Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 201-210  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
Food Engineering as a Potential Solution for  
Mitigating of the Detrimental Effects of  
Livestock Production  
Ameneh Bazrafshan1  
and 2  
, Tahereh Talaei-Khozani *  
3
1
-
2
PhD Student, Physiology Department, Shiraz University of Medical Sciences, Shiraz Iran  
- Maternal and fetal research center, Shiraz University of medical Sciences, Shiraz, Iran  
3
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz Iran  
Received: 20/01/2019 Accepted: 30/04/2019 Published: 01/06/2019  
Abstract  
Global demand for meat is on the rise. Increase in livestock production is the first but not the best solution to supply this  
demand. Livestock production leads to an increase in the greenhouse gasses, causing global warming and climate change, which  
also has a negative impact on the livestock breeding. Thus, scientists have concentrated on the production of in vitro-engineered  
meat which could be tasty, healthy and environmental friendly to substitute livestock meat. In this article, the environmental  
impacts of livestock production system on the climate change, water quality and public health are discussed, and then the  
artificial meat production technology, its benefits, challenges and consumer’s reactions are reviewed.  
Keywords: GHG reduction, Global warming, Food engineering, Laboratory meat production  
Introduction1  
concentration flow in the atmosphere leads to global  
1
warming (3).The livestock sector is responsible for 14.5%  
of global GHG emissions (10), which may lead to increase  
in air and water pollution, land degradation and decrease in  
biodiversity (3, 11-13). Generally, livestock sector  
contribution in anthropogenic GHG emissions is 53% of  
Global demand for livestock products is estimated to  
double by 2050 due to increase in human population from  
.2 to 9.6 billion by 2050 (1).Global change in lifestyle has  
7
led to increase in demands for agricultural products by  
about 70%. Moreover, meat production is expected to  
increase from 258 to 455 million tons (2). Livestock  
production requires facilities and natural resources for  
animal feed production, manure and animal product  
processing, transportation and marketing. All of these  
contribute to climate change, water and air pollution, land  
use change, and other environmental impacts (3). Around  
2 4 2  
N O, 44% of CH and 5% of CO emission (10). Rise in the  
world population and livestock products demand (2) has led  
to ideas about other ways of protein production such as new  
technologies in producing in vitro engineered meat. It is  
also known as a cultured, ‘lab-based’, or artificial meat  
14). The engineered meat is made of animal stem cells  
cultured in a specific medium containing the necessary  
nutrients and energy sources for proliferation and  
differentiation into muscle cells and adipocytes to produce  
a commercial large scale natural tasty meat in the near  
future (15-17). Therefore, water, land, nutrients and energy  
requirement might be relatively less than livestock  
production, because artificial meat is the only muscle tissue  
which will be developed without using biological structures  
such as respiratory and digestive system. Rapid growth rate  
of engineered meat means that preparing it requires shorter  
time and also smaller input requirement than that of animal  
rearing (18). The engineered meat production has a less  
global warming potential and environmental threat than  
livestock production (19). Although food preferences,  
changes in social habit over time and encouraging the  
consumers to use artificial meat instead of the traditional  
one is difficult, the engineered meat may become more  
2
8% of the land in the European Union equals to 65% of  
the agricultural land, occupied by livestock production  
system. Air, water and soil quality, global climate and  
biodiversity, biogeochemical cycles of carbon, phosphorus  
and nitrogen are affected by livestock production (4).  
2 4 2  
Carbon dioxide (CO ), methane (CH ), nitrous oxide (N O)  
and chlorofluorocarbons are the main greenhouse gases  
GHG) involved in the regulation of global temperature (5-  
). The normal temperature on earth should be -6°C.GHGs  
absorb a part of the heat waves from the sun and also its  
reflection and then trap them in the atmosphere. GHG  
Corresponding  
Anatomy department, Shiraz University of Medical  
Sciences, Shiraz Iran. Email: talaeit@sums.ac.ir. Phone no:  
author:  
Tahereh  
Talaei-Khozani,  
+
98 7132304372.  
2
01  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 201-210  
common as a part of the diet in future. Since current  
knowledge of mass production is in its early stages due to  
technical, ethical and social issues, it might be assumed that  
the production of highly valued meat will face great  
technical challenges. Thus, a great range of research will be  
required to establish an in vitro engineered meat production  
system on a large scale. Current review article discusses the  
direct and indirect impacts of livestock production system  
on air, water quality and climate change. Here, we will  
discuss the necessity to find a proper meat alternative to  
reduce livestock products demand; and then we will review  
all important aspects of the engineered meat production,  
environmental impacts, advantages of engineered meat, and  
finally technical and social challenges in the engineered  
meat production and market acceptance as a novel food.  
emitted from manure by anaerobic decomposition of  
organic substance. Globally, anaerobic decomposition of  
manure is responsible for4% of the global anthropogenic  
methane emissions (3).  
1.3 Effect of livestock production system on nitrogen  
emission  
Livestock contributes to 65% of global anthropogenic  
emissions of N  
GHG. Livestock produces virtually two thirds of the total  
anthropogenic N O emissions (3). Fertilized croplands and  
2
manure are responsible for global increase in N O  
2
O, the most effective of the three major  
2
emissions (25). Current styles confirms that this level will  
significantly increase in future (24). Animal wastes, faecal  
and urine excretion (26) and manure-induced soil (27) are  
responsible for a major amount of the nitrogen emission to  
1
.1 Effect of livestock production system on carbon  
x
the atmosphere. Conversion of nitrogen oxides (NO ) to  
dioxide emission(CO  
2
)
nitric acids is taking place in the presence of moisture.  
Besides harmful effects of nitric acids to the respiratory  
system as well as some materials, it forms acid rain that  
return the pollutions to the soil, which can be harmful for  
biological ecosystem (3, 4).  
Livestock sector is responsible for 9% of carbon  
dioxide anthropogenic emissions, when pasture degradation  
and deforestation for feedcrop land are taken into  
consideration (3). Direct impacts of livestock system in  
carbon emission to the atmosphere is lesser than indirect  
emissions (3). One of the most important ways of indirect  
1.4 Ammonia  
CO  
2
emission by livestock is fossil fuel for mineral  
Livestock contributes to 64% of global anthropogenic  
fertilizer production, which is used in feed production. The  
most important routes of GHG emissions from livestock  
production system are manure and artificial fertilizers.  
Nitrogenous fertilizers, which are used in crop productions,  
contribute significantly to GHG emissions. Fossil fuel,  
manufacturing process of fertilizer production, packaging,  
transport, and application of the fertilizer contribute to emit  
3
emissions of NH , which is mostly from manure (3). Global  
anthropogenic ammonia emission was estimated to be  
about 58million tons per year in 1993 and it will reached  
118million tons per year by 2050 (28). Ammonia and  
nitrogen oxides emissions contribute to the formation of  
3
tropospheric ozone (O ), the third most important GHG,  
which is direct driver of global warming. The  
a
more than 40 million tons of CO  
modern livestock production systems a large amount of  
energy is used for diesel machinery involved in seeding,  
2
per year (3). In the  
tropospheric ozone induces oxidative stress; hence as a  
result, reduces ecosystem productivity, decreases the sink  
strength of ecosystems for atmospheric CO , indirectly  
2
leading to global warming (29-31).  
herbicides/pesticides  
production,  
land  
preparation,  
harvesting, transport, and also a part of energy is used for  
electrical devices involved in irrigation, drying, heating,  
cooling, ventilation and etc. (3, 20, 21). Although  
1.5 Land use change to feed production for livestock  
Since the 1850s,forests and natural fields have been  
converted to croplands and pastures for livestock  
production (32). Land degradation happens because crop  
producers drain the soil resources from nutrient, which  
leads to change in physical, chemical, and biological  
properties of soil (3). Land use change influences the  
natural carbon cycle, because in comparison to the  
croplands and pastures the majority of the carbon in soil  
and vegetation is sequestered by natural fields such as  
forest (33). In addition, land use change can produce other  
2
livestock’s respiration process emits3 billion tons of CO ,  
they are recycled by biological system (3, 22). Transport of  
livestock products as well as the livestock products  
processing, storage and refrigerated transport require fossil  
2
fuels which are responsible for the CO emission. Part of  
the CO emission is produced from shipping the products in  
2
long distances such as, feed delivery to the livestock  
production sites, animal products delivery to markets and  
raw ingredients delivery around the world (20, 21).  
type of gas emissions like CH and N O by soil  
microorganisms that result in global warming (34).  
1
(
.2 Effect of livestock production system on Methane  
CH ) emission  
Livestock contributes 3540% of global anthropogenic  
emissions. Enteric fermentation may contribute to  
per year. Ruminant  
animals like cattle, buffaloes, sheep, goats and camels  
produce significant amounts of CH during normal digestive  
4
1.6 Effect of livestock production on water pollution and  
depletion  
CH  
4
emission of 86 million tons of CH  
4
Water has a critical role in the functioning of the  
ecosystem, and human activities are the most important  
factor in mobilizing this vital natural resource. Freshwater  
sources are essential for global sustainability, food  
development and maintenance, industrial growth and  
ultimately human life (3, 35). However, only 2.5% of total  
water resources are fresh water, which has been distributed  
unequally. More than 2.3 billion people in 21 countries live  
4
processes (3). Rumen microbial content of animal digestion  
system converts the consumed food to digestible feed  
during enteric fermentation, which releases a CH by-  
4
product (23). Methane emissions related to livestock will  
increase to 60% by 2030, if the livestock production  
expansion continued in the same rate (24). Methane is  
3
in water stressed situation (1000 and 1700 m /person/year)  
2
02  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 201-210  
like Iran, Yemen, Egypt, Mexico, North China and India (3,  
contaminants, including Escherichia Coli (3, 47) and  
Salmonella (3, 48) can survive for a long time in the animal  
faeces applied as fertilizers on land, leading to water  
resources contamination (3). Importantly, many of the  
viruses, including Ebola, influenza, Hendra and Nipah are  
aresome of the important livestock pathogensthat threat  
human health (49). Giardia, Cryptosporidia, Fasciola  
hepatica and Fasciola gigantica are also important parasite  
infections transmitted through ingestion of contaminated  
water or food (3, 50).  
6, 37). Water consumption by livestock is considerable,  
and with respect to increase in livestock meat production,  
livestock water demand has projected to 71% from 1995 to  
2
025 (35) .Around 60% of total water withdrawals by  
livestock was from ground water sources in the United  
States in 2010 (38). Currently, Iran’s agriculture consumes  
about 92% of the freshwater to supply 90% of the food  
demands (39). Total water use to produce around 60  
million tons of beef every year is higher than the total  
freshwater reserves on the planet. For instance, water use  
ranges from 11,000 L/kg body weight of beef in Japan to  
1.10 Effect of livestock production system on terrestrial  
biodiversity  
3
7,800 L/kg in Mexico. This variation in water use is  
probably due to differences in local evaporation,  
transpiration, livestock production systems, and animal  
productivity (40). World population is expected to grow by  
around 2.3 billion people between 2009 and 2050,  
thusabout two-thirds of the world population would  
experience water shortage in the next coming decades (41).  
The effect of the livestock sector on water resources are  
not well recognized by the decision makers. The total direct  
or indirect water usage by the livestock sector is often  
overlooked. Livestock production needs service water,  
particularly in industrialized farms, to clean the animals and  
their units, and also for cooling facilities used for the  
animals and their products (milk, meat) (38). Water use in  
feed cropland, is much higher than that of the other water  
usage described above (3, 42). Similarly, the influence of  
livestock in water depletion is ignored and mainly focused  
on water contamination by animal manure and waste.  
Intense land usage for livestock production and  
rangeland conversion into cropland leads to decrease in  
biodiversity. Habitat degradation and change, and land  
fragmentation leads to eradication of native species with  
invasive non-native plants (51, 52). It is expected that  
livestock grazing will lead to a global decrease in main  
species abundance in rangeland until 2050 (53). Reduced  
species richness via eutrophication, and acidification are  
the consequences of nitrogen deposition in soil (54).The  
livestock sector has a significant effect on agriculture  
system and is responsible for 78% of the biodiversity losses  
1.10 How can we reduce livestock impacts onclimate and  
water?  
Scientists have concentrated on diminishing the GHG  
emissions from the livestock sector. A key solution to  
reduce GHG emissions could be decrease in meat  
consumption. Another way is to shift human dietary style  
toward a vegetarian diet or other meat protein alternatives  
such as mycoproteins. Most of the people do not like using  
vegetable derived meat due to taste, allergic irritation and  
psychological issues. Hence, an engineered meat can be an  
alternative. Tissue engineering is a new medical technology  
to construct a tissue from patient-derived cells seeded onto  
scaffolds. Specific biochemical and physical conditions are  
provided for cultured cells to produce tissues with  
maximum similarity to the original one for transplantation.  
We can use the tissue engineering technology to  
differentiate muscle cells and adipocytes from farm animal-  
derived stem cells by mass production in food industry (14,  
18). Summary of the state of the techniques to make tissue  
engineered meat, meat production procedure, technical  
challenges, benefits, ethical issues and social attitudes are  
discussed in the following sections.  
1
.7 Effect of livestock production system on water  
pollution  
Most of the used water for drinking and servicing in  
livestock sector returns to the nature in the form of manure  
and wastewater form. Livestock sector contains  
a
significant amount of drug residues, heavy metals,  
pathogens and nutrients like nitrogen, phosphorous,  
potassium. These substances can cause serious health  
hazards in the environment, if they entered into the water  
sources or stored in the soil (3, 26).  
1
.8 The main water pollutants related to livestock sector  
High concentration of nutrient in the ecosystem leads to  
eutrophication, which might be a health threat. Nutrient  
ingestion by animals can be high. Most of the ingested  
nutrients return to the nature and may become a threat to  
water resources (3). Excessive amount of the nutrients in  
water resources and eutrophication can lead to the over-  
growth of aquatic plants and toxic algae blooms leading to  
death of fishes due to oxygen insufficiency, loss of  
biodiversity, loss of coral reefs, bad water flavor and odor,  
and excessive microbial growth. Livestock-related  
activities can significantly accelerate eutrophication, a  
usual process in the ageing of lakes, trough high rate of  
nutrients and organic substances penetration into the  
aquatic ecosystems (43-46).  
2
An overview of the techniques involved in  
the in vitro engineered meat  
At first, NASA made small quantities of healthy and  
safe fish tissues. A testers group smelt the engineered  
tissue, but did not eat it to judge how appetizing it was (57).  
Then, Dutch researchers showed that the isolated muscle-  
derived progenitor cells have long-term expansion and  
differentiation capacity (58). In another attempt, electrical  
stimulation in skeletal stem cells accelerated sarcomere  
assembly in both 2D and 3D conditions. The expanded  
stem cells were then differentiated into muscle cells using  
chemical/biological clues in the appropriate cell culture  
media (59). Finally, Professor Mark from Maastricht  
1
.9 Biological contamination is a health threat-related to  
livestock.  
Livestock generates many zoonotic micro-organisms  
and parasites that threaten human health. Many biological  
2
03  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 201-210  
University launched the world's first cultured beef burger  
from cow muscle cells and on fifth of August 2013 in a  
London press conference, the burger was cooked and eaten  
which is a thin tissue strip among the anchors, and will  
form bioartificial muscle (68, 70, 71). Differentiation leads  
to satellite cell conversion into primitive muscle cells  
containing myotube, which start to express skeletal muscle  
proteins like myogenin and muscle myosin heavy chain  
(71-73). After differentiation, the muscle will develop  
increasing tension between the anchor points. This tension  
is the major trigger for protein production. Biochemical  
material like growth factors and mechanical nature of the  
scaffold are involved in subsequent newly formed myocyte  
hypertrophy (70). Passive stretch and tension, and electrical  
stimulation induce protein production and force generation.  
Electrical stimulation, which has a critical role in muscle  
cell differentiation, myoblast maturation and sarcomere  
formation, is dependent on coating and matrix stiffness  
(74). In addition to contractile proteins, other proteins are  
also critical for texture, color and taste of the artificial  
muscle tissue. For instance, myoglobin, a heme-carrying  
protein, is responsible for the meat pink color, and  
determines meat taste as well. It was shown that myoglobin  
expression is regulated collectively by activation of  
transcription factors including MEF2, NFAT and Sp1,  
60).  
2
.1 Cell sources and engineered meat production  
procedure  
The myosatellite cell, a muscle tissue specific stem cell,  
and embryonic stem cell which are responsible for muscle  
regeneration are used for engineered meat production (15,  
7). Adult stem cells have self-renew capacity, with an  
unlimited number of cell doublings for tissue regeneration.  
Stem cell proliferation and differentiation should be tightly  
regulated to avoid uncontrolled cell growth (61).  
Proliferation and then differentiation of satellite cells are  
the challenging steps to produce meat. The goal of the cell  
proliferation phase is to expand the number of cells to be  
sufficient for mass production. Current methods in satellite  
cells isolation and culturing support about 30 population-  
doubling number and 50-70 doubling can probably be  
achieved, using proper conditions (62). Collins et al.  
showed a major improvement in harvesting satellite cells  
using a combination of mild enzymatic digestion and  
trituration by keeping them in the replication phase  
difference in  
intracellular calcium current and low  
intracellular oxygen pressure (75). Scaffold removal from  
the cell sheet is the main challenge in tissue engineering.  
Cell sheets detachment is performed mechanically,  
enzymatically and low-temperature liftoff from smart  
thermoresponsive coatings (76, 77). Generally, 3D-printing  
collagen-based meshwork is used as a biocompatible and  
biodegradable scaffold. The cells seeded on the scaffolds  
are held into a stationary or rotating bioreactor filled with  
nutrient. The cells start to fuse and form myotubes, which  
is subsequently differentiated into myofibers with the aid of  
differentiation media. Soft texture or boneless meat is  
produced by using this technique which can be used to  
make hamburger and sausages (71, 78, 79). In summary,  
with the aid of current technology in skeletal muscle  
cultivation, making the engineered meat is possible.  
63).When stem cell niche environment is maintained in the  
harvested cells, they can grow more appropriately.  
Basement membrane is one of the most important parts of  
niche with a regulatory role in proliferation of the stem  
cells via signal transduction applied by extracellular matrix  
reorganization (61). For example coating the culture dish  
with laminin, main basement membrane protein, or  
matrigel, could increase the satellite cell proliferation rate  
and also myogenic differentiation capacity via Wnt  
signaling activation (64). In addition, satellite cell self-  
renewal are influence by regulatory circuits such as TGFb1,  
Pax7, Notch and Wnt (65). These regulatory mechanisms  
can be targeted with specific agonists to induce  
proliferation and delay differentiation. Also there are other  
non-invasive cell sources for stem cells. The breastmilk  
stem cells also have the potential to be differentiated into  
different cells derived from mesenchyme (66), including  
adipocyte and muscle cells or other cells that can be  
potentially used as food such as hepatocytes (67).  
3
Benefits of the engineered meat  
In vitro engineered meat is expected to deliver lowered  
water usage, GHG emissions, eutrophication, and land use  
in comparison to conventional meat production.  
Engineered meat is being developed as a healthier and more  
efficient alternative to livestock meat. There are several  
studies that have investigated the environmental impact of  
in vitro engineered meat. Tuom is to et al. used life cycle  
assessment to evaluate the environmental impacts of large-  
scale engineered meat production. Comparing to  
conventional European meat production, the engineered  
meat emits nearly 78-96% lesser GHG, 99% lesser land  
use, 82-96% lesser water , and 7-45% lesser energy use;  
however, the energy consumption depends on the source of  
meat; for instance, poultry meat uses lesser energy in  
comparison to the engineered meat production (19). On the  
contrary, the other comparative study focused on the energy  
consumption in supportive industry for engineered meat  
production such as culture media production and cleaning  
steps. The results indicated that in vitro engineered meat  
consumes more industrial energy than livestock meat.  
Comparative evaluations of the adverse effect of fabricating  
engineered meat on global warming depend on the natural  
2
.2 Mechanical cues  
To mimic the natural and 3D structure, a scaffold is  
needed with appropriate qualities to allow cell adhesion and  
proliferation and tissue recapitulation. Myocytes, as an  
anchorage-dependent cell, need enough substrate stiffness  
to be functional and contractile. Thus, scaffolds should  
provide  
a large and flexible surface area to allow  
contraction, best medium diffusion and easily detachment  
from the culture (68).The best material for scaffold would  
be natural and edible like collagen that provides porosity  
and flexibility to the structure (69). Protein content and  
quality of skeletal muscle tissue is compromised by  
expressing contractile proteins in differentiated satellite  
cell. The cells are usually seeded in a collagen gel and it is  
critical to provide anchoring sites in the culture dish.  
Tissue-like matrix is responsible for cell adhesion balance,  
contractility, and finally differentiation. Differentiated  
satellite cells will organize the collagen gel to the structure,  
2
04  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 201-210  
meat sources as well; for instance, the engineered meat  
seemed to have a larger global warming potential than pork  
or poultry, but less than beef. In vitro meat requires less  
land and lower amount of feedstock than livestock (80).  
Smetana et al. used different assessment (cradle-to-  
plate) to compare engineered meat to a series of meat  
alternatives like plant, mycoprotein, and dairy-based, and  
delivery are some of the obstacles with large volumes of  
cell culture in big bioreactors. Stirring the cell suspension  
can be a solution for most of the problems, but the  
membrane of the most mammalian cells is not able to  
tolerate sheer stress caused by agitation. As a result, the  
cells in high scale might suffer from insufficient and  
inhomogeneous transfer of oxygen and nutrients due to  
limitation in stirring speed (88). Another important problem  
chicken, as  
a
conventional meat with the least  
environmental impacts. The results revealed that in vitro  
engineered meat and mycoprotein-based substitute had the  
highest environmental impact, which was due to high  
industrial energy requirements for medium cultivation.  
Chicken and dairy-based substitute has moderate and soy  
meal-based, and insect-based substitute have lowest  
environmental impact. The engineered meat just has  
beneficial impact on land use and freshwater toxicity. The  
overall consequence is that engineered meat production  
seems to have lesser environmental impact than some  
conventional meat like beef, and probably pork, but more  
than chicken and plant-based substitutes (81).  
Another benefit is that engineered meat could have less  
biological risk and diseases, due to standardized methods in  
production. In addition, the composition of engineered meat  
could be altered to make the meat healthier or make it for  
specialized diet, for example by using higher level of poly-  
unsaturated fatty acids in the culture medium. Protein  
synthesis by engineered skeletal muscle cells could be  
increased by using the optimal biochemical and physical  
culture condition (82). One of the main goals of engineered  
meat is to slaughter significantly lesser number of animals.  
From the perspective of animal activist, this could attract  
vegans, vegetarians and others who are interested in  
decreasing meat intake due to ethical issues (83). The  
engineered meat product could be made in large scale, and  
also there is no need for functional integration (84).  
in large scale cell culture in big bioreactors is CO  
2
removal.  
The CO accumulation affects cell growth which is usually  
2
removed from the culture medium via a combination of  
both agitation and air sparging. Due to low rates of used  
agitation and sparging, CO accumulation is a limiting stage  
2
in large scale cell culture and growth (89). Even if all the  
technical problems of the large scale culture could be  
resolved, producing adequate amount of meat for  
increasing world population by 2050, would require a huge  
number of bioreactors. It was estimated that around one  
reactor for every 10 humans is required to supply the meat  
demand (84, 85). Huge amount of culture medium also is  
needed for this scale of cell culture. Hence, medium  
production and storage in large scale will be another  
challenge (85). The discarded of the culture medium in a  
safe way is also another problem which remains to be  
solved. Besides, some of the stem or progenitor cells might  
differentiate to undesirable phenotypes. They may modify  
epigenetically or undergo karyotypic abnormalities during  
culturing. These kinds of undesirable results must be  
detected and controlled for human health safety (90, 91).  
Several techniques based on physical parameters like  
electric conductivity could be used for cell culture process  
monitoring, which will be sufficiently strong to guarantee  
cell culture quality. For instance Dielectric spectroscopy is  
one of the safety control tools, which has been used in the  
medical field which might be helpful to monitor the  
biological parameters of cell culture (92). In addition, the  
nature of commercial cell culture media like the source of  
components, extraction method and processing should be  
controlled through a life cycle assessment. Considering the  
large scale of cell culture for meat production, a range of  
innovation through chemical and mechanical engineering  
will be required for quality control of cell based products.  
Optimization of the cell culture variables, like specific  
components of medium and serum, is essential to improve  
the efficiency of the culture and consistency of the  
products. Feed composition of medium, biochemical and  
biophysical condition of culture, and the possible  
interactions between medium components should be  
defined to produce healthy engineered meat (18).  
4
Technical challenges in the engineered meat  
production  
Meat tissue engineering has at least three main  
challenges including scale, efficiency and taste. To generate  
acceptable volume of meat for a large population, cell  
culture scale and condition has to be several times higher  
than that of used for medical application. Bioreactor design,  
selection and production of biomaterial, optimization of  
culture medium, tissue conditioning optimization and  
quality control of engineered meat such as the genetic  
stability of the cells are major problems in scaling up the  
engineered meat. The global meat production is around 293  
6
million tons/year (84). There is approximately 5-10 cell/gr  
The Good manufacture Practice (GMP) guidance has  
been developed to create an awareness of ranging from  
important issues in cell and tissue culture. Based on the  
GMP guideline, the quality of all used materials, methods  
and their application should be confirmed (93).  
Optimization of the cell culture condition including both  
medium synthesis and serum supplementation is also  
important. Serum might be considered as a potential source  
of contamination which needs breeding livestock and  
slaughtering the animals as well.  
of skeletal muscle tissue and, the number of all skeletal  
muscle progenitor cells that differentiate into mature  
muscle cells and get integrated into skeletal muscle are  
around 1.5_10 cells/year (84, 85). This estimation can  
provide an assessment for the crude scale of the number of  
cells required for industrialization. Currently, capacity of  
the large bioreactors for cell suspension culture is  
2
1
approximately 25,000 liters with maximum cell load of 7-  
6
1
0 cell/ml (84, 86). Providing the surface attachment for  
cells in bioreactors is also critical to sustain proliferation  
and survival of satellite cells. Different microcarriers are  
available to support the large scale of adherent cells in huge  
bioreactors (87). Waste washout, oxygen and nutrient  
Ultimately, synthetic culture media without using  
serum products is the ultimate goal in the cell culture. Since  
fetal bovine serum is a supplement in cell culture with  
2
05  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 201-210  
unknown composition, which could contain a wide range of  
undesirable factors; hence, omitting fetal bovine serum  
from cell culture medium seems to be critical. Several types  
of culture media have been produced with minimal or no  
animal derived components. However, different type of  
cells are able to grow in serum-free media, each cell type  
needs special medium composition and there is no standard  
serum-free media for all cell types (94). Also, several  
serumfree media have been developed for myoblast cell  
differentiation with the capability of active tension  
generation (95). More studies must be performed to omit  
serum from the whole cell culture process to decrease the  
dependency on livestock products.  
Taste, texture and juiciness of engineered meat are also  
a challenge in its production. Meat taste is related to amino  
acid and peptide concentration and also the intramuscular  
fat content of meat (96, 97). Special taste of cooked-meat is  
related to the reaction between specific sugars, amino acids  
and fatty acids, particularly during heating (98-100). Since  
that feed and nutritional conditions of animal as well as  
postmortem conditions can affect the taste of the meat due  
to protein, sugar and fatty acid oxidation (101, 102),  
suggesting the feed conditions of the skeletal muscle  
culture could be effective on taste development in  
engineered meat. Thus, taste of meat is an important quality  
to be investigated in engineered meat production system.  
Texture and integrity of meat is determined by the  
intramuscular connective tissues, composed of extracellular  
molecules like collagens and glycoproteins, and also the  
amount and distribution of the adipose tissues. Adipose  
tissues development leads to disorganization of the  
intramuscular connective tissue structure which causes the  
meat tenderness (103). In addition to tenderness, Juiciness  
of meat is also related to percentage of fat which varies in  
different types of skeletal muscles (104). Medium  
composition and feed condition and of cell culture must be  
optimized to produce a highly quality engineered meat with  
the best taste, texture and juiciness to attract consumers.  
repelling the idea of eating engineered meat and moral  
issues related to the engineered meat technology and its  
application (83). Costumer reactions toward engineered  
meat were investigated in three EU countries, Belgium,  
Portugal and the United Kingdom. Initial costumer  
reactions after learning about engineered meat were  
feelings of disgust, fear of the unknown, uncertainly about  
safety, health and naturalness. Consumers imagined few  
direct personal advantage of engineered meat, but they  
accepted possible societal benefits related to environment  
and food security (106). A media coverage in 2015 about  
artificial meat overemphasized the important role of the  
vegetarians in artificial meat acceptance (107). A survey  
conducted in the Netherlands showed that only 14% had  
heard of artificial meat and claimed to know a little about  
that. After explaining the artificial meat technology and its  
advantages and disadvantages, about 63% of the people  
supported the idea of engineered meat production and 52%  
were interested to try it (108). In another study, after giving  
customers basic information about engineered meat, only  
9% of people rejected, two thirds hesitated and about  
quarter supported the idea of trying engineered meat.  
Generally, consumers were doubtful about trying the  
engineered meat even if it becomes available, those how  
are vegetarian will be doubtful about its safety and health  
(105). Recently,  
a study investigated the effect of  
information provision on the attitude toward engineered  
meat. Results showed that it can be affected by positive  
information about sustainable product (109). Also, it is  
important to give the simple and apprehensible information  
about final product, but not about production method, to  
increase public acceptance (110).  
Cost and sensory expectations has appeared as major  
obstacles. In 2015, the in vitro-grown burger producer  
announced that the burger price from in vitro engineered  
meat decreased so that the price will be compatible with a  
conventional meat (111). The price drop was astonishing in  
just 2 years, which could be a good sign for the engineered  
meat commercialization. Taken together, people need  
scientific assurance to trust the engineered meat. It can be  
claimed that in vitro engineered meat can reduce our stress  
on the environment, through reduction in livestock  
production, agricultural land and water usage. However, the  
possibility of other improvements, like price, quality,  
safety, similarity to conventional meat, is difficult to  
predict. Consequently, it is crucial to be more transparent  
about all aspects of the engineered meat production. A tasty  
meat is a basic requirement for societal acceptance, but  
beyond that, the societal perception depends on too many  
factors. If the detrimental effects of conventional meat  
production on environment continually increases and if  
tasty engineered meat lead to mitigating the damage to the  
nature by preventing animal and plant extinction, this novel  
meat may finally become a highly valued food and also as  
a regular part of food program (84).  
5
Challenges and outlooks for consumer’s  
acceptance of in vitro engineered meat  
How will consumers react to engineered meat  
production technology? Under which conditions will  
customers accept and adapt to eat engineered meat? Will  
engineered meat be compatible with highly valued  
conventional meat? Customer’s acceptance or rejection  
depends on two sets of determinants. The first one is the  
personal and societal advantages and health- threatening  
risks of the engineered meat. Technology-related issues are  
the second set of determinants such as quality control and  
safety assurance of cell culture and perceived naturalness of  
the engineered meat. Customer cognizant about the  
engineered meat production technology is so effective in  
acceptance or rejection of the engineered meat by market  
105). Since, one of the advantages of this technology is  
decrease livestock production, animal activists and  
vegetarians, who hate the idea of slaughtering animal,  
might be conceived to use engineered meat (83). Most  
potential objections to the engineered meat were  
overviewed by Hopkins et al. including concern about  
unknown hazards of the engineered meat technology, doubt  
about realness and naturalness of the artificial meat,  
6
Conclusions  
Raising world population needs more livestock  
products such as meat to supply their food demands. GHG  
emissions, water pollution, land use change and  
degradation are some of the well-known impacts of  
livestock production system. Therefore, finding a proper  
2
06  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 201-210  
meat alternative seems to be essential. Engineered meat  
could be a good meat substitute with less environmental  
impacts. Using the engineered meat could be economically  
efficient; if it considers that the consuming budgets for the  
prevention of global warming will be decreased  
remarkably.  
Food and Agriculture Organization of the United  
Nations FAO, Rome. 2013.  
11.Bellarby J, Tirado R, Leip A, Weiss F, Lesschen JP,  
Smith P. Livestock greenhouse gas emissions and  
mitigation potential in Europe. Global change biology.  
2013;19(1):3-18.  
Although the in vitro engineered meat was produced,  
cooked and tasted successfully, its production in a large  
scale has some technical challenges such as, cell source  
selection and providing a biochemical and physical cell  
culture condition. Even if the engineered meat becomes  
available in the market, it was shown that social acceptance  
will be an obstacle which needs more effort to satisfy  
consumer to accept and eat the artificial meat.  
12.Reynolds C, Crompton L, Mills J. Livestock and  
Climate Change Impacts in the Developing World.  
Outlook on Agriculture. 2010;39(4):245-8.  
13.Thornton PK. Livestock production: recent trends,  
future prospects. Philosophical transactions of the Royal  
Society of London Series B, Biological sciences.  
2010;365(1554):2853-67.  
14.Kumar P, Chatli MK, Mehta N, Singh P, Malav OP,  
Verma AK. Meat analogues: Health promising  
sustainable meat substitutes. Critical reviews in food  
science and nutrition. 2017;57(5):923-32.  
Acknowledgment  
The authors wish to thank research deputy of Shiraz  
University of medical Sciences and Mr. H. Argasi at the  
Research Consultation Center (RCC) of Shiraz University  
of Medical Sciences for his invaluable assistance in editing  
this manuscript.  
1
1
1
1
5.Seale P, Rudnicki MA. A new look at the origin,  
function, and "stem-cell" status of muscle satellite cells.  
Developmental biology. 2000;218(2):115-24.  
6.Benjaminson MA, Gilchriest JA, Lorenz M. In vitro  
edible muscle protein production system (mpps): stage  
1
, fish. Acta Astronautica. 2002;51(12):879-89.  
References  
7.Talbot NC, Blomberg Le A. The pursuit of ES cell lines  
of domesticated ungulates. Stem cell reviews.  
1
2
3
. UN (United Nations). World population projected to  
reach 9.6 billion by 2050. United Nations Department of  
Economic and Social Affairs. 2013.  
2
008;4(3):235-54.  
8.Bhat ZF, Bhat H, Pathak V. Chapter 79 - Prospects for  
In Vitro Cultured Meat A Future Harvest. In: Lanza R,  
Langer R, Vacanti J, editors. Principles of Tissue  
Engineering (Fourth Edition). Boston: Academic Press;  
. Alexandratos N, Bruinsma, J. World agriculture towards  
2
1
030/2050: the 2012 revision. ESA Working paper No  
2-03 Rome, FAO. 2012.  
. Steinfeld HG, P. ; Wassenaar, T. ; Castel, V. ; Rosales,  
M. Haan, C. de. Livestock's long shadow:  
environmental issues and options. Rome, Itlay: FAO;  
006. pp.xxiv + 390 pp. ref.many p.  
2
014. p. 1663-83.  
;
1
2
2
9.Tuomisto HL, Teixeira de Mattos MJ. Environmental  
Impacts of Cultured Meat Production. Environmental  
Science & Technology. 2011;45(14):6117-23.  
2
4
. Leip A, Billen G, Garnier J, Grizzetti B, Lassaletta L,  
Reis S, et al. Impacts of European livestock production:  
nitrogen, sulphur, phosphorus and greenhouse gas  
emissions, land-use, water eutrophication and  
0.Ryan B, Tiffany DG. Energy use in Minnesota  
agriculture.  
Minnesota  
Agricultural  
Economist.  
1
998(No. 693):1, 4-7.  
1.Sainz R. LIVESTOCK-ENVIRONMENT INITIATIVE  
FOSSIL FUELS COMPONENT FRAMEWORK FOR  
CALCULATING FOSSIL FUEL USE IN LIVESTOCK  
SYSTEMS2003.  
biodiversity.  
Environmental  
Research  
Letters.  
2
015;10(11):115004.  
5
6
7
. Alaee S. Air Pollution and Infertility. J of Environ Treat  
Tech. 2018;6(4):72-3.  
. Mohajan HK. Greenhouse Gas Emissions of China. J of  
Environ Treat Tech. 2013;1(4):190-202.  
. Talaiekhozani A, Bagheri M, Najafabadi NR, Borna E.  
Effect of nearly one hundred percent of municipal solid  
waste recycling in najafabad city on improving of its air  
quality. J Air Pollut Health. 2016;1(2):111-22.  
2
2
2.FAO. State of the world’s forests. . FAO. 2005(  
Rome.153 pp).  
3.Beauchemin K, McAllister T, McGinn s. Dietary  
mitigation of enteric methane from cattle. CAB  
Reviews: perspectives in agriculture, veterinary  
science2009.  
2
2
4.Bruinsma J. WORLD AGRICULTURE : TOWARDS  
8
9
1
. Talaiekhozani A, Bahrami S, Hashemi SMJ, Jorfi S.  
Evaluation and analysis of gaseous emission in landfill  
area and estimation of its pollutants dispersion,(case of  
Rodan in Hormozgan, Iran). Environ Health Eng  
Manage J. 2016;3(3):143-50.  
. Talaiekhozani A, Dokhani M, Aleebrahim Dehkordi A,  
Eskandari Z, Rezania S. Evaluation of emission  
inventory for the emitted pollutants from landfill of  
Borujerd and modeling of dispersion in the atmosphere.  
Urban Climate. 2018;25:82-98.  
2
015/2030AN FAO PERSPECTIVE. 2003.  
5.Zaehle S, Ciais P, Friend AD, Prieur V. Carbon benefits  
of anthropogenic reactive nitrogen offset by nitrous  
oxide emissions. Nature Geoscience. 2011;4(9):601 - 5.  
6.Barrow NJ, Lambourne LJ. Partition of excreted  
nitrogen, sulphur, and phosphorus between the faeces  
and urine of sheep being fed pasture1962.  
7. Global estimates of gaseous emissionsof NH3, NO and  
N2O from agricultural land. FAO/IFA. 2001(FAO,  
Rome):106.  
2
2
2
0.Gerber PJ, Steinfeld, H., Henderson, B., Mottet, A.,  
Opio, C., Dijkman, J., Falcucci, A. & Tempio, G.  
Tackling climate change through livestock  A global  
assessment of emissions and mitigation opportunities.  
8.Galloway JN, Dentener FJ, Capone DG, Boyer EW,  
Howarth RW, Seitzinger SP, et al. Nitrogen Cycles:  
Past,  
Present,  
and  
Future.  
Biogeochemistry.  
2
004;70(2):153-226.  
2
07  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 201-210  
2
9.Putaud J-P, Van Dingenen R, Alastuey A, Bauer H,  
Birmili W, Cyrys J, et al. European aerosol  
phenomenology 3: Physical and chemical  
characteristics of particulate matter from 60 rural, urban,  
and kerbside sites across Europe2010. 130820 p.  
44.Carpenter SR, Caraco NF, Correll DL, Howarth RW,  
Sharpley AN, Smith VH. NONPOINT POLLUTION  
OF SURFACE WATERS WITH PHOSPHORUS AND  
NITROGEN. Ecological Applications. 1998;8(3):559-  
68.  
A
3
3
3
3
0.de Vries W, Kros J, Reinds GJ, Butterbach-Bahl K.  
Quantifying impacts of nitrogen use in European  
agriculture on global warming potential. Current  
45.Belsky AJ, Matzke A, Uselman S. Survey of livestock  
influences on stream and riparian ecosystems in the  
western United States. Journal of Soil and Water  
Conservation. 1999;54(1):419-31.  
46.Grizzetti, Bouraoui F, Billen G, Grinsven H, Cardoso A,  
Thieu V, et al. Nitrogen as a threat to European water  
quality. 2011. p. 379-404.  
Opinion  
in  
Environmental  
Sustainability.  
2
011;3(5):291-302.  
1.Ainsworth EA, Yendrek CR, Sitch S, Collins WJ,  
Emberson LD. The effects of tropospheric ozone on net  
primary productivity and implications for climate  
change. Annual review of plant biology. 2012;63:637-  
47.Renter DG, Sargeant JM, Oberst RD, Samadpour M.  
Diversity,  
Frequency,  
and  
Persistence  
of  
6
1.  
<em>Escherichia coli</em> O157 Strains  
from Range Cattle Environments. Applied and  
Environmental Microbiology. 2003;69(1):542.  
2.Esbrí JM, López-Berdonces MA, Fernández-Calderón  
S, Higueras P, Díez S. Atmospheric mercury pollution  
around a chlor-alkali plant in Flix (NE Spain): an  
integrated analysis. Environ Sci Pollut Res.  
48.Simpson KMJ, Hill-Cawthorne GA, Ward MP, Mor  
SM. Diversity of Salmonella serotypes from humans,  
food, domestic animals and wildlife in New South  
2
015;22(7):4842-50.  
3.Read D, Beerling, D., Cannell, M., Cox, P., Curran, P.,  
Grace, J., Ineson, P., Jarvis, P., Malhi, Y., Powlson, D.,  
Shepherd, J. and Woodward, I. The role of land carbon  
sinks in mitigating global climate change Royal Society  
Wales,  
Australia.  
BMC  
infectious  
diseases.  
2018;18(1):623.  
49.Bayry J. Emerging viral diseases of livestock in the  
developing world. Indian journal of virology : an official  
organ of Indian Virological Society. 2013;24(3):291-4.  
50.Slifko TR, Smith HV, Rose JB. Emerging parasite  
zoonoses associated with water and food. International  
journal for parasitology. 2000;30(12-13):1379-93.  
51.Reid RSB, C.; Said, M.Y.; Kruska, R.L.; Mauricio,  
R.M.; Castel, V.; Olson, J.; Thornton, P.K. . Global  
livestock impacts on biodiversity. IN: Livestock in a  
Changing Landscape. Drivers C, and Responses.  
Steinfeld, H.; Mooney, H.A.; Schneider, F.; Neville,  
L.E. , editor. Washington DC: Island Press: 111-  
1372009.  
2
001(London, UK.):27.  
3
3
4.Mosier A, Wassmann R, Verchot L, King J, Palm C.  
Methane and Nitrogen Oxide Fluxes in Tropical  
Agricultural  
Soils:  
Sources,  
Sinks  
and  
Mechanisms2004. 11-49 p.  
5.W. Rosegrant M, Cai X, Cline S. Global water outlook  
to 2025, Averting an impending crisis. A 2020 vision  
for food, agriculture, and the environment initiative:  
International food policy research institute (IFPRI) and  
International water management institute (IWMI; 2002.  
6.Brown LR. Water deficits growing in many countries  
water shortages may cause food shortages. Earth Policy  
Institute; 2002.  
3
3
3
52.DiTomaso JM, Monaco TA, James JJ, Firn J. Invasive  
Plant Species and Novel Rangeland Systems. In: Briske  
7.Projected water scarcity in 2025 [Internet]. 2000.  
DD,  
editor.  
Rangeland  
Systems:  
Processes,  
Available  
from:  
Management and Challenges. Cham: Springer  
International Publishing; 2017. p. 429-65.  
http://www.iwmi.cgiar.org/home/wsmap.htm.  
8.Maupin MA, Kenny, J.F., Hutson, S.S., Lovelace, J.K.,  
Barber, N.L., and Linsey, K.S. Estimated use of water  
in the United States in 2010: U.S. Geological Survey  
Circular 1405. 2014:56.  
9.Mesgaran MB, Madani K, Hashemi H, Azadi P. Iran’s  
Land Suitability for Agriculture. Scientific Reports.  
53.Alkemade R, Reid RS, van den Berg M, de Leeuw J,  
Jeuken M. Assessing the impacts of livestock  
production on biodiversity in rangeland ecosystems.  
Proceedings of the National Academy of Sciences.  
2013;110(52):20900.  
54.Bobbink R, Hicks K, Galloway J, Spranger T,  
Alkemade R, Ashmore M, et al. Global assessment of  
nitrogen deposition effects on terrestrial plant diversity:  
a synthesis. Ecological Applications. 2010;20(1):30-59.  
55.Bajželj B, Richards KS, Allwood JM, Smith P, Dennis  
JS, Curmi E, et al. Importance of food-demand  
management for climate mitigation. Nature Climate  
Change. 2014;4:924.  
56.Stehfest E, Bouwman L, van Vuuren DP, den Elzen  
MGJ, Eickhout B, Kabat P. Climate benefits of  
changing diet. Climatic Change. 2009;95(1):83-102.  
57.Benjaminson MA, Gilchriest JA, Lorenz M. In vitro  
edible muscle protein production system (MPPS): stage  
1, fish. Acta Astronaut. 2002;51(12):879-89.  
3
4
4
4
2
017;7(1):7670.  
0.Doreau M, Corson M, Wiedemann S. Water use by  
livestock: global perspective for regional  
issue?2012. 9-16 p.  
1.Mancosu N, Snyder R, Kyriakakis G, Spano D. Water  
Scarcity and Future Challenges for Food  
Production2015. 975-92 p.  
A
a
2.Zimmer DR, D, editor Virtual water in food production  
and global trade: review of methodological issues and  
preliminary results. Proceedings of the expert meeting;  
2
003 1213 December 2002; Delft,the Netherlands:  
UNESCO-IHE.  
4
3.Nelson PN, Cotsaris E, Oades JM. Nitrogen,  
Phosphorus, and Organic Carbon in Streams Draining  
Two Grazed Catchments. Journal of Environmental  
Quality. 1996;25(6):1221-9.  
58.Wilschut KJ, Jaksani S, Van Den Dolder J, Haagsman  
HP, Roelen BAJ. Isolation and characterization of  
2
08  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 201-210  
porcine adult muscle-derived progenitor cells. Journal of  
Cellular Biochemistry. 2008;105(5):1228-39.  
74.Boonen KJ, van der Schaft DW, Baaijens FP, Post MJ.  
Interaction between electrical stimulation, protein  
coating and matrix elasticity: a complex effect on  
muscle fibre maturation. Journal of tissue engineering  
and regenerative medicine. 2011;5(1):60-8.  
75.Kanatous SB, Mammen PPA. Regulation of myoglobin  
expression. The Journal of Experimental Biology.  
2010;213(16):2741.  
5
9.Langelaan MLP, Boonen KJM, Rosaria-Chak KY, van  
der Schaft DWJ, Post MJ, Baaijens FPT. Advanced  
maturation by electrical stimulation: Differences in  
response between C2C12 and primary muscle  
progenitor cells. Journal of Tissue Engineering and  
Regenerative Medicine. 2011;5(7):529-39.  
6
6
0.O’Riordan K, Fotopoulou A, Stephens N. The first bite:  
Imaginaries, promotional publics and the laboratory  
grown burger. Public Understanding of Science.  
76.Canavan HE, Cheng X, Graham DJ, Ratner BD, Castner  
DG. Cell sheet detachment affects the extracellular  
matrix: a surface science study comparing thermal  
liftoff, enzymatic, and mechanical methods. Journal of  
biomedical materials research Part A. 2005;75(1):1-13.  
77.da Silva RMP, Mano JF, Reis RL. Smart  
thermoresponsive coatings and surfaces for tissue  
engineering: switching cell-material boundaries. Trends  
in Biotechnology. 2007;25(12):577-83.  
78.Sharma S, Thind SS, Kaur A. In vitro meat production  
system: why and how? Journal of food science and  
technology. 2015;52(12):7599-607.  
79.Edelman PD, McFarland DC, Mironov VA, Matheny  
JG. Commentary: In vitro-cultured meat production.  
Tissue engineering. 2005;11(5-6):659-62.  
2
016;26(2):148-63.  
1.Boonen KJM, Post MJ. The Muscle Stem Cell Niche:  
Regulation of Satellite Cells During Regeneration.  
Tissue Engineering Part B: Reviews. 2008;14(4):419-  
3
1.  
6
6
2.Hayflick L. THE LIMITED IN VITRO LIFETIME OF  
HUMAN DIPLOID CELL STRAINS. Experimental  
cell research. 1965;37:614-36.  
3.Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A,  
Partridge TA, et al. Stem cell function, self-renewal, and  
behavioral heterogeneity of cells from the adult muscle  
satellite cell niche. Cell. 2005;122(2):289-301.  
6
4.Wilschut KJ, Haagsman HP, Roelen BAJ. Extracellular  
matrix components direct porcine muscle stem cell  
80.Mattick CS, Landis AE, Allenby BR, Genovese NJ.  
Anticipatory Life Cycle Analysis of In Vitro Biomass  
Cultivation for Cultured Meat Production in the United  
behavior.  
Experimental  
Cell  
Research.  
2
010;316(3):341-52.  
States. Environmental science  
2015;49(19):11941-9.  
81.Smetana S. Meat alternatives: life cycle assessment of  
most known meat substitutes. The international journal  
of life cycle assessment. 2015;v. 20(no. 9):pp. 1254-67-  
2015 v.20 no.9.  
&
technology.  
6
6
5.Zammit PS. All muscle satellite cells are equal, but are  
some more equal than others? Journal of Cell Science.  
2
6.Sani M, Hosseini SM, Salmannejad M, Aleahmad F,  
Ebrahimi S, Jahanshahi S, et al. Origins of the breast  
milk-derived cells; an endeavor to find the cell sources.  
Cell biology international. 2015;39(5):611-8.  
008;121(18):2975.  
82.Post MJ. Cultured meat from stem cells: Challenges and  
prospects. Meat Science. 2012;92(3):297-301.  
6
6
7.Sani M, Ebrahimi S, Aleahmad F, Salmannejad M,  
Hosseini SM, Mazarei G, et al. Differentiation Potential  
of Breast Milk-Derived Mesenchymal Stem Cells into  
Hepatocyte-Like Cells. Tissue engineering and  
regenerative medicine. 2017;14(5):587-93.  
8.Engler AJ, Griffin MA, Sen S, Bonnemann CG,  
Sweeney HL, Discher DE. Myotubes differentiate  
optimally on substrates with tissue-like stiffness:  
83.Hopkins PD, Dacey A. Vegetarian Meat: Could  
Technology Save Animals and Satisfy Meat Eaters?  
Journal of Agricultural and Environmental Ethics.  
2008;21(6):579-96.  
84.Post M, van der Weele C. Chapter 78 - Principles of  
Tissue Engineering for Food. In: Lanza R, Langer R,  
Vacanti J, editors. Principles of Tissue Engineering  
(Fourth Edition). Boston: Academic Press; 2014. p.  
1647-62.  
85.Chartrain M, Chu L. Development and production of  
commercial therapeutic monoclonal antibodies in  
Mammalian cell expression systems: an overview of the  
current upstream technologies. Current pharmaceutical  
biotechnology. 2008;9(6):447-67.  
86.Xing Z, Kenty BM, Li ZJ, Lee SS. Scale-up analysis for  
a CHO cell culture process in large-scale bioreactors.  
Biotechnology and bioengineering. 2009;103(4):733-46.  
87.Varani J, Bendelow MJ, Chun JH, Hillegas WA. Cell  
growth on microcarriers: comparison of proliferation on  
and recovery from various substrates. Journal of  
biological standardization. 1986;14(4):331-6.  
pathological stiff  
microenvironments. The Journal of cell biology.  
004;166(6):877-87.  
implications  
for  
soft  
or  
2
6
7
9.Jack W. Meat derived from stem cells:How, what and  
why. 2012.  
0.Vandenburgh H, Shansky J, Del Tatto M, Chromiak J.  
Organogenesis of skeletal muscle in tissue culture.  
Methods in molecular medicine. 1999;18:217-25.  
1.Boonen KJM, Rosaria-Chak KY, Baaijens FPT, van der  
Schaft DWJ, Post MJ. Essential environmental cues  
from the satellite cell niche: optimizing proliferation and  
differentiation. American Journal of Physiology-Cell  
Physiology. 2009;296(6):C1338-C45.  
7
7
7
2.Bentzinger C, von Maltzahn J, Rudnicki MA. Extrinsic  
regulation of satellite cell specification. Stem Cell  
Research & Therapy. 2010;1(3):27.  
3.Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge  
TA, Beauchamp JR. Muscle satellite cells adopt  
divergent fates: a mechanism for self-renewal? The  
Journal of cell biology. 2004;166(3):347-57.  
88.Sieblist C, Jenzsch M, Pohlscheidt M. Equipment  
characterization to mitigate risks during transfers of cell  
culture manufacturing processes. Cytotechnology.  
2016;68(4):1381-401.  
89.Matsunaga N, Kano K, Maki Y, Dobashi T. Estimation  
of dissolved carbon dioxide stripping in  
a large  
2
09  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 201-210  
bioreactor using model medium. Journal of Bioscience  
and Bioengineering. 2009;107(4):419-24.  
0.Gerrard L, Rodgers L, Cui W. Differentiation of human  
embryonic stem cells to neural lineages in adherent  
culture by blocking bone morphogenetic protein  
signaling. Stem cells (Dayton, Ohio). 2005;23(9):1234-  
100.  
Hou L, Xie J, Zhao J, Zhao M, Fan M, Xiao Q, et  
al. Roles of different initial Maillard intermediates and  
pathways in meat flavor formation for cysteine-xylose-  
glycine model reaction systems. Food chemistry.  
2017;232:135-44.  
9
101.  
Koutsidis G, Elmore JS, Oruna-Concha MJ,  
Campo MM, Wood JD, Mottram DS. Water-soluble  
precursors of beef flavour. Part II: Effect of post-  
mortem conditioning. Meat science. 2008;79(2):270-7.  
4
1.  
9
1.Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y,  
Loewenthal R, Trakhtenbrot L, et al. Donor-derived  
brain tumor following neural stem cell transplantation in  
an ataxia telangiectasia patient. PLoS medicine.  
102.  
Moloney AP, Mooney MT, Kerry JP, Troy DJ.  
Producing tender and flavoursome beef with enhanced  
nutritional characteristics. The Proceedings of the  
Nutrition Society. 2001;60(2):221-9.  
2
009;6(2):e1000029.  
9
9
2.Justice C, Brix A, Freimark D, Kraume M, Pfromm P,  
Eichenmueller B, et al. Process control in cell culture  
technology using dielectric spectroscopy. Biotechnology  
advances. 2011;29(4):391-401.  
103.  
Nishimura T. Role of extracellular matrix in  
development of skeletal muscle and postmortem aging  
of meat. Meat Science. 2015;109:48-55.  
3.Coecke S, Balls M, Bowe G, Davis J, Gstraunthaler G,  
Hartung T, et al. Guidance on good cell culture practice.  
a report of the second ECVAM task force on good cell  
culture practice. Alternatives to laboratory animals :  
ATLA. 2005;33(3):261-87.  
104.  
Maher SC, Mullen AM, Keane MG, Buckley DJ,  
Kerry JP, Moloney AP. Decreasing variation in the  
eating quality of beef through homogenous pre- and  
post-slaughter  
2004;67(1):33-43.  
management.  
Meat  
Science.  
9
4.van der Valk J, Mellor D, Brands R, Fischer R, Gruber  
F, Gstraunthaler G, et al. The humane collection of fetal  
bovine serum and possibilities for serum-free cell and  
tissue culture. Toxicology in vitro : an international  
journal published in association with BIBRA.  
105.  
Verbeke W, Sans P, Van Loo EJ. Challenges and  
prospects for consumer acceptance of cultured meat.  
Journal of Integrative Agriculture. 2015;14(2):285-94.  
106.  
Verbeke W, Marcu A, Rutsaert P, Gaspar R,  
Seibt B, Fletcher D, et al. 'Would you eat cultured  
meat?': Consumers' reactions and attitude formation in  
Belgium, Portugal and the United Kingdom. Meat  
science. 2015;102:49-58.  
2
004;18(1):1-12.  
9
9
5.Fujita H, Endo A, Shimizu K, Nagamori E. Evaluation  
of serum-free differentiation conditions for C2C12  
myoblast cells assessed as to active tension generation  
107.  
Hopkins PD. Cultured meat in western media:  
The disproportionate coverage of vegetarian reactions,  
demographic realities, and implications for cultured  
meat marketing. Journal of Integrative Agriculture.  
2015;14(2):264-72.  
capability.  
Biotechnology  
and  
Bioengineering.  
2
010;107(5):894-901.  
6.Claeys E, De Smet S, Balcaen A, Raes K, Demeyer D.  
Quantification of fresh meat peptides by SDS-PAGE in  
relation to ageing time and taste intensity. Meat science.  
108.  
18. 2013.  
109. Bekker GA, Fischer ARH, Tobi H, van Trijp  
Flycatcher. Kweekvlees [cultured meat]201312–  
2
004;67(2):281-8.  
9
9
9
7.Hornstein I, Crowe PF. Meat Flavor Chemistry, Flavor  
Studies on Beef and Pork. Journal of Agricultural and  
Food Chemistry. 1960;8(6):494-8.  
8.Cerny C. The aroma side of the Maillard reaction.  
Annals of the New York Academy of Sciences.  
HCM. Explicit and implicit attitude toward an emerging  
food technology: The case of cultured meat. Appetite.  
2017;108:245-54.  
110.  
Siegrist M, Sütterlin B, Hartmann C. Perceived  
naturalness and evoked disgust influence acceptance of  
cultured meat. Meat Science. 2018;139:213-9.  
2
008;1126:66-71.  
9.Cerny C,  
Grosch  
W.  
Precursors  
of  
ethyldimethylpyrazine isomers and 2,3-diethyl-5-  
methylpyrazine formed in roasted beef. Zeitschrift für  
111.  
B C. Cost of lab-grown burger patty drops from  
$325,000 to $11.36. . Sci Alert 2. 2015.  
Lebensmittel-Untersuchung  
994;198(3):210-4.  
und  
-Forschung.  
1
2
10