Journal of Environmental Treatment Techniques
2019, Volume 7, Issue 1, Pages: 179-195
1
8. Cycoń, M., Mrozik, A., and Piotrowska-Seget, Z.
Health Risks, Bioavailability and Bioremedation, ed:
Wong MH, Taylor and Francis, pp: 347–368
(
2017). Bioaugmentation as strategy for the
a
remediation of pesticide-polluted soil:
Chemosphere 172, 52-71.
9. Roane, T. M., Josephson, K. L., and Pepper, I. L.
A
review.
31. Ma, X. K., Ding, N., Peterson, E. C., and Daugulis, A.
J. (2016). Heavy metals species affect fungal-bacterial
synergism during the bioremediation of fluoranthene.
Appl. Microbiol. Biotechnol. 100, 7741-50.
1
2
(
2001). Dual-bio augmentation strategy to enhance
remediation of co-contaminated soil. Appl. Environ.
Microbiol. 67, 3208–3215.
0. Alisi, C., Musella, R., Tasso, F., Ubaldi, C., Manzo, S.,
32. Wang, C., Gu, L., Ge, S., Liu, X., Zhang, X., and Chen,
X. (2018). Remediation potential of immobilized
bacterial consortium with biochar as carrier in pyrene-
Cr (VI) co-contaminated soil. Environmental
Technology, DOI: 10.1080/09593330.2018.1441328
33. Kim, Y. M., Ahn, C. K., Woo, S. H., Jung, G. Y., and
Park, J. M. (2009). Synergic degradation of
phenanthrene by consortia of newly isolated bacterial
strains. J. Biotechnol. 144, 293-298.
Cremisini, C. and Sprocati, A.R.
(2009).
Bioremediation of diesel oil in a co-contaminated soil
by bioaugumentation with a microbial formula tailored
with native strains selected for heavy metals resistance.
Science of the Total Environment 407, 3024-3032.
1. Shukla, K. P., Singh, N. K., and Sharma, S. (2010).
Bioremediation: developments, current practices and
perspectives. Genet. Eng. Biotechnol. J. 2010, 1–19.
2. Das, M., and Adholeya, A. (2011). Role of
microorganisms in remediation of contaminated soil T.
In: Satyanarayana et al. (eds.), Microorganisms in
2
2
34. Jackson, M. H. (1967). Soil chemical analysis. Prentice-
Hall of India (Pvt.Ltd.), New Delhi, India.
35. Mustafa, S., Al-Douseri, A., Majki, K., and Al-Saleh, E.
(2013). Potential of crude oil-degrading bacteria to co-
resist heavy metals in soil. WIT Transactions on
Ecology and the Environment, 173 (VI), 697-705.
36. Krieg, N. R., Holt, J. G., Sneath, P. H.A., Stanley, J. T.,
and Williams, S. T. (1994). Bergey’s Manual of
Determinative Bacteriology, 9th ed., Williams and
Wilkins, Baltimore.
Environmental
Management:
Microbes
and
Environment, pp81-111
2
2
2
3. Thavamani, 1. P., Megharaj, M., and Naidu, R. (2012a).
Bioremediation of high molecular weight polyaromatic
hydrocarbons co-contaminated with metals in liquid
and soil slurries by metal tolerant PAHs degrading
bacterial consortium. Biodegradation 23, 823-35.
4. Thavamani, P., Malik, S., Beer, M., Megharaj, M., and
Naidu, R. (2012b). Microbial activity and diversity in
long-term mixed contaminated soils with respect to
polyaromatic hydrocarbons and heavy metals. J.
Environ. Manage. 99, 10–17.
5. Wu, F., Yang, W., Zhang, J. And Zhou, L. (2010).
Cadmium accumulation and growth responses of a
poplar (Populus deltoids×Populus nigra) in cadmium
contaminated purple soil and alluvial soil. Journal of
Hazardous Materials, 177 (1-3), 268-273.
37. Saroj, A., and Keerti, D. (2013). Isolation and
characterization
of
hydrocarbon
degrading
microorganisms from petroleum oil contaminated soil
sites. Bull. Environ. Sci. Res. 2 (4), 5-10.
38. Ahmed, R. Z., Ahmed, N. and Gadd, G. M. (2010).
Isolation of two Kocuria species capable of growing on
various polycyclic aromatic hydrocarbons. Afr. J.
Biotechnol. 9, 3611-3617.
39. Giwa, O. E., and Ibitoye, F. O. (2017). Bioremediation
of heavy metals in crude oil contaminated soil using
isolated indigenous microorganism cultured with E coli
DE3 BL21. Int. J. Eng. Appl. Sci. 4 (6), 67-70.
40. Richa, S., Subhash, C., and Amrita, S. (2013). Isolation
of microorganism from soil contaminated with
degraded paper in Jharna village. J. Soil Sci. Environ.
Manage. 4 (2), 23-27.
41. Samson, R. A., Hoekstra, E. S., van Oorschot C. A. N.
(1984). Introduction of Food-Borne Fungi. Amsterdam,
The Netherlands: Institute ofthe Royal Netherlands
Academy of Arts Science; pp 248.
42. Mackie, L. and McCartney, M. (1999). Practical
medical Microbiology, 14th Ed.Harcourt brace and
Company limited.
43. Obahiagbon, K.O. and Owabor, C.N. (2008).
Biotreatment of crude oil polluted water using mixed
microbial populations of P.aureginosa, Pennicillium
notatum, E.coli and Aspergillus niger. Adv. Mater. Res.
4, 802-807.
44. EL-Hanafy, A-M., Anwar, Y., Sabir, J. S. M.,
Mohamed, S. A., Al-Garni, S. S. M., Abu Zinadah, O.
A. H. and Ahmed, M. M. (2017). Characterization of
native fungi responsible for degrading crude oil from
the coastal area of Yanbu, Saudi Arabia. Biotechnol.
Biotechnological Equipment 31 (1), 105–111.
2
2
2
6. Agarry, S. E., Aremu, M. O., and Aworanti, O. A.
(
2014). Biostimulation and phytoremediation treatment
strategies of gasoline-nickel co-contaminated soil. Soil
and Sediment Contam.: An Int. J. 23 (3), 227-244.
7. Tesfalem, B W. (2017). Isolation, Screening and
Identification of Cadmium Tolerant Fungi and Their
Removal Potential. J. Forensic Sci. & Criminal Inves.
5
(1), 555-656.
8. Oladipo, O. G., Awotoye, O. O., Olayinka, A.,
Bezuidenhout, C. C., and Maboeta, M. S. (2018).
Heavy metal tolerance traits of filamentous fungi
isolated from gold and gemstone mining sites. Brazilian
Journal of Microbiology 49, 29–37.
9. Owabor, C. N., Onwuemene, O. C., and Enaburekhan,
I. (2011). Bioremediation of polycyclic aromatic
hydrocarbon contaminated aqueous-soil matrix: effect
of co-contamination. J. Appl. Sci. Environ. Manage. 15
2
3
(
4), 583 – 588.
0. Thavamani, P., Megharaj, M., Venkateswarlu, K., and
Naidu, R. (2013). Mixed contamination of
polyaromatic hydrocarbons and metals at manufactured
gas plant sites: toxicity and implications to
bioremediation. In: Environmental Contamination:
45. Carrillo, G. R, and Gonzalez, C. M. C. (2012).
Tolerance to and accumulation of cadmium by the
194