrocarbon  
The total petroleum hydrocarbon (TPH) content of the  
%TPH   
(1)  
TPHo  
artificially contaminated soil samples was determined  
according to the following procedure: 5 g of the soil sample  
was weighed into a plastic bottle and 25 mL of n-hexane  
was added to the soil sample and the mixture shaken on an  
orbital shaker (SSL1-model) at 250 rpm for 20 min and  
then allowed to stand. Filtration of the mixture was done  
and the hexane solvent in the filtrate was allowed to  
evaporate at room temperature in a fume hood. The  
concentration of extracted residual TPH in the filtrate was  
then determined or measured at an absorbance of  
wavelength 400 nm using the UV-VIS Spectrophotometer  
where TPHo and TPH f are the initial and residual TPH  
concentrations, respectively.  
2.11 Determination of TPH Biodegradation Rate and  
Half-life Time  
The rate of TPH biodegradation was determined from  
the application of first-order kinetic model equation as  
given in Eq. (2) [13, 47]:  
o
kt  
TPH  TPH e  
(2)  
t
(
JENWAY 6715-model).  
where TPH  
O
and TPH  
t
are the initial TPH and residual TPH  
2
.10 Determination of Total Hydrocarbon-Degrading  
t
concentration (mg/kg) at time in soil (mg/kg), k is the  
1  
Bacterial and Fungal Count  
Quantification of the total hydrocarbon-degrading  
bacteria (THDB) and total hydrocarbon-degrading fungi  
biodegradation rate constant (day ), and t is time (day).  
The biodegradation half-life time (t1/2) was calculated from  
the biodegradation rate constant (k) using Eq. (3) [13, 47]:  
(
THDF) present in the soil samples was determined by the  
pour plate count method [28]. Soil samples (10 g) was  
transferred into sterilized Erlenmeyer conical flasks  
containing 90 mL of sterile 0.9% (m/v) NaCl solution and  
then shaken in an orbital shaker at 150 rpm for 15 min.  
Samples (1mL) were subjected to a serial 10-fold dilution  
procedure and cultivated in a NA medium for THDB at 30  
ln2  
(3)  
k
3
. Results and Discussion  
3
.1 Heavy Metal Tolerance Index of Bacterial and Fungal  
Isolates  
o
o
C for 48 h and in a PDA medium for THDF at 30 C for 72  
h, respectively. The number of colony forming units (cfu)  
was counted in each sample and expressed as colony-  
forming units per gram of dry soil (cfu/g dry soil). All  
microbiological counts and experiments were carried out in  
triplicate. The TPH concentration was expressed as mg of  
petroleum hydrocarbons per kg of dry soil [13]. Eq. (1) was  
employed to calculate the percent TPH biodegradation [13]:  
In ascertaining the tolerance of the bacterial and fungal  
2+ 2+ 2+  
isolates to heavy metals (Ni , Zn and Cd ) of 10 mg/L  
concentration, the tolerance index (TI) was estimated and  
the values are presented in Table 2. The tolerance rating of  
Pseudomonas aeruginosa and Bacillus subtilis (being  
bacterial isolates) as well as Aspergillus niger, Aspergillus  
carmari and Penicillium notatum (fungal isolates) to 10  
2+  
2+  
2+  
mg/L each of Ni , Zn and Cd were observed to be high,  
with TI ranging between 0.80 and 0.99. Similar  
observations have been reported for Aspergillus sp and  
183  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
Penicillium sp as well as Pseudomonas aeruginosa and  
Bacillus subtilis using higher concentration of Cd [48, 49],  
Ni [49] and Zn [49], respectively. In addition, high  
tolerance of Pseudomonas sp., Bacillus sp, Aspergillus  
sp.,and Penicillium sp. for heavy metals such as Zn, Ni and  
Cd has been reported [50, 51]. Meanwhile, the tolerance  
rating of Pseudomonas aeruginosa and Bacillus subtilis  
amount [53]. On the other hand, Smrithi and Usha [54]  
have reported the metal tolerance by bacteria isolates from  
tannery effluent in the decreasing order of Ni > Zn > Cd  
while Amalesh et al. [55] stated that the decreasing order  
for metal tolerance is Cd > Ni.  
On the other hand, the tolerance ratings of the bacterial  
consortia (Pseudomonas aeruginosa, Bacillus subtilis and  
Micrococcus letus), fungal consortia (Aspergillus niger,  
Aspergillus carmari and Penicillium notatum) and  
bacterial-fungal consortia (Pseudomonas aeruginosa,  
Bacillus subtilis, Micrococcus letus, Aspergillus niger,  
Aspergillus carmari and Penicillium notatum) to 10 mg/L  
(
being bacterial isolates) as well as Aspergillus niger,  
Aspergillus carmari and Penicillium notatum (fungal  
isolates) to 30 mg/L of the combined or mixed heavy  
2+  
2+  
2+  
metals (Ni + Zn + Cd ) were observed to be moderately  
low, with TI ranging between 0.10 and 0.62.  
2+  
2+  
2+  
Pseudomonas aeruginosa showed a relatively higher TI  
each of Ni , Zn and Cd were observed to be very high,  
with TI ranging between 1.81 and 2.38. These very high TI  
values showed that microbial consortia can tolerate the  
presence of heavy metals more than the individual  
component in the consortium. In addition, the TI for the  
2+  
2+  
2+  
for Ni , Zn and Cd and this was followed by Bacillus  
subtilis, Micrococcus letus, Escherichia coli,  
Staphylococcus aureus and Staphylococcus epidermidis,  
respectively. Aspergillus niger showed a relatively higher  
2+  
2+  
2+  
2+  
2+  
TI for Zn and Cd and then followed by Aspergillus  
carmari and Penicillium notatum, respectively.  
combined mixture of heavy metals (Ni + Zn + Cd )  
was found to be 0.83, 0.80 and 1.66 for bacterial, fungal  
and bacterial-fungal consortia, respectively. These  
relatively high TI values indicate that microbial consortia  
can tolerate the presence of combined or mixed heavy  
metals more than their separate components in the  
consortium.  
Furthermore, the heavy metal tolerance by the six bacteria  
species (Pseudomonas aeruginosa, Bacillus subtilis,  
Micrococcus luteus, Escherichia coli, Staphylococcus  
aureus and Staphylococcus epidermidis) is in this  
decreasing order of Zn > Ni > Cd while the metal tolerance  
by the three fungal species (Aspergillus niger, Aspergillus  
carmari and Penicillium notatum) is in this decreasing  
order of Zn > Cd > Ni. A similar observation has been  
reported by Oaikhena et al. [52] for metal tolerance by five  
bacteria species (Pseudomonas aeruginosa, Staphylococcus  
aureus, Escherichia coli, Proteus vulgaris and Klebsiella  
pneumoniae). The higher tolerance levels for zinc and  
nickel could be attributed to their classification as  
micronutrients that are needed by the bacteria in trace  
3.2 Bacterial and Fungal Consortia Degradation of  
Petroleum Hydrocarbons  
Figure 1 shows the level of TPH biodegradation in non-  
bioaugmented soil microcosm (B-T  
bio-augmented alone with bacterial consortium (microcosm  
B-T ), fungal consortium (microcosm B-T ) and bacterial-  
fungal consortium (B-T12), respectively.  
1
) and in soil microcosm  
2
7
Table 2: Tolerance index of bacterial and fungal isolates in growth media supplemented with 10 ppm of heavy metal  
Microbial Isolates  
Tolerance Index  
Cd2+  
0.88  
0.80  
0.60  
0.55  
0.25  
0.20  
0.85  
0.82  
0.80  
1.86  
1.84  
2.25  
Ni2+  
0.90  
0.88  
0.77  
0.75  
0.45  
0.45  
0.80  
0.80  
0.80  
1.88  
1.81  
2.34  
Zn  
2+  
Ni2+ + Zn2+ + Cd2+  
Pseudomonas aeruginosa  
Bacillus subtilis  
Micrococcus luteus  
Escherichia coli  
Staphylococcus aureus  
Staphylococcus epidermidis  
Aspergillus niger  
Aspergillus carmari  
Penicillium notatum  
Bacterial consortium  
Fungal consortium  
0.92  
0.85  
0.80  
0.70  
0.56  
0.54  
0.99  
0.94  
0.90  
1.90  
1.87  
2.38  
0.62  
0.58  
0.44  
0.30  
0.15  
0.10  
0.61  
0.60  
0.56  
0.83  
0.80  
1.66  
Bacterial-fungal consortium  
184  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
100000  
80000  
60000  
40000  
20000  
0
0
7
14  
21  
28  
35  
Remediation Time (Days)  
Control (Natural Bioattenuation)  
Fungal Consortium-Metal Free  
Bacterial Consortium-Metal Free  
Bacterial-Fungal Consortium-Metal Free  
Figure 1: TPH biodegradation profile by bacterial consortium, fungal consortium and bacterial-fungal consortium in the absence of heavy metals  
Nickel, Zinc and Cadmium). Bars indicate the average of triplicate samples while the error bars show the standard deviation.  
(
As shown in Figure 1, within the first 21 days of  
remediation in the soil microcosms B-T , B-T and B-T12, a  
in the different consortium biodegradation efficiency. The  
higher percent TPH biodegradation observed in bacterial-  
fungal consortium might be ascribed to the synergistic  
metabolic activities by the consortium of three bacteria and  
three fungi isolates with larger number of different types of  
enzymes which might have enhanced the degradation  
process than separate bacterial and fungal consortiums with  
fewer types of enzymes. These results thus suggest that the  
consortium which consists of both bacterial and fungal  
TPH degraders may lead to very rapid and more complete  
degradation as compared to separate consortium of bacteria  
or consortium of fungi and it emphasized the role of fungal  
species with degradation capability in the synergistic TPH  
degradation. Also, the bacterial consortium yielded an  
increase of 11% compared to the fungal consortium.  
2
7
rapid decrease in TPH amounting to over 50% degradation  
was attained. The degradation efficiency of these consortia  
increased with time and at the end of day 35 remediation  
period, 100, 000 mg/kg of TPH concentration was reduced  
to 27,500 ± 1750, 36,000 ± 1900 and 9,300 ± 1100 mg/kg  
TPH corresponding to 72.5%, 64% and 90.7%  
biodegradation or reduction in soil bio-augmented with  
2
7
bacterial consortium (B-T ), fungal consortium (B-T ) and  
bacterial-fungal consortium (B-T12), respectively.  
Meanwhile, in the non-bioaugmented soil microcosm (B-  
), the TPH concentration of 100,000 mg/kg was reduced  
T
1
to 55,000 mg/kg amounting to 45% TPH biodegradation at  
the end of day 35 remediation period. The bacterial  
consortium, fungal consortium and bacterial-fungal  
consortium correspondingly resulted in an increase of 61%,  
3.3 Influence of Heavy Metals on Bacterial and Fungal  
Consortia Degradation of TPH  
42.2% and 101.5% TPH biodegradation in relation to the  
2+  
percent TPH biodegradation obtained in the non-  
bioaugmented soil microcosm (natural bioattenuation) or  
control. The increased degradation by the consortium in the  
bio-augmented soil microcosms as compared to the non-  
bio-augmented microcosm may be attributed to greater  
population of TPH degraders. Similarly, the bacterial-  
fungal consortium resulted in an increase of 25% and  
The influence of the presence of heavy metals (Ni ,  
Zn2+ and Cd ) as individual metals and as combined or  
mixture form on bacterial consortium, fungal consortium  
and bacterial-fungal consortium degradation of TPH was  
evaluated. Figure 2(A) shows the level of TPH  
biodegradation in soil microcosm bio-augmented alone  
2+  
with bacterial consortium (B-T ), bacterial consortium +  
2
2
+
2+  
41.7% TPH biodegradation with respect to the percent  
3 4  
Ni (B-T ), bacterial consortium + Zn (B-T ), bacterial  
2+ 2+  
consortium + Cd (B-T  
degradation attained by the bacterial consortium and fungal  
consortium, respectively. These increases in TPH  
biodegradation represent a significant difference (p < 0.05)  
5
), and bacterial consortium + Ni  
6
), respectively.  
2+  
2+  
+ Zn + Cd (B-T  
185  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
(A) Bacterial Consortium  
(B) Bacterial Consortium  
100000  
16  
14  
12  
10  
8
6
4
2
0
5
0000  
0
0
7
14  
21  
28  
35  
Remediation Time (Days)  
Bacterial Consortium-Metal Free  
Bacteria Consortium + Nickel  
Bacterial Consortium + Zinc  
Bacterial Consortium + Cadmium  
Bacterial Consortium + Nickel + Zinc + Cadmium  
Ni  
Zn  
Cd Ni + Zn +  
Cd  
Heavy Metals  
Figure 2: (A) TPH biodegradation profile by bacterial consortia in the absence and presence of heavy metals (Nickel, Zinc and Cadmium). (B)  
Amount of heavy metal (Nickel, Zinc and Cadmium) bioavailable to bacterial consortia. Bars indicate the average of triplicate samples while the  
error bars show the standard deviation.  
A rapid decrease in TPH amounting to over 50%  
reduction was attained within the first 21 days of the  
remediation in all the soil microcosms augmented with  
bacteria and heavy metals. At the end of day 35  
remediation period, 100,000 mg/kg of TPH concentration  
was reduced to 27,500 ± 1750, 20,800 ± 1500, 18,600 ±  
augmented with bacterial consortium, the highest  
percentage of TPH biodegradation or reduction was  
achieved in soil microcosm that contained the presence of  
2+  
Zn (81.4%). This is relatively and closely followed by  
2+  
that of bacterial consortium + Ni (79.2%), bacterial  
2+  
consortium + Cd (75.3%), bacterial consortium alone  
2+  
(72.5%), and bacterial consortium + Ni + Zn + Cd  
2+  
2+  
1450, 24,700 ± 1300 and 31,800 ± 2000 mg/kg TPH  
corresponding to 72.5%, 79.2%, 81.4%, 75.3% and 68.2%  
degradation or reduction in soil bio-augmented with  
bacterial consortium-metal free, bacterial consortium +  
(68.2%), respectively. Thus there are significant differences  
(p < 0.05) in the percent TPH degradation influenced by the  
2+  
individual and combined mixture of Zn , Ni and Cd  
2+  
2+  
2+  
2+  
Ni , bacterial consortium + Zn , bacterial consortium +  
heavy metals. This observation means that the degree of  
bioavailability of the heavy metals to the bacterial  
consortium differs as shown in Figure 2(B). Figure 2(B)  
2
+
2+  
2+  
2+  
Cd , and bacterial consortium + Ni + Zn + Cd ,  
respectively. The results revealed that the individual  
2+  
2+  
2+  
2+  
presence of Ni , Zn and Cd exerted a significant  
positive influence on the TPH bacterial consortium  
degradation by increasing the TPH percent degradation by  
reveals that Zn was more bioavailable to the consortium  
2
+
2+  
and followed by Ni and Cd , respectively. Therefore, the  
2+  
2+  
2+  
potential bioavailability of Ni , Zn and Cd in soil  
strongly decreased after bioaugmentation with bacterial  
consortium after 35 days’ incubation. However,  
9.2%, 12.3% and 3.9%, respectively, relative to the TPH  
degradation by the bacterial consortium that is heavy metal-  
free. The relatively enhanced TPH biodegradation or  
reduction may be due to the relative bioavailability of the  
individual metals to the bacterial consortium (Figure 3(A))  
which tend to stimulate growth as well as to the high metal  
TI of the bacterial consortium (Table 2). While the  
2+  
2+  
2+  
bioavailable mixed heavy metals (Ni + Zn + Cd ) in  
soil microcosm only decreased slightly after 35 days’  
incubation. Thavamani et al. [30] reported that there was  
complete phenanthrene biodegradation in soil solution by  
bacterial consortium (Alcaligenes sp., Pseudomonas sp.,  
Pandoraea sp. and Paenibacillus sp) in the presence of 5  
mg/L of cadmium. Nonetheless, according to Sandrin and  
Hoffman [57] making comparisons between heavy metals  
2+  
2+  
combined equal concentration mixture of Ni , Zn and  
2+  
Cd (30 mg/L) exerted a considerable negative impact on  
the TPH bacterial consortium degradation by significantly  
(
p < 0.05) suppressing or decreasing the TPH bacterial  
concentrations  
that  
inhibit  
organic  
compounds  
degradation by 5.9%. This indicated that the presence of  
mixed heavy metals (or multi-heavy metals) acts  
synergistically to impose a greater inhibitory response to  
the growth of the bacterial consortium thereby imposing a  
relatively partial inhibition to the degradation than that  
imposed by single or individual heavy metals. A similar  
observation has been reported [56]. The different  
bioaugmentation treatments ranking with respect to  
biodegradation as reported by different researchers is  
difficult. This is because more often than not, significant  
variation is usually observed in the inhibitory range for  
heavy metals due to different conditions of experiments  
used such as time of exposure, pH etc. [58]. Figure 3(A)  
shows the TPH biodegradation profile in soil microcosms  
bio-augmented with fungal consortium-metal free, fungal  
2+  
2+  
consortium + Ni , fungal consortium + Zn , fungal  
2
+
2+  
2+  
increasing TPH biodegradation level was B-T  
6
< B-T  
2
< B-  
consortium + Cd , and fungal consortium + Ni + Zn +  
2+  
Cd , respectively.  
T
5
< B-T < B-T . That is, in all the soil microcosms bio-  
3
4
186  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
(A)  
(B)  
100000  
2
5
0
2
50000  
15  
1
0
5
0
0
0
7
14  
21  
28  
35  
Ni  
Zn  
Cd  
Ni + Zn +  
Cd  
Remediation Time (Days)  
Fungal Consortium-Metal Free  
Fungal Consortium + Nickel  
Fungal Consortium + Zinc  
Heavy Metals  
Fungal Consortium + Cadmium  
Figure 3: (A) TPH biodegradation profile by fungal consortia in the absence and presence of heavy metals (Nickel, Zinc and Cadmium). (B)  
Amount of heavy metal (Nickel, Zinc and Cadmium) bioavailable to fungal consortia. Bars indicate the average of triplicate samples while the  
error bars show the standard deviation.  
Similarly, within the first 21 days of the remediation  
period the decrease observed in TPH resulted to about 50%  
reduction in all the soil microcosms augmented with fungal  
consortium and heavy metals. At day-35 remediation  
period, the TPH concentration of 100,000 mg/kg was  
reduced to 36,000 ± 1900, 30,600 ± 1700, 34,200 ± 1600,  
and 3.8%, respectively, relative to the percent TPH  
biodegradation attained by the fungal consortium-metal  
free. This enhancement could also be due to the relative  
bioavailability of the individual metals to the fungal  
consortium as shown in Figure 3(B) as well as the  
concentration tolerance of the individual heavy metals by  
2+  
the consortium (Table 2). Figure 3(B) reveals that Ni was  
2+  
31,800 ± 1500 and 39,400 ± 1850 mg/kg TPH which  
corresponded to 64%, 69.4%, 66.4%, 68.2%, and 60.6%  
more bioavailable to the consortium and followed by Cd  
2+  
TPH biodegradation in soil augmented with fungal  
and Ni , respectively. Meanwhile, the combined mixture  
2+  
2+  
2+  
2+  
consortium, fungal consortium + Ni , fungal consortium +  
of Ni + Zn + Cd of 30 mg/L concentration exerted a  
considerable negative impact on the TPH fungal  
2
+
2+  
Zn , fungal consortium + Cd , and fungal consortium +  
2+  
2+  
2+  
Ni + Zn + Cd , respectively. Similarly, in all the soil  
microcosms bio-augmented with fungal consortium, the  
consortium degradation by significantly (p < 0.05)  
decreasing the TPH fungal consortium degradation by  
5.3%. This observation also revealed that the presence of  
mixed heavy metals with relatively higher concentration  
acts synergistically to impose a greater inhibitory response  
to the growth of the fungal consortium hence imposing a  
partial inhibition to the TPH degradation than that imposed  
by single heavy metals. A similar observation has been  
reported (Anahid et al., 2011).  
2+  
microcosm containing Ni had the highest percentage of  
TPH reduction (69.4%) and was relatively followed by that  
2+  
of fungal consortium + Cd (68.2%), fungal consortium +  
2+  
Zn (66.4%), fungal consortium-metal free (64%) and  
2+  
2+ 2+  
fungal consortium + Ni  
+ Zn + Cd (60.6%),  
respectively. Hence, the bioaugmentation treatments  
ranking with respect to increasing TPH biodegradation  
level is B-T11 < B-T  
significant differences (p < 0.05) in the percent TPH  
7
< B-T  
9
< B-T10 < B-T  
8
. Thus there are  
The TPH biodegradation profile in soil microcosms  
bio-augmented with bacterial-fungal consortium (metal-  
2+  
free), bacterial-fungal consortium + Zn , bacterial-fungal  
2+ 2+  
biodegradation influenced by the individual and combined  
2+  
2+  
2+  
mixture of Ni , Zn and Cd heavy metals. This  
consortium + Ni , bacterial-fungal consortium + Cd , and  
2+ 2+ 2+  
2+  
2+  
2+  
observation indicated that Ni , Zn and Cd exerted a  
relatively positive influence and thus enhanced the TPH  
biodegradation by the fungal consortium by 8.4%, 6.6%  
bacterial-fungal consortium  
+
Ni  
+
Zn  
+ Cd ,  
respectively, is shown in Figure 4(A).  
187  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
(A)  
(B)  
100000  
30  
25  
20  
15  
10  
5
0
0
0
7
14  
21  
28  
35  
Remediation Time (Days)  
Bacterial-Fungal Consortium-Metal Free  
Bacterial-Fungal Consortium + Nickel  
Bacterial-Fungal Consortium + Zinc  
Bacterial-Fungal Consortium + Cadmium  
Ni  
Zn  
Cd  
Ni + Zn +  
Cd  
Heavy Metals  
Bacterial-Fungal Consortium + Nickel + Zinc + Cadmium  
Figure 4: (A) TPH biodegradation profile by bacterial-fungal consortium in the absence and presence of heavy metals (Nickel, Zinc and  
Cadmium). (B) Amount of heavy metal (Nickel, Zinc and Cadmium) bioavailable to bacterial-fungal consortium. Bars indicate the average of  
triplicate samples while the error bars show the standard deviation.  
Similarly,  
a
fast decrease in TPH concentration  
and Acremonium sp.) [59]. In addition, Shen et al. [60]  
have reported that 10 mg/L concentration of cadmium  
inhibited the biodegradation of phenanthrene by indigenous  
microorganisms in soil microcosms where the soil pH is  
8.18 while on the other hand, 1 mg/L of cadmium inhibited  
resulting to over 70% reduction was achieved within day 21  
of the remediation period in all the soil microcosms bio-  
augmented with bacterial-fungal consortium and heavy  
metals. At the end of day 35, the TPH concentration  
(
1
100,000 mg/kg) significantly reduced to 9,300 ± 1100,  
,000 ± 850, 1,500 ± 900, 4,300 ± 1000 and 0 mg/kg TPH  
phenanthrene  
microorganisms in soil of pH 7.6 [61].  
biodegradation  
by  
indigenous  
corresponding to 90.7%, 99%, 98.5%, 95.7% and 100%  
degradation in soil bio-augmented with bacterial-fungal  
consortium (metal free), bacterial-fungal consortium +  
The ranking of the different bacterial-fungal consortium  
bioaugmentation treatments with respect to TPH reduction  
or biodegradation was B-T12 < B-T15 < B-T14 < B-T13 < B-  
2+  
2+  
Ni , bacteria-fungal consortium + Zn , bacterial-fungal  
T16. The ranking revealed that in all the soil microcosms  
2
+
2+  
consortium + Cd , and bacterial-fungal consortium + Ni  
+
bio-augmented with bacterial-fungal consortium, the  
highest percent TPH biodegradation was attained in soil  
microcosm containing the presence of the mixed heavy  
2+ 2+ 2+ 2+  
Zn + Cd , respectively. The mixture of Ni , Zn and  
2+  
Cd of 30 mg/L concentration elicited a complete TPH  
biodegradation by the bacterial-fungal consortium. This  
indicated that the bacterial-fungal consortium acted  
synergistically to pose strong resistance to the synergistic  
toxicity and inhibitory effect imposed by the presence of  
the mixed heavy metals. In addition, the results also  
2
+
2+  
2+  
metals (Ni + Zn + Cd ) (i.e. 100%). This is closely  
2+  
followed by bacterial-fungal consortium + Ni (99%),  
bacterial-fungal consortium + Zn (98.5%), bacterial-  
fungal consortium + Cd (95.7%) and bacterial-fungal  
consortium-metal free (90.7%), respectively. Furthermore,  
in comparison with bacterial and fungal consortia, the  
bacterial-fungal consortium in the absence and presence of  
2+  
2
+
2+  
2+  
2+  
revealed that the single presence of Ni , Zn and Cd and  
their mixture exerted a significant positive effect on the  
TPH biodegradation by bacterial-fungal consortium by  
increasing the percent TPH degradation by 9.2%, 8.6%,  
heavy metals achieved  
a
higher percent TPH  
biodegradation than that due to bacterial and fungal  
consortia, respectively. This is respectively followed by  
that due to bacterial consortium and fungal consortium in  
the absence and presence of heavy metals. This observation  
suggest that both bacteria and fungi species play very  
significant role in TPH degradation or removal, and that the  
presence of both types of microorganisms may result in  
synergy of degradation activity during bioaugumentation  
[15]. Nevertheless, the bacterial consortium, fungal  
consortium and bacterial-fungal consortium have  
demonstrated their ability to degrade TPH with high  
degradation efficiency even in the presence of heavy metals  
in relation to the non-bioaugmented soil microcosm  
(control or natural bioattenuation).  
5
.5% and 10.3%, respectively, relative to the percent TPH  
degradation attained by the bacterial-fungal consortium  
metal free). The observed relative enhancement of TPH  
(
biodegradation may be due to high relative bioavailability  
of the individual metals and their mixture as presented in  
Figure 4(B) as well as the relative high combined or mixed  
metal concentration tolerance of the bacterial-fungal  
2+  
consortium (Table 2). It has been reported that Ni  
supplementation at a concentration of 5 mM (294 mg/L)  
suppressed significantly (p 0.01) fluorene, phenanthrene  
and anthracene removal from broth media, while it  
increased fluoranthene degradation by 4.8 % relative to the  
control using fungus-bacterial consortium (Bacillus subtilis  
188  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
(B) Bacterial Growth  
(A) Microbial Growth in the  
20  
20  
Absence of Metals  
10  
0
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Time (Days)  
Time (Days)  
Bacteria Count in Control  
Fungi Count in Control  
Bacterial Consortium (Metal Free)  
Bacteria Consortium + Nickel  
Bacterial Consortium + Zinc  
Bacterial Consortium (Metal Free)  
Fungal Consortium (Metal Free)  
Bacterial Consortium + Cadmium  
(D)Bacteria-Fungi Growth  
(C) Fungal Growth  
1
5
30  
20  
10  
0
1
0
5
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Time (Days)  
Time (Days)  
Fungal Consortium (Metal Free)  
Fungal Consortium + Nickel  
Fungal Consortium + Zinc  
Fungal Consortium + Cadmium  
Fungal Consortium + Nickel + Zinc + Cadmium  
Bacteria + Fungi (Metal Free)  
Bacteria + Fungi + Nickel  
Bacteria + Fungi + Zinc  
Bacteria + Fungi + Cadmium  
Bacteria + Fungi + Nickel + Zinc + Cadmium  
Figure 5: (A) Growth profile of bacterial consortium, fungal consortium and bacterial-fungal consortium in the absence of heavy metals (Nickel,  
Zinc and Cadmium). (B) Growth profile of bacterial consortium in the absence and presence of heavy metals (Nickel, Zinc and Cadmium). (C)  
Growth profile of fungal consortium in the absence and presence of heavy metals (Nickel, Zinc and Cadmium). (D) Growth profile of bacterial-  
fungal consortium in the absence and presence of heavy metals (Nickel, Zinc and Cadmium).  
g1 which corresponded to a percentage increase of 167%,  
81.4% and 423%, respectively. On the other hand, the  
bacterial count and the fungal count in the non-augmented  
soil microcosm correspondingly increased from 8.1 to 8.9 ×  
3
.4 Microbial Growth Profile  
Figure 5 shows the profiles of microbial growth in the  
non-augmented soil microcosm and soil microcosms  
augmented with bacterial and fungal consortia in the  
2+  
2+  
2+  
4
1  
4
1  
presence and absence of Ni , Zn and Cd heavy metals.  
The profiles of bacterial growth in the non-augmented soil  
microcosm and soil microcosms augmented with bacterial  
consortium-metal free, fungal consortium-metal free and  
bacterial-fungal consortium-metal free as shown in Fig.  
10 cfu-g and from 2.8 to 3.5 × 10 cfu-g corresponding to  
a percentage increase of 10 and 25%, respectively. This low  
percentage increase in both bacterial and fungal growth  
showed that the non-augmented soil microcosm had more  
of non-hydrocarbon utilizing microbes than the  
hydrocarbon utilizing bacteria and fungi when compared to  
the soil microcosm bio-augmented with bacterial and  
fungal consortia that are hydrocarbon utilizers. This  
accounted for the low TPH biodegradation achieved in the  
non-augmented soil microcosm (natural bioattenuation).  
Figure 5(B) shows the profiles of bacterial growth in  
the soil microcosms augmented with consortia of bacteria,  
5(A) indicates that the bacterial counts generally increased  
from day 0 to day 21 in each of the augmented and non-  
augmented soil microcosms. For soil microcosm bio-  
augmented with bacterial consortium-metal free, fungal  
consortium-metal free and bacterial-fungal consortium-  
metal free, the bacterial counts increased from 4.8 to 12.8 ×  
6 1 6 1 6  
0 cfu-g , 4.3 to 7.8 × 10 cfu-g and 3.2 to 16.9 × 10 cfu-  
1
189  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
Ni , Zn , Cd and the mixture of Ni , Zn and Cd2+,  
respectively. As shown in Figure 5, it is seen that the  
bacterial counts generally increased from day 0 to day 21 in  
each of the augmented soil microcosms. For soil  
microcosm bio-augmented with bacterial consortium-metal  
2
+
2+  
2+  
2+  
2+  
2+  
microcosms’ bio-augmented with fungal consortium + Cd  
2+  
+
Zn  
9
(B-T10), fungal consortium (B-T ), fungal  
2+  
consortium-metal free (B-T ) and fungal consortium + Ni  
+ Zn + Cd (B-T11), respectively. This observation  
7
2+  
2+  
2+  
2+  
suggests that the 10 mg/L concentration of each Ni , Zn  
2+  
2+  
and Cd enhanced the growth of the fungal population  
2+ 2+ 2+  
free, bacterial consortium + Ni , bacterial consortium +  
2
+
2+  
Zn , bacterial consortium  
+ Cd , and bacterial  
while the mixed heavy metals (Ni + Zn + Cd ) of 30  
mg/L total concentration suppressed the growth. The  
enhanced growth of the fungal consortium may be due to  
the synergistic interaction of the fungal species in the  
consortium to positively tolerate 10 mg/L concentration  
2
+
2+  
2+  
consortium+ Ni + Zn + Cd , the bacterial counts  
6
1  
increased from 4.8 to 12.8 × 10 cfu-g , 3.2 to 16.9 ×  
6 1 6 1 6 1  
0 cfu-g , 2.2 to 11.5 × 10 cfu-g , 2.1 to 9.8 × 10 cfu-g ,  
6 1  
1
and 4.2 to 10.6 × 10 cfu-g which corresponded to a  
percentage increase of 167%, 428%, 423%, 367% and  
2
+
2+  
2+  
each of Ni , Zn and Cd respectively. While the fungal  
consortium growth suppression due to the presence of  
1
52%, respectively. This results revealed that soil  
microcosm bio-augmented with bacterial consortia in the  
presence of Zn heavy metal exhibited the highest bacterial  
growth. This is closely followed by soil microcosms’ bio-  
augmented with bacterial consortium + Ni , bacterial  
consortium + Cd , bacterial consortium-metal free and  
bacterial consortium + Ni + Zn + Cd , respectively.  
This observation suggests that the 10 mg/L concentration of  
the single heavy metals (Ni , Zn and Cd ) used in this  
2+  
2+  
2+  
combined mixture of heavy metals (Ni + Zn + Cd )  
may probably be due to the concentration (30 mg/L) being  
too high to act synergistically to impose a greater inhibitory  
response to the growth of the fungal consortium.  
2+  
2+  
2+  
Figure 5(D) shows the growth profiles of bacteria and  
fungi in the soil microcosms augmented with bacterial-  
fungal consortium-metal free, bacterial-fungal consortium  
2+  
2+  
2+  
2+  
2+  
2+  
2+ 2+  
+ Ni , bacterial-fungal consortium + Zn , bacterial-fungal  
2+ 2+  
study had enhancement effect on the growth of the bacteria  
population with Zn  
consortium + Cd and bacterial-fungal consortium + Ni  
+
2+  
2+  
2+  
displaying the most growth  
Zn + Cd , respectively. Generally, it is seen that the  
bacterial-fungal counts generally increased from day 0 to  
day 21 in each of the augmented soil microcosms. The  
enhancement while the combined mixture effect of the  
three heavy metals suppressed the growth of the bacteria  
population. The results also suggest that the combined  
mixture of heavy metals acts in synergy to impose more  
toxic effect to bacterial growth than the single heavy metal.  
A similar observation of growth suppression for Bacillus  
sp. CPB4 in the presence of combined mixture of lead (Pb),  
copper (Cu), zinc (Zn) and cadmium (Cd) has been  
reported [62]. The suppression or inhibition of the bacterial  
6
bacterial-fungal counts increased from 7.6 to 17.2 × 10 cfu-  
1
6
1  
6
1  
g , 4.3 to 19.4 × 10 cfu-g , 5.5 to 17.8 × 10 cfu-g , 5.0 to  
6
1  
6
1  
15.8 × 10 cfu-g , and 6.7 to 30.7.3 × 10 cfu-g , and  
which corresponded to a percentage increase of 126%,  
351%, 224%, 216% and 358%, for soil microcosm bio-  
augmented with bacterial-fungal consortium-metal free,  
2+  
Ni , bacterial-fungal  
2+  
bacterial-fungal consortium  
+
2+  
2+  
2+  
consortium + Zn , bacterial-fungal consortium + Cd , and  
2+ 2+ 2+  
growth exhibited by the combined mixture of Zn , Ni  
2
+
and Cd may be due to the fact that the bioavailable mixed  
heavy metals of 30 mg/L concentration might probably be  
high for the bacterial consortium to exert a synergistic toxic  
effect. It has been documented in the literature that all  
heavy metals exhibit toxicity to living microbial cells at  
certain concentration [35, 63]. This could have been  
responsible for the lower TPH biodegradation observed in  
the soil microcosm containing combined mixture of the  
heavy metals (Ni + Zn + Cd) bio-augmented with bacterial  
consortium.  
bacterial-fungal consortium  
+
Ni  
+
Zn  
+ Cd ,  
respectively. This results indicated that bio-augmented soil  
microcosm (B-T16) containing bacterial-fungal consortium  
+ Ni + Zn + Cd2+ displayed the highest bacterial-fungal  
2
+
2+  
growth. This is closely followed by soil microcosms’ bio-  
2+  
augmented with bacterial-fungal consortium + Ni (B-T13),  
2+  
bacterial-fungal consortium + Zn (B-T14), bacterial-fungal  
2+  
consortium + Cd (B-T15) and bacterial-fungal consortium-  
metal free (B-T12), respectively. This observation suggests  
2+  
2+  
2+  
that the 10 mg/L concentration of each Ni , Zn and Cd  
Figure 5(C) shows the growth profiles of fungi in the  
soil microcosms augmented with fungal consortium-metal  
free, fungal consortium + Ni , fungal consortium + Zn ,  
as well as the 30 mg/L of the mixed heavy metals enhanced  
the growth of the bacterial-fungal population. The  
enhanced growth of the bacterial-fungal consortium may be  
due to the synergistic interaction of the bacterial-fungal  
species in the consortium to positively tolerate 10 mg/L  
2+  
2+  
2
+
2+  
fungal consortium + Cd and fungal consortium + Ni +  
2+  
2+  
Zn + Cd , respectively. Generally, it is seen that the  
fungal counts generally increased from day 0 to day 21 in  
each of the augmented soil microcosms. The fungal counts  
2+  
2+  
2+  
concentration each of Ni , Zn and Cd and the 30 mg/L  
of the mixed heavy metals, respectively.  
6
1  
6
increased from 4.3 to 7.8 × 10 cfu-g , 1.9 to 6.4 × 10 cfu-  
1  
6
1  
6
1  
g , 4.4 to 9.8 × 10 cfu-g , 3.9 to 10.7 × 10 cfu-g , and  
3.5 pH profile during TPH biodegradation  
6
1  
3
.8 to 6.5 × 10 cfu-g , and which corresponded to a  
percentage increase of 81.4%, 237%, 123%, 174% and  
1.1%, for soil microcosm bio-augmented with fungal  
The un-impacted soil pH before crude oil  
contamination was 5.1. However, after crude oil  
contamination, the soil pH reduced to 4.5. This observed  
reduction in soil pH as a result of crude oil contamination is  
in agreement with the findings of Osuji and Nwoye [64].  
The reduction in soil pH implies increased soil acidity  
which is a problem for agricultural soils.  
7
2+  
consortium-metal free, fungal consortium + Ni , fungal  
2+  
2+  
consortium + Zn , fungal consortium + Cd and fungal  
2+  
2+  
2+  
consortium + Ni + Zn + Cd , respectively. This results  
indicated that bio-augmented soil microcosm (B-T  
8
)
2+  
containing fungal consortium + Ni displayed the highest  
fungal growth. This is relatively followed by soil  
190  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
(A) Bioaugmentation without Metals  
(B) Bacterial Consortium  
1
0
5
0
1
0
5
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Remediation Time (Days)  
Remediation Time (Days)  
Bacterial Consortium (Metal Free)  
Bacterial Consortium + Nickel  
Bacterial Consortium + Zinc  
Control (Natural Bioattenuation)  
Bacterial Consortium (Metal Free)  
Fungal Consortium (Metal Free)  
Bacterial-Fungal Consortium (Metal Free)  
Bacterial Consortium + Cadmium  
Bacterial Consortium + Nickel + Zinc + Cadmium  
(
D)Bacterial-Fungal Consortium  
(
C)Fungal Consortium  
1
0
5
0
10  
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Remediation Time (Days)  
Remediation Time (Days)  
Bacterial-Fungal Consortium (Metal Free)  
Bacterial-Fungal Consortium + Nickel  
Bacterial-Fungal Consortium + Zinc  
Bacterial-Fungal Consortium + Cadmium  
Bacterial-Fungal Consortium + Nickel + Zinc + Cadmium  
Fungal Consortium (Metal Free)  
Fungal Consortium + Nickel  
Fungal Consortium + Zinc  
Fungal Consortium + Cadmium  
Fungal Consortium + Nickel + Zinc + Cadmium  
Figure 6. (A) Soil pH profile in the course of TPH biodegradation by bacterial consortium, fungal consortium and bacterial-fungal consortium in  
the absence of heavy metals (Nickel, Zinc and Cadmium). (B) Soil pH profile in the course of TPH biodegradation by bacterial consortium in the  
absence and presence of heavy metals (Nickel, Zinc and Cadmium). (C) Soil pH profile in the course of TPH biodegradation by fungal  
consortium in the absence and presence of heavy metals (Nickel, Zinc and Cadmium). (D) Soil pH profile in the course of TPH biodegradation  
by bacterial-fungal consortium in the absence and presence of heavy metals (Nickel, Zinc and Cadmium).  
The resulting increased acidity could be due to the fact  
that hydrocarbons contain many free cations causing them  
to have properties of a weak acid. Figure 6 shows the soil  
pH profile in the course of TPH biodegradation in the  
absence and presence of heavy metals and microbial  
consortium. The results in Figure 6 as depicted for  
microbial consortium in the absence of heavy metals  
pH values (6.6 7.8) obtained for the various  
bioaugmented and non-bioaugmented soil microcosms  
were within the range for optimum microbial activities.  
3.6 Kinetics and half-life of TPH biodegradation  
First-order kinetics model equation (Eq. 2) fitted to the  
biodegradation data was used to determine the rate of TPH  
biodegradation (i.e. biodegradation rate constants (k)) in the  
various bioaugmentation treatments. The results are  
presented in Table 3. The results in Table 3 as revealed by  
(
Figure 6(A)), bacterial consortium in the presence of  
heavy metals (Figure 6(B)), fungal consortium in the  
presence of heavy metals (Figure 6(C)) and bacterial-fungal  
consortium in the presence of heavy metals (Figure 6(D))  
revealed that the pH of the crude oil contaminated soil  
microcosms increased in the course of the TPH  
biodegradation. The observed changes in the soil pH values  
of the various soil microcosms were due to the removal or  
degradation of the crude oil contaminant. The range of soil  
2
high correlation coefficient (R ) indicated that the TPH  
biodegradation data fitted well to the first-order kinetic  
model. The half-life time (t1/2) of TPH biodegradation in  
the absence and presence of heavy metals was calculated  
using Eq. (3), and the results are given in Table 3.  
191  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
Table 3: Biodegradation rate constants and correlation coefficients obtained from the fitting of first-order kinetic model to TPH  
biodegradation data and the calculated half-life time  
-1  
2
Soil Treatment  
B-T (Control)  
Bacterial Consortium (B-T  
Bacterial Consortium + Nickel (B-T  
Bacterial Consortium + Zinc (B-T  
Bacterial Consortium + Cadmium (B-T  
Bacterial Consortium + Nickel + Zinc + Cadmium (B-T  
Fungal Consortium (B-T  
Fungal Consortium + Nickel (B-T  
Fungal Consortium + Zinc (B-T  
Fungal Consortium + Cadmium (B-T10  
Fungal Consortium + Nickel + Zinc + Cadmium (B-T11  
Bacterial- Fungal Consortium (B-T12  
Bacterial-Fungal Consortium + Nickel (B-T13  
Bacterial-Fungal Consortium + Zinc (B-T14  
Bacterial-Fungal Consortium + Cadmium (B-T15  
Bacterial-Fungal Consortium + Ni + Zn + Cd (B-T16  
k
(day )  
t1/ 2 (days)  
R
1
0.010  
0.043  
0.049  
0.051  
0.046  
0.040  
0.035  
0.040  
0.037  
0.039  
0.032  
0.060  
0.129  
0.118  
0.084  
0.158  
69.3  
16.1  
14.1  
13.6  
15.1  
17.3  
19.8  
17.3  
18.7  
17.8  
21.7  
11.6  
5.4  
0.9553  
0.9952  
0.9981  
0.9994  
0.9974  
0.9942  
0.9930  
0.9933  
0.9956  
0.9946  
0.9894  
0.9966  
0.9977  
0.9949  
0.9972  
0.9992  
2
)
3
)
4
)
5
)
6
)
7
)
8
)
9
)
)
)
)
)
)
5.9  
8.3  
4.4  
)
)
-1  
It is important to note that a higher biodegradation rate  
constant indicates a faster or higher rate of biodegradation  
and subsequently a lower half-life time. It could be seen  
from Table 3 that for soil microcosms augmented with  
+ Cd2+ had a higher k (0.158 day ) and lower t1/2 (4.4 days)  
than that augmented with bacterial-fungal consortium +  
Ni (k = 0.129 day and t1/2 = 5.4 days), bacterial-fungal  
2+  
-1  
2+  
-1  
consortium + Zn (k = 0.118 day and t1/2 = 5.9 days),  
2
+
-1  
microorganisms in the absence of heavy metals (B-T  
2
, B-T  
7
bacterial-fungal consortium + Cd (k = 0.084 day and t1/2  
= 8.3 days) and bacterial-fungal consortium (metal free) (k  
and B-T12) and non-augmented soil microcosm, the soil  
microcosm augmented with bacterial-fungal consortium  
-1  
= 0.060 day and t1/2 = 11.6 days), respectively.  
-1  
had a higher k (0.060 day ) and lower t1/2 (11.6 days) than  
-
1
that augmented with bacterial consortium (k= 0.043 day  
4
Conclusions  
and t1/2= 16.1 days) and fungal consortium (k= 0.035 day-1  
From this study, it can be concluded that the bacteria  
and t1/2= 19.8 days), respectively. While the non-augmented  
species (Pseudomonas aeruginosa, Bacillus subtilis and  
Micrococcus letus) and fungi species (Aspergillus niger,  
Aspergillus carmari and Penicillium notatum) used as  
consortia in this study showed high tolerance and resistance  
to nickel, zinc and cadmium heavy metals in soil. The  
addition of hydrocarbon utilizing and metal-resistant  
microorganisms in the form of consortia either as bacterial  
consortia (Pseudomonas aeruginosa, Bacillus subtilis and  
Micrococcus letus), fungal consortia (Aspergillus niger,  
Aspergillus carmari and Penicillium notatum) or bacterial-  
fungal consortia (Pseudomonas aeruginosa, Bacillus  
subtilis, Micrococcus letus, Aspergillus niger, Aspergillus  
carmari and Penicillium notatum) provided an enhanced  
TPH biodegradation (>60%) in the presence and absence of  
single or individual heavy metals (nickel, zinc and  
cadmium) with the bacterial-fungal consortia providing the  
highest enhancement. Complete TPH biodegradation  
-
1
soil microcosm had the least k value of 0.010 day and the  
highest t1/2 value of 69.3 days. The value obtained for the  
non-bioaugmented soil microcosm is close to the k value of  
-1  
0
.015 day obtained for the natural bioattenuation of soil  
microcosm contaminated with lubricating motor oil [13].  
For soil microcosms augmented with bacterial  
consortium in the presence of heavy metals, the soil  
2+  
augmented with bacterial consortium + Zn had a  
-
1
relatively higher k (0.051 day ) and lower t1/2 (13.6 days)  
2+  
than the one augmented with bacterial consortium + Ni (k  
-1  
0.049 day and t1/2 = 14.1 days), bacterial consortium +  
2+ -1  
=
Cd (k = 0.046 day and t1/2 = 15.1 days), bacterial  
-1  
consortium (metal free) (k = 0.043 day and t1/2= 16.1  
days) and bacterial consortium + Ni + Zn2+ + Cd2+ (k=  
2+  
-1  
0
.040 day and t1/2= 17.3 days), respectively. Furthermore,  
for soil microcosms augmented with fungal consortium in  
the presence of heavy metals, the soil augmented with  
(
100%) and enhanced microbial growth in soil can be  
2+  
fungal consortium + Ni had a relatively higher k (0.040  
achieved in the presence of mixed heavy metals(Nickel +  
Zinc + Cadmium) using bacterial-fungal consortia while a  
reduction in TPH biodegradation and decreased microbial  
growth is attained with the use of bacterial or fungal  
consortia. These features of a bacterial-fungal consortium  
such as mixed-heavy metal resistance and high TPH  
removal ability make it a very attractive candidate for TPH  
biodegradation in co-contaminated soil environment. The  
rate of TPH biodegradation in the presence and absence of  
heavy metals and inoculated microbial consortia can be  
described by biodegradation rate constant obtained from the  
-
1
day ) and lower t1/2 (17.3 days) than the one augmented  
with fungal consortium + Cd2+  
1
(
= 0.039 day and t1/2  
-1  
=
k
7.8 days), fungal consortium + Zn (k = 0.037 day-1 and  
2+  
t
1/2 = 18.7 days), fungal consortium (metal free) (k = 0.035  
-
1
2+  
day and t1/2 = 19.8 days) and fungal consortium + Ni +  
Zn + Cd (k = 0.032 day and t1/2 = 21.7 days),  
respectively.  
2+  
2+  
-1  
Finally, for soil microcosms augmented with bacterial-  
fungal consortium in the presence of heavy metals, the soil  
augmented with bacterial-fungal consortium + Ni2 + Zn  
+
2+  
192  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
4
.
Das, N., and Chandran, P. (2011). Microbial  
degradation of petroleum hydrocarbon contaminants:  
An overview. Research Int. 2011, Article ID 941810,  
application of first order kinetics. The rate constant (  
k
)
-
1
-1  
ranges between 0.035 day and 0.060 day for soil  
microcosm bioaugmented with bacterial, fungal and  
bacterial-fungal consortia, respectively in the absence of  
13 pages. Doi:10.4061/2011/941810.  
-1  
5. Yasin, G., Bhanger, M. I., Ansari, T. M. et al. (2013).  
Quality and chemistry of crude oils. J. Pet. Technol.  
Altern. Fuels 4, 5363.  
heavy metals and 0.010 day for non-bioaugmented soil  
microcosm (natural bioattenuation). A half-life time (t1/2) of  
69.3 days was attained for TPH biodegradation in non-  
6.  
Ogbo, E. M., and Okhuoya, J. A. (2011).  
Bioavailability of some heavy metals in crude oil  
contaminated soils remediated with Pleurotus tuber-  
regium Fr. Singer. Asian J. Biological Sci. 4, 53-61  
bioaugmented soil microcosm. This t1/2 was reduced to  
between 16.1, 19.8 and 11.6 days in soil microcosm  
bioaugmented with bacterial consortia, fungal consortia and  
bacterial-fungal consortia, respectively. Similarly, the rate  
-
1
-1  
7. Shtangeeva, I. (2006). Phytoremediation of trace  
element contaminated soil with cereal crops: role of  
fertilizers and bacteria on bioavailability. In: Trace  
Elements in the Environment. Biogeochemistry,  
Biotechnology and Bioremediation, Prasad, M.N.V.,  
K.S. Sajwan and R. Naidu (Eds.). CRC Press, Taylor  
and Francis Group, Boca Raton, pp: 549-581.  
constant (k) ranges between 0.032 day and 0.158 day for  
soil microcosm bioaugmented with bacterial, fungal and  
bacterial-fungal consortia, respectively in the presence of  
single and mixed heavy metals Therefore, the inoculation  
of bacterial consortia, fungal consortia and bacterial-fungal  
consortia that possesses heavy metal resistance and  
petroleum hydrocarbons degradation ability is a promising  
bioaugmentation strategy to enhance in-situ and ex-situ soil  
bioremediation of soil contaminated with both petroleum  
hydrocarbons and heavy metals.  
8.  
Samanta, S. K., Singh, O. V., and Jain, R. K. (2002).  
Polycyclic aromatic hydrocarbons: environmental  
pollution and bioremediation. Trends Biotechnol. 20,  
243248.  
9
.
Said, W. A., and D. A. Lewis. (1991). Quantitative  
assessment of the effects of metals on microbial  
degradation of organic chemicals. Appl. Environ.  
Microbiol. 57, 1498150  
Aknowledgment  
The authors wish to thank the staff of Thermosteel  
Laboratories, Warri, Delta State of Nigeria for providing  
the facilities used for the soil physical, chemical and  
microbial analyses.  
1
1
0. Ojo, O. A. (2006). Petroleum hydrocarbon utilization  
by native bacterial population from a wastewater canal  
in Southwest Nigeria. Afr. J. Biotechnol. 5(4), 333337.  
1. Ameen, F., Moslem, M., Hadi, S., et al. (2016).  
Biodegradation of diesel fuel hydrocarbons by  
mangrove fungi from Red Sea coast of Saudi Arabia.  
Saudi. J. Biol. Sci. 23(2), 211218.  
Ethical issue  
Authors are aware of, and have complied with the best  
practice in publication ethics specifically with regard to  
authorship, dual submission, and manipulation of figures,  
competing interests and compliance with policies on  
research ethics. Authors have adhered to publication  
requirements that this submitted work is original and has  
not been published elsewhere in any form of language.  
1
1
2. Zhang, J. H., Quan-Hong, X., Hui, G., et al. (2016).  
Degradation of crude oil by fungal enzyme preparations  
from Aspergillus spp. for potential use in enhanced oil  
recovery. J. Chem. Technol. Biotechnol. 91, 865875.  
3. Agarry, S. E., Aremu, M. O., and Aworanti, O. A.  
(2013). Kinetic modelling and half-life study on  
bioremediation of soil co-contaminated with lubricating  
motor oil and lead using different bioremediation  
strategies. Soil and Sediment Contam.- An Int. J. 22(7),  
Competing interests  
The authors wish to declare that there is no conflict of  
interest in this research work.  
8
00 816.  
Authors’ contribution  
1
1
4. Iordache, M., and Borza, I. (2012). The bioremediation  
potential of earthworms (Oligochaeta: Lumbricidae) in  
a soil polluted with heavy metals. J. Food Agric.  
Environ. 10(2), 11831186.  
5. Ma, X-K., Ding. N., and Peterson, E. C. (2015).  
Bioaugmentation of soil contaminated with high-level  
crude oil through inoculation with mixed cultures  
including Acremonium sp. Biodegradation 26 (3), 259-  
All the authors of this study have completely  
contributed to the data collection, data analyses and  
manuscript writing.  
References  
1.  
Nigerian National Petroleum Corporation (NNPC)  
(
2016).  
Oil  
Production.  
http://www.nnpcgroup.com/nnpcbusiness/upstreamvent  
ures/oilproduction.aspx.  
2
69.  
6. Patowary, K., Patowary, R., Kalita, M. C., and Deka, S.  
2016). Development of an efficient bacterial  
1
1
2
3
.
.
Koshlaf, E., and Ball, A. S. (2017). Soil bioremediation  
approaches for petroleum hydrocarbon polluted  
environments. AIMS Microbiology 3(1), 25-49.  
Nduka, J. K. C., Constance, E., and Obiakor, E. (2006).  
Selective bioaccumulation of metals by different parts  
of some fish species from crude oil polluted water,  
Bull. Environ. Contam. Toxicol. 77, 846-853.  
(
consortium for the potential remediation of  
hydrocarbons from contaminated sites. Front.  
Microbiol. 7, 1092. doi: 10.3389/fmicb.2016.01092  
7. Mrozik, A., and Piotrowska-Seget, Z. (2010).  
Bioaugmentation as a strategy for cleaning up of soils  
contaminated  
with  
aromatic  
compounds.  
Microbiological Res. 165, 363-375.  
193  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
1
8. Cycoń, M., Mrozik, A., and Piotrowska-Seget, Z.  
Health Risks, Bioavailability and Bioremedation, ed:  
Wong MH, Taylor and Francis, pp: 347368  
(
2017). Bioaugmentation as strategy for the  
a
remediation of pesticide-polluted soil:  
Chemosphere 172, 52-71.  
9. Roane, T. M., Josephson, K. L., and Pepper, I. L.  
A
review.  
31. Ma, X. K., Ding, N., Peterson, E. C., and Daugulis, A.  
J. (2016). Heavy metals species affect fungal-bacterial  
synergism during the bioremediation of fluoranthene.  
Appl. Microbiol. Biotechnol. 100, 7741-50.  
1
2
(
2001). Dual-bio augmentation strategy to enhance  
remediation of co-contaminated soil. Appl. Environ.  
Microbiol. 67, 32083215.  
0. Alisi, C., Musella, R., Tasso, F., Ubaldi, C., Manzo, S.,  
32. Wang, C., Gu, L., Ge, S., Liu, X., Zhang, X., and Chen,  
X. (2018). Remediation potential of immobilized  
bacterial consortium with biochar as carrier in pyrene-  
Cr (VI) co-contaminated soil. Environmental  
Technology, DOI: 10.1080/09593330.2018.1441328  
33. Kim, Y. M., Ahn, C. K., Woo, S. H., Jung, G. Y., and  
Park, J. M. (2009). Synergic degradation of  
phenanthrene by consortia of newly isolated bacterial  
strains. J. Biotechnol. 144, 293-298.  
Cremisini, C. and Sprocati, A.R.  
(2009).  
Bioremediation of diesel oil in a co-contaminated soil  
by bioaugumentation with a microbial formula tailored  
with native strains selected for heavy metals resistance.  
Science of the Total Environment 407, 3024-3032.  
1. Shukla, K. P., Singh, N. K., and Sharma, S. (2010).  
Bioremediation: developments, current practices and  
perspectives. Genet. Eng. Biotechnol. J. 2010, 119.  
2. Das, M., and Adholeya, A. (2011). Role of  
microorganisms in remediation of contaminated soil T.  
In: Satyanarayana et al. (eds.), Microorganisms in  
2
2
34. Jackson, M. H. (1967). Soil chemical analysis. Prentice-  
Hall of India (Pvt.Ltd.), New Delhi, India.  
35. Mustafa, S., Al-Douseri, A., Majki, K., and Al-Saleh, E.  
(2013). Potential of crude oil-degrading bacteria to co-  
resist heavy metals in soil. WIT Transactions on  
Ecology and the Environment, 173 (VI), 697-705.  
36. Krieg, N. R., Holt, J. G., Sneath, P. H.A., Stanley, J. T.,  
and Williams, S. T. (1994). Bergey’s Manual of  
Determinative Bacteriology, 9th ed., Williams and  
Wilkins, Baltimore.  
Environmental  
Management:  
Microbes  
and  
Environment, pp81-111  
2
2
2
3. Thavamani, 1. P., Megharaj, M., and Naidu, R. (2012a).  
Bioremediation of high molecular weight polyaromatic  
hydrocarbons co-contaminated with metals in liquid  
and soil slurries by metal tolerant PAHs degrading  
bacterial consortium. Biodegradation 23, 823-35.  
4. Thavamani, P., Malik, S., Beer, M., Megharaj, M., and  
Naidu, R. (2012b). Microbial activity and diversity in  
long-term mixed contaminated soils with respect to  
polyaromatic hydrocarbons and heavy metals. J.  
Environ. Manage. 99, 1017.  
5. Wu, F., Yang, W., Zhang, J. And Zhou, L. (2010).  
Cadmium accumulation and growth responses of a  
poplar (Populus deltoids×Populus nigra) in cadmium  
contaminated purple soil and alluvial soil. Journal of  
Hazardous Materials, 177 (1-3), 268-273.  
37. Saroj, A., and Keerti, D. (2013). Isolation and  
characterization  
of  
hydrocarbon  
degrading  
microorganisms from petroleum oil contaminated soil  
sites. Bull. Environ. Sci. Res. 2 (4), 5-10.  
38. Ahmed, R. Z., Ahmed, N. and Gadd, G. M. (2010).  
Isolation of two Kocuria species capable of growing on  
various polycyclic aromatic hydrocarbons. Afr. J.  
Biotechnol. 9, 3611-3617.  
39. Giwa, O. E., and Ibitoye, F. O. (2017). Bioremediation  
of heavy metals in crude oil contaminated soil using  
isolated indigenous microorganism cultured with E coli  
DE3 BL21. Int. J. Eng. Appl. Sci. 4 (6), 67-70.  
40. Richa, S., Subhash, C., and Amrita, S. (2013). Isolation  
of microorganism from soil contaminated with  
degraded paper in Jharna village. J. Soil Sci. Environ.  
Manage. 4 (2), 23-27.  
41. Samson, R. A., Hoekstra, E. S., van Oorschot C. A. N.  
(1984). Introduction of Food-Borne Fungi. Amsterdam,  
The Netherlands: Institute ofthe Royal Netherlands  
Academy of Arts Science; pp 248.  
42. Mackie, L. and McCartney, M. (1999). Practical  
medical Microbiology, 14th Ed.Harcourt brace and  
Company limited.  
43. Obahiagbon, K.O. and Owabor, C.N. (2008).  
Biotreatment of crude oil polluted water using mixed  
microbial populations of P.aureginosa, Pennicillium  
notatum, E.coli and Aspergillus niger. Adv. Mater. Res.  
4, 802-807.  
44. EL-Hanafy, A-M., Anwar, Y., Sabir, J. S. M.,  
Mohamed, S. A., Al-Garni, S. S. M., Abu Zinadah, O.  
A. H. and Ahmed, M. M. (2017). Characterization of  
native fungi responsible for degrading crude oil from  
the coastal area of Yanbu, Saudi Arabia. Biotechnol.  
Biotechnological Equipment 31 (1), 105111.  
2
2
2
6. Agarry, S. E., Aremu, M. O., and Aworanti, O. A.  
(
2014). Biostimulation and phytoremediation treatment  
strategies of gasoline-nickel co-contaminated soil. Soil  
and Sediment Contam.: An Int. J. 23 (3), 227-244.  
7. Tesfalem, B W. (2017). Isolation, Screening and  
Identification of Cadmium Tolerant Fungi and Their  
Removal Potential. J. Forensic Sci. & Criminal Inves.  
5
(1), 555-656.  
8. Oladipo, O. G., Awotoye, O. O., Olayinka, A.,  
Bezuidenhout, C. C., and Maboeta, M. S. (2018).  
Heavy metal tolerance traits of filamentous fungi  
isolated from gold and gemstone mining sites. Brazilian  
Journal of Microbiology 49, 2937.  
9. Owabor, C. N., Onwuemene, O. C., and Enaburekhan,  
I. (2011). Bioremediation of polycyclic aromatic  
hydrocarbon contaminated aqueous-soil matrix: effect  
of co-contamination. J. Appl. Sci. Environ. Manage. 15  
2
3
(
4), 583 588.  
0. Thavamani, P., Megharaj, M., Venkateswarlu, K., and  
Naidu, R. (2013). Mixed contamination of  
polyaromatic hydrocarbons and metals at manufactured  
gas plant sites: toxicity and implications to  
bioremediation. In: Environmental Contamination:  
45. Carrillo, G. R, and Gonzalez, C. M. C. (2012).  
Tolerance to and accumulation of cadmium by the  
194  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 1, Pages: 179-195  
mycelium of the fungi Scleroderma citrinum and  
Pisolithus tinctorius. Biol. Trace Elem. Res. 146, 388-  
58. Semerci N., and Çeçen, F. (2007). Importance of Cd  
speciation in nitrification inhibition. J. Hazard Mater.  
147, 503512.  
59. Ma, X-K., Li, T-t., Farm, H., Peterson, E, C., Zhao, W-  
w., Guo, W., and Zhou, B. (2017). The influence of  
heavy metals on the bioremediation of polycyclic  
aromatic hydrocarbons in aquatic system by a bacterial-  
fungal consortium. Environmental Technology, DOI:  
10.1080/09593330.2017.1351492.  
http://dx.doi.org/10.1080/09593330.2017.1351492  
60. Shen, G., Cao, L., Lu, L.Y., and Hong, J. (2006).  
Combined effect of heavy metals and polycyclic  
aromatic hydrocarbons on urease activity in soil.  
Ecotoxicol. Environ. Saf. 63, 474480.  
61. Maslin, P., and Maier, R. M. (2000). Rhamnolipid-  
enhanced mineralization of phenanthrene in organic-  
metal co-contaminated soils. Bioremediation J. 4, 295–  
308.  
3
95.  
6. Osuji, L. C., Egbuson, E. J. G., and Ojinnaka, C. M.  
2005). Chemical reclamation of crude-oil-inundated  
soils from Niger Delta, Nigeria. Chem. Ecol. 21(1), 1-  
0.  
4
4
(
1
7. Zahed, M. A., Abdul Aziz, H., Isa, M. H., Mohajeri, L.,  
Mohajeri, S., and Kutty, S. R. M. (2011). Kinetic  
modeling and half-life study on bioremediation of  
crude oil dispersed by Corexit 9500. J. Hazard Mater.  
185, 10271031.  
4
4
8. Rasool, A., and Irum, S. 2014. Toxic Metal Effect on  
Filamentous Fungi Isolated from the Contaminated Soil  
of Multan and Gujranwala. J. Bioresource Manage. 1  
(
2), 38-51.  
9. Godheja, J., Shekhar, S. K., Satyanarayan, G. N. V.,  
Singh, S. P., and Modi, D. R. (2017). Antibiotic and  
heavy metal tolerance of some indigenous bacteria  
isolated from petroleum contaminated soil sediments  
with a study of their aromatic hydrocarbon degradation  
potential. Int. J. Curr. Microbiol. App. Sci. 6(3), 194-  
62. Kim, S. U., Cheong, Y. H., Seo, D. C., Hur, J. S., Heo,  
J. S., and Cho, J. S. (2007). Characterisation of heavy  
metal tolerance and biosorption capacity of bacterium  
strain CPB4 (Bacillus spp.). Water Sci. Technol. 55,  
105-11.  
211.  
5
5
5
0. Ezzouhri, L., Castro, E., Moya, M., Espinola, F., and  
Lairini, K. (2009). Heavy metal tolerance of  
filamentous fungi isolated from polluted sites in  
Tangier, Morocco. African Journal of Microbiology  
Research 3 (2), 035-048  
63. Sandrin, T. R., and Maier, R. M. (2003). Impact of  
metals on the biodegradation of organic pollutants.  
Environ. Health Persp. 111, 10931101.  
64. Osuji, L., and Nwoye, I. 2007. An appraisal of the  
impact of petroleum hydrocarbons on soil fertility: the  
Owaza experience. Afr. J. Agric. Res. 2, 318-324.  
1. Chanda, D., Sharma, G. D., Jha, D. K., and Hijri, M.  
2017. Tolerance of Microorganisms in Soil  
Contaminated with Trace Metals: An Overview. In:  
Shukla P. (eds) Recent advances in Applied  
Microbiology, pp 165-193.  
2. Oaikhena, E. E., Makaije, D. B., Denwe, S. D.,  
Namadi, M. M., and Haroun, A. A. (2016).  
Bioremediation potentials of heavy metal tolerant  
bacteria isolated from petroleum refinery effluent.  
American J. Environ. Protect. 5 (2), 29-34.  
5
5
3. Nies, D., H. (1999). Microbial heavy-metal resistance.  
Appl. Microbial Biotechnol. 51, 730750.  
4. Smrithi, A., and Usha, K. (2012). Isolation and  
characterization of chromium removing bacteria from  
tannery effluent disposal site. Int. J. Adv. Biotechnol.  
Res. 3(3), 644-652.  
5
5. Amalesh S., ParamitaBera, MahamudaKhatun,  
Chandrima, S., Pinaki, P., Asif, L., Anurup, M. (2012).  
An investigation on heavy metal tolerance and  
antibiotic resistance properties of bacterial strain  
Bacillus sp. Isolated from municipal waste. J.  
Microbial. Biotech. Res. 2(1), 178 - 189.  
5
5
6. Anahid, S., Yaghmaei, S., and Ghobadinejad, Z. (2011).  
Heavy metal tolerance of fungi. Scientia Iranica 18,  
5028.  
7. Sandrin, T.R., and Hoffman, D. R. (2007).  
Bioremediation of organic and metal co-contaminated  
environments: effects of metal toxicity, speciation, and  
bioavailability on biodegradation. In: Environmental  
Bioremediation Technologies, (ed) Singh SN, Tripathi  
RD, Springer, Berlin. pp. 134.  
195