Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 211-219  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Mechanical Properties and Swelling Behav-  
ior of Acrylamide Hydrogels using Mont-  
morillonite and Kaolinite as Clays  
1
2
3
Farzaneh Sabbagh *, Nadia Mahmoudi Khatir , Azam Khodaeyan Karim , Amineh  
4
5
6
Omidvar , Zahra Nazari , Reza Jaberi  
1
- Bioprocess Engineering Department, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310  
UTM, Johor, Malaysia  
2
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran  
- Department of Food Science & Technology, Quchan Branch, Islamic Azad Univesity, Quchan, Iran  
- Department of Chemistry, Payame Noor University (PNU)  
3
4
5
- Food quality and Safety Research Group Food Science and Technology Research Institute ACECR Mashhad Branch  
Mashhad, Iran  
6
- Department of Food Science & Technology, Sabzevar Branch, Islamic Azad Univesity, Sabzevar, Iran  
Received: 15/02/2019 Accepted: 30/04/2019 Published: 01/06/2019  
Abstract  
In this study in order to increase the release ability of acrylamide hydrogels, modified acrylamide-based hydrogel nano-  
composites were synthesized. The aim of this research was to evaluate the swelling ratio of hydrogel with the best clay, to  
reach the highest rate of swelling. To enhance the swelling ratio of hydrogels, the clays were applied in their structure.  
Amongst the applied clays in the structure of the hydrogels, montmorillonite was found to be more effective than kaolinite.  
Further using conventional techniques such as X-ray diffraction (XRD) and Energy Dispersive X-Ray (EDX) performed the  
characterization of the clays, while the hydrogels were characterized by Fourier Transform Infrared Spectroscopy (FTIR),  
Field Emission Scanning Electron Microscope (FESEM), and EDX. The XRD analysis of clays showed that there is a differ-  
ent amount of carbon, oxygen, sodium, calcium, magnesium, aluminum, silicon, potassium and iron. The amount of oxygen  
in montmorillonite was 42.12 however, the amount of oxygen in kaolinite was 2.01. The XRD pattern of montmorillonite  
including a peak relevant to the basal dividing of (2θ = 7.83°) 11.28 Å was verified. In the acrylamide/montmorillonite hy-  
drogels, this peak was shifted to a lower point of the angle, comparing to the basal spacing of (2θ = 6.40°) 13.78 Å and (2θ =  
6
.24°) 14.11 Å. Such an increase in the basal spacing oblique that the monomer was inserted into the interlayer of the clay.  
Keywords: Nanoparticle, NaCMC, Microstructure, Polymerization, Nanocomposite, Crosslinker  
1
and very specific surface zone in their structure (5-8).  
Clay is an organically tailored phyllosilicate, which is  
derived from an organically occurring clay mineral. The  
clay minerals are very effective in the polymer structure,  
because they have small particle size and have intercala-  
tion properties, and are hydrated layered aluminosilicate  
with reactive -OH groups on their surface. The factors  
such as pH, temperature and other environmental condi-  
tions are able to impact on the hydrogels and the hydro-  
gels can react to these factors as they are very powerful  
materials (8,9). By locating of hydrophilic groups such as  
amide, sulfonic acid, the hydroxyl group and carboxylic  
acid in their structure, the hydrogels start to absorb a  
large amount of water, they swell and can produce hy-  
drophilic polymers (10-12). To improve the physical  
properties of hydrogels, they can be added by novel ap-  
plicable arrangements (13). Due to their stability under  
violent conditions of procedure for health, they are very  
exciting by locating of metal oxides such as MgO (14-  
1
Introduction  
Recently, the structure of hydrogels has been blended  
by strengthening the nanostructures to polymerize a  
nanocomposite hydrogel in order to make changes in  
physical, mechanical and material properties (1). The  
cross-linked structures in the three-dimensional systems,  
provide the nanocomposite hydrogels which have simi-  
larities with the layers in clay silicate (2). Some of the  
useful applications of hydrogels including drug delivery  
devices and wound dressing systems (3,4). The major  
concerns on the hydrogels with clay-polymer structure  
are focused on montmorillonite, laponite, and hy-  
drotalcite as some improved factors. The reasons that the  
clays are highly utilized for different medical applica-  
tions is that they owe unique physicochemical qualities  
Corresponding author: Farzaneh Sabbagh, Department  
of Bioprocess Engineering, Faculty of Chemical Engi-  
neering, Universiti Teknologi Malaysia, 81310. Email:  
farzaneh2464@yahoo.com smfar-  
zaneh2@live.utm.my. Telephone: 0060-177768087.  
1
7). The MgO nanoparticles have various biomedical  
advantages (18). The role of clays in pharmaceutical  
products is excipient and active ingredients. Amongst all  
and  
211  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 211-219  
o
o
the clays, montmorillonite has attracted more attention  
due to having more capacity of cation exchange rather  
than the rest of pharmaceutical silicates such as kaoline,  
talc, and fibrous clay minerals (19). The composition of  
clay/polymer composites has improved mechanical prop-  
erties (20). These facts of interest along with the high  
limit of interaction that is proposed by mineral particles  
have been generally initiated to clarify novel systems of  
controlled release yet sometimes it is necessary to modi-  
fy polymeric material or clay minerals. Polyacrylamide is  
a kind of pH-sensitive hydrogel (21,22).  
edge (2θ) was in the range of 20 and 80 . An x-beam  
o
diffraction amount of clay was carried out at 25 C with  
Siemens. Diffractometer D5000 X-beam diffractometer  
along with Cu (24).  
2.4 FTIR Analysis  
The FTIR spectrum of hydrogels was taken in the  
-
1
range of 4000-370 cm as KBr pellet with the help of  
FTIR (Nicolet. 670 FTIR, USA) were analyzed. Amount  
of 4 mg of the dried specimens of hydrogels were weigh-  
ing and blended with Potassium Bromide (25).  
The aim of this study is to reach to the highest swell-  
ing ratio in the hydrogels containing two different clays.  
We are evaluating some characterizations and also the  
highest swelling ratio between Montmorillonite and Kao-  
linite and then apply one of them in the structure of hy-  
drogel.  
2.5 Hydrogel Nano Composites Microstructure  
To consider the microstructure of hydrogels, Field  
emission scanning electron microscope (FESEM) (35VP  
Gemini Supra) was applied. This was done under vacu-  
um condition and employing gold sputter coater Bio-Rad  
Polaran Division (E6700, USA). The voltage of 10 kV  
was carried out using the amplification of 3000× and  
2
Experimental Methodologies  
9
000×. To keep the samples pores wholesome for prepar-  
2
.1 Materials  
ing to image, all of them were lyophilized and were  
placed in liquid (26).  
Acrylamide (Aam) and MgO applied in this research  
study were provided from Sigma-Aldrich Chemical  
Company. N,N’-methylene bisacrylamide (MBA) as the  
crosslinker, the activator N,N,N’, N’-tetramethyl eth-  
ylenediamine (TEMED) and the initiator ammonium  
persulfate (APS) were completely analytical grade and  
were purchased from Sigma-Aldrich Chemical Compa-  
ny. Deionized water was applied during the experiments  
in the formulation of hydrogels in the swelling experi-  
ments, Kaolin powder with 98% purity and montmorillo-  
nite (MMT), with an average particle size of 1 μm was  
used with no further modification. All the material was  
obtained from Sigma-Aldrich Malaysia and supplemen-  
tary chemicals and reagents applied were entirely analyt-  
ical grade.  
2
.6 Swelling Studies  
Immersing the samples in distilled water conducted  
to make them ready for swelling ratio analysis. Occa-  
sionally, the weight of the swelling ratio was measured  
and then computed by means of the following equation:  
ꢁ ꢂ  
Swelling ratio (%) = [  
]ꢃꢄꢅꢆꢆ  
(Equation 1)  
The weight of the swollen gels is designed by Wt at time  
t and W is the beginning weight of the samples (27).  
0
3
Results and Discussion  
3
.1 Reagents  
2
.2 Formulation of Acrylamide/NaCMC/MgO Nano-  
composites  
Acrylamide/NaCMC/MgO nanocomposite was ac-  
The presence of all of the elements that constitutes  
the montmorillonite and kaolinite clay mineral may be  
observed, indicating its effective incorporation (Table 1)  
was determined by using elemental analysis, which re-  
sulted in the unit cell formula. Apparently, the chemical  
compositions breakdown of clay shows the main domi-  
nant elements in the clay were (O=Oxygen),  
cumulated by mixing 0.01 g MgO nanoparticles (<50nm)  
and 0.01 g clay with the polymer matrix. First, MgO was  
weighing for 0.01 g and poured into 2 ml of distilled  
water at 80 °C under vigorous stirring.Acrylamide, am-  
monium persulfate (APS), N, N, N’, N’-  
tetramethylethylenediamine (TEMED), sodium carbox-  
(C=Calcium), (Na= Sodium), (Mg= Magnesium), (Fe=  
Iron), (Si=Silicon), (K=Potassium), (Al=Aluminum).  
The EDX profile of montmorillonite and kaolinite (Fig-  
ure 1 (a) and (b)) shows that the percentage of Si and Al  
in the montmorillonite and kaolinite is 9.97% and  
ymethylecellulose  
(NaCMC),  
N,  
N’-  
methylenebisacrylamide (MBA), was added to the solu-  
tion, after nearly 10 minutes. The whole duration of  
polymerization of nano complex took about 40 mins  
1
9.90%, and 17.18% and 5.96% respectively. Whereas  
[
23].  
the percentages of other metals like K, Na, Ca, Mg, O  
and Fe is, 0.19%, 0, 0, 0, 2.01%, in kaolinite and 0.41%,  
2
.3 XRD analysis  
0
.32%, 0.49%, 0.79% and 42.12% in montmorillonite.  
For the X-ray diffraction of Kaolinite and Montmo-  
The major constituents of the clay are aluminum, silicon,  
magnesium, iron, oxygen and calcium, which correspond  
to its chemical formula.  
rillonite, the clays were subjected to x-beam diffraction  
XRD) Kα at 40keV and 40mA was applied with a step.  
(
o
length of 0.05 and step time of 1s. The used diffraction  
Table 1: EDX analysis of Kaolinite and Montmorillonite  
Clays/ Elements  
Kaolinite  
(weight%)  
Montmorillonite (weight%)  
212  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 211-219  
The representing of O and Si components, coming  
absolutely from the clay mineral, suggests that good  
element dispersion occurred in the clay matrix (Figure 1).  
So as to consider the composition of montmorillonite and  
kaolinite, XRD test was accomplished (Figure 1). The  
crystallinity changes of samples with clays were consid-  
ered to have a better understanding of hydrogel structural  
stability and network.  
The large surface area of Kaolinite and montmorillo-  
nite and/or their extensive pharmaceutical application are  
the main reasons to choose them. The properties of such  
different clays are related to their composition and struc-  
ture (Figure 2). The montmorillonite clays are 2:1 phyl-  
losilicates stacked single sheets of tetrahedral silica on  
top of a single sheet of octahedral alumina however,  
kaolinite consists of 1:1 (28). The way that the layers are  
stacked on each other detects the differences in the kaolin  
minerals. The interlayer in montmorillonite is not only  
expansible, but it is also hydrated; That is the reason,  
they are called to as "swelling clays" (29).  
the interlayer space of smectites, by revealing changes in  
the basal spacing of the clay minerals (30). The XRD  
pattern of kaolinite is presented in figure 3(a) and the  
XRD pattern of montmorillonite is presented in figure  
3(b).  
The diffraction pattern of montmorillonite including  
a peak relevant to the basal dividing of (2θ = 7.83°)  
11.28 Å was verified. In the acrylamide/montmorillonite  
hydrogels, this peak was shifted to a lower point of the  
angle, comparing to the basal spacing of (2θ = 6.40°)  
13.78 Å and (2θ = 6.24°) 14.11 Å. Such an increase in  
the basal spacing oblique that the monomer was inserted  
into the interlayer of the clay. This is due to the polymer-  
ization of acrylamide monomer to polyacrylamide matrix  
that gave a contraction between layers of the montmoril-  
lonite (31). A flattened conformation was adopted be-  
tween the layers of the clay in the polymer. It is conclud-  
ed that in composite hydrogels the clay minerals were  
intercalated but not exfoliated and authoritatively dis-  
seminated in the matrix. Small molecules (kaolinite)  
were weakly bound to the clay mineral and no significant  
changes in the basal spacing of the complexes were ob-  
served after desorption, whereas for promethazine im-  
portant modifications in the X-ray were reported (32).  
3
.2 XRD pattern of Clays  
The X-ray diffraction performed for the clays are  
presented in Figure.3.X-ray diffraction was a useful tool  
to test the possible orientation and penetration of clays in  
(a)  
(b)  
Figure 1: Energy Dispersive X-Ray (EDX) spectrum of clay Montmorillonite(a) and Kaolinite (b)  
.
213  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 211-219  
(a)  
Montmorillonite structure (NA,CA)0.33(AL,MG) (SI O )  
2
4
10  
(b)  
Kaolinite structure Al Si O (OH )  
2
2
5
4
Figure 2: Chemical structure of (a) Montmorillonite and (b) Kaolinite  
3
.3 Polymerization  
The polymerization of acrylamide hydrogels is  
polymer/clay systems could have a tendency to  
produce disordered phases as nematic or isotropic,  
an increase of polymer chain length and/or organ  
clay content leads to the creation of ordered phases  
(crystal, smectic or columnar) (33).  
happening in the presence of smaller amount of  
bisacrylamide. Bisacrylamide essentially is linked to  
two acrylamide molecules by a methylene group,  
and is applied as crosslinking agent. A second site  
to extend the chain is introduced due to polymeriza-  
tion of acrylamide monomer in the head to tail order  
and producing bisacrylamide molecules into long  
chains. The polymerization of acrylamide monomer  
is free radical’s catalysis, and by the addition of  
TEMED and APS is initiated. The TEMED role in  
the matrix is catalyzer of the decomposition of per-  
sulphate ion and presents free radical. Hydrogel  
composites were shaped by some interaction and  
conglomeration with acrylamide in montmorillonite  
interlayer gallery. Acrylamide/montmorillonite  
composite hydrogel and Acrylamide/ kaolinite com-  
posite hydrogel were the result of free radical  
polymerization in distilled water containing of clay  
in optimized ratio of acrylamide to clay (6:1%,  
w/w), APS and TEMED were added as the initiator  
and accelerator, respectively. The content of the  
clay is very important. At lower contents of clay, the  
3.4 Swelling ratio study  
According to the outcomes, the specifications of  
acrylamide hydrogel were encouragingly trans-  
formed by incorporating with clays. The two men-  
tioned clays were applied in the hydrogels and were  
placed in distilled water to determine the swelling  
ratio (Figure 4). By comparing these samples,  
Montmorillonite had the greatest swelling ratio  
rather than kaolinite.  
In Figure 4, the swelling ratio of the hydrogel in  
distilled water is presented and by NaCMC addition,  
the quantity of swelling was found to be increased  
to a greater level. On the other hand, the presence of  
multitude carboxylic acid groups in its structure is  
very effective. The presence of hydrophilic chains  
on the polymeric chains (COOCH Na) and (OH)  
3
and hydration of functional groups was responsible  
for the swelling of the hydrogels.  
214  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 211-219  
350  
300  
250  
200  
150  
100  
5
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
2
-Theta-Scale  
Kaolinite (a)  
3
3
2
2
1
1
50  
00  
50  
00  
50  
00  
5
0
0
4
14  
24  
34  
-Theta-Scale  
44  
54  
2
Montmorillonite (b)  
Figure 3: XRD pattern of Kaolinite (a) and Montmorillonite (b)  
enhanced owing to the aggregate permeability of hydro-  
gels that give them the ability to release the trapped  
drugs easier. However, it is seen that acrylamide hydro-  
gels in establishment with montmorillonite swells faster  
than the hydrogels incorporation with kaolinite. This fact  
could be explained by the presence of strongly hydro-  
philic clay that attracts water at the beginning of swelling  
much faster than the kaolinite with different structure  
rather than montmorillonite (35).  
3
.5 Characterization of Modified Acrylamide Based-  
Hydrogel Nanocomposites  
3
.5.1 FTIR Characterization  
The Figure 5 represents the synthesis of acrylamide-  
based hydrogels obtained from the FTIR spectra. The  
peak for ester groups was found around 703. The peak of  
Figure 4: Swelling ratio of Kaolinite and Montmorillonite clays  
using in the acrylamide-based hydrogels  
-
1
2
368 relates to silicon capacity and the peak of 1650 cm  
According to our previous reports (34), by expanding  
the swelling ability of hydrogels, the drug release and  
loading components within the hydrogel network are  
is a result of amide-I of acrylamide units (36). The peak  
2929 cm is for presence of CN and CH extending  
groups, separately, further affirming the trend of the  
-
1
215  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 211-219  
amide group. The extending of OH gatherings result in  
with minor modification. FESEM was performed in or-  
der to assess the surface characterization of hydrogels  
(38). Polyacrylamide containing Kaolin and montmoril-  
lonite microparticles have macro porous structure with  
average diameter of pore size less than 1 µm. MgO na-  
noparticles organized the initial burst release organized  
through modification of polymeric complex and by af-  
fecting the release mechanism (39,40). The FESEM im-  
ages magnifications were undergone at 2.0K×. Apparent-  
ly, stacking nanoparticles had changed the surface mor-  
phology of the clear hydrogel. This shows the arrange-  
ment of nanoparticles in the system of the clear hydrogel,  
while the clear hydrogel uncovered clear systems through  
the gel association. Also, it is clear that nanofillers pro-  
duce a same type of structure once integrated into the  
blank matrix, which was more evident in the magnetic  
type of nanocomposites. Making of nanoparticles inside  
the hydrogel system brings about moving the porosity of  
hydrogels. It can be seen that the nanoparticles have  
effectively unbroken apportion through the hydrogel  
organizes as demonstrated in Figure.7. The EDX range  
moreover supports the arrangement of metal nanoparti-  
cles in the hydrogels (41).  
1
1  
peak 3421 cm . The peak at 1023 cm advocated CH–  
1
OCH extending. The peak is seen at 1650 cm was a  
direct result of the amide-I band of the amide group of  
polyacrylamide (>C = O stretching vibration frequency).  
1  
The amide-I band was relocated from 1661cm , in the  
1  
cross-connected polyacrylamide, to 1650cm .The peaks  
1  
at 1023 cm in the FTIR range is normal for skeletal  
vibration including the extending of CO bonds in anhy-  
1
drous glucose units. The peaks at 2929 cm indicated C–  
H stretching of  CH groups. This infers that due to the  
2
less steric restriction of the hydroxyl group, the hydroxyl  
group of acrylamide is the favored site for the response  
with the crosslinker and the joining of acrylamide (37).  
3
.5.2 FESEM, EDX analysis  
The dynamic swelling behavior of hydrogels depends  
on the relative contribution of penetrant diffusion and  
relaxation of crosslinked polymer chains. It was until  
affirmation the outcome of nanoparticles on the micro-  
structure of hydrogel, FESEM/EDX of the clear hydrogel  
and the nanoparticles-stacked hydrogels were considered  
as demonstrated in Figure 6. Field Emission Scanning  
Electron Microscopy (FESEM) analysis was carried out  
-
1
Wavenumber(cm )  
Figure 5: FTIR spectra for acrylamide-based hydrogels  
Figure 6: FESEM image of MgO/Acrylamide/NaCMC  
216  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 211-219  
Figure 7: EDX of MgO/Acrylamide/NaCMC hydrogels  
4
Conclusion  
References  
[1] Gholizadeh, H., Cheng, S., Pozzoli, M., Messerotti,  
E., Traini, D., Young, P., Kourmatzis, A., Ong, HX.  
Smart thermosensitive chitosan hydrogel for nasal  
delivery of ibuprofen to treat neurological disorders.  
Expert opinion on drug delivery, 2019.  
[2] Ruskowitz, ER., Comerford, MP., Badeau, BA.,  
DeForest, CA. Logical stimuli-triggered delivery of  
small molecules from hydrogel biomaterials. Bio-  
materials science, 2019.7(2): p.542-546.  
The layered silicate materials such as montmorillo-  
nite, have drawn a great deal of attention because of its  
ability to release drugs in a controlled mode, ultimately  
leading to high value of drug. Polyacryla-  
mide/montmorillonite and polyacrylamide/kaolinite  
composites were obtained by polymerization. Network  
parameters and Swelling behavior of hydrogels were  
studied. The study results indicated that the montmoril-  
lonite is the best clay to be applied in the hydrogel  
among the clays, due to its highest swelling ratio. Addi-  
tion of nanoparticles changed the water-uptake in hydro-  
gels by direct water adsorption (at the water interface),  
and changing the network density (by adding physical  
crosslink points to the existing chemical crosslinks). By  
adding the MgO to the monomer system the greater  
swelling capacity of the MgO hydrogels can be attributed  
to the presence of MgO nanoparticles with different sur-  
face charges, size, and morphology. The MgO nanoparti-  
cles caused in the dispersion of more water molecules to  
equilibrate the buildup ion osmotic pressure, which re-  
sulted in swelling. As a future recommendation, it can be  
suggested to apply two clays with the highest abilities in  
the swelling and thus to reach to highest amount of re-  
lease in the drug delivery systems.  
[3] Jämstorp Berg, E. Diffusion controlled drug release  
from slurry formed, porous, organic and clay-derived  
pellets (Doctoral dissertation, Acta Universitatis  
Upsaliensis).  
[4] Nesrinne, S., Djamel, A. Synthesis, characterization  
and rheological behavior of pH sensitive poly  
(acrylamide-co-acrylic acid) hydrogels. Arabian  
Journal of Chemistry, 2017. 10(4): p. 539-547.  
[5] Duncan, J., MacDonald, JF., Hanna, JV., Shirosaki,  
Y., Hayakawa, S., Osaka, A., Skakle, JM., Gibson,  
IR. The role of the chemical composition of monetite  
on the synthesis and properties of α-tricalcium phos-  
phate. Materials Science and Engineering: C,  
2014.1(34): p.123-129.  
[6] Dragan, ES., Lazar, MM., Dinu, MV., Doroftei, F.  
Macroporous composite IPN hydrogels based on  
poly (acrylamide) and chitosan with tuned swelling  
and sorption of cationic dyes. Chemical engineering  
journal, 2012. 15(204): p. 198-209.  
Conflicts of interest  
The authors have no conflicts of interest.  
[
[
[
7] Dinu, MV., Perju, MM., Drăgan, ES. Composite IPN  
ionic hydrogels based on polyacrylamide and dextran  
sulfate. Reactive and Functional Polymers, 2011.  
Ethical issue  
Authors are aware of, and have complied with the  
best practice in publication ethics specifically with regard  
to authorship, dual submission, and manipulation of fig-  
ures, competing interests and compliance with policies  
on research ethics. Authors have adhered to publication  
requirements that this submitted work is original and has  
not been published elsewhere in any form of language.  
7
1(8): p. 881-890.  
8] Guiseppi-Elie, A., Koch, L., Finley, SH., Wnek, GE.  
The effect of temperature on the impedimetric re-  
sponse of bioreceptor hosting hydrogels. Biosensors  
and Bioelectronics, 2011. 26(5): p. 2275-2280.  
9] Kevadiya, BD., Pawar, RR., Rajkumar, S., Jog, R.,  
Baravalia, YK., Jivrajani, H., Chotai, N., Sheth, NR.,  
Bajaj, HC. pH responsive MMT/acrylamide super  
composite hydrogel: characterization, anticancer  
drug reservoir and controlled release property.  
Biochem Biophys, 2013. 1(3):p. 43-60.  
Competing interests  
The authors wish to declare that there is no conflict  
of interest in this research work.  
[
[
10] Leal, D., De Borggraeve, W., Encinas, MV., Matsu-  
hiro, B., Müller, R. Preparation and characterization  
of hydrogels based on homopolymeric fractions of  
sodium alginate and PNIPAAm. Carbohydrate poly-  
mers, 2013. 92(1):p.157-166.  
Authors’ contribution  
All the authors of this study have completely  
contributed to the data collection, data analyses and  
manuscript writing.  
11] Mittal, H., Jindal, R., Kaith, BS., Maity, A., Ray,  
SS. Flocculation and adsorption properties of biode-  
217  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 211-219  
gradable gum-ghatti-grafted poly (acrylamide-co-  
methacrylic acid) hydrogels. Carbohydrate polymers,  
of Inorganic and Organometallic Polymers and  
Materials, 2017. 27(5):p.1439-1449.  
2
015. 22(115): p.617-628.  
[26] Yang, X., Guo, L., Fan, Y., Zhang, X. Preparation  
and characterization of macromolecule cross-linked  
collagen hydrogels for chondrocyte delivery. Interna-  
tional journal of biological macromolecules, 2013.  
1(61): p.487-493.  
[
[
[
12] Singh, B., Sharma, V. Influence of polymer network  
parameters of tragacanth gum-based pH responsive  
hydrogels on drug delivery. Carbohydrate polymers,  
2
014. 30(101): p.928-940.  
13] Huh, HW., Zhao, L., Kim, SY. Biomineralized bio-  
mimetic organic/inorganic hybrid hydrogels based on  
hyaluronic acid and poloxamer. Carbohydrate poly-  
mers, 2015. 1(126): p.130-140.  
14] Samanta, HS., Ray, SK. Synthesis, characterization,  
swelling and drug release behavior of semi-  
interpenetrating network hydrogels of sodium  
alginate and polyacrylamide. Carbohydrate polymers,  
[27] Akalp, U., Chu, S., Skaalure, SC., Bryant, SJ.,  
Doostan, A., Vernerey, FJ. Determination of the pol-  
ymer-solvent interaction parameter for PEG hydro-  
gels in water: Application of a self learning algo-  
rithm. Polymer, 2015. 1(66):p.135-147.  
[28] Sabbagh, F., Muhamad, II., Nazari, Z., Mobini, P.,  
Khatir, NM. Investigation of acyclovir-loaded,  
acrylamide-based hydrogels for potential use as vag-  
inal ring. Materials Today Communications, 2018.  
1(16): p.274-280.  
[29] Sirousazar, M., Kokabi, M., Hassan, ZM. In vivo  
and cytotoxic assays of a poly (vinyl alcohol)/clay  
nanocomposite hydrogel wound dressing. Journal of  
Biomaterials Science, Polymer Edition. 2011.  
22(8):p.1023-1033.  
[30] Bostan, MS., Senol, M., Cig, T., Peker, I., Goren,  
AC., Ozturk, T., Eroglu, MS. Controlled release of 5-  
aminosalicylicacid from chitosan based pH and tem-  
perature sensitive hydrogels. International journal of  
biological macromolecules, 2013. 1(52):p. 177-183.  
[31] Sabbagh, F., Muhamad, II., Nazari, Z., Mobini, P.,  
Taraghdari, SB. From formulation of acrylamide-  
based hydrogels to their optimization for drug release  
using response surface methodology. Materials Sci-  
ence and Engineering: C, 2018. 1(92): p. 20-25.  
[32] Jensen, AT., Neto, WS., Ferreira, GR., Glenn, AF.,  
Gambetta, R., Gonçalves, SB., Valadares, LF., Ma-  
chado, F. Synthesis of polymer/inorganic hybrids  
through heterophase polymerizations. InRecent De-  
velopments in Polymer Macro, Micro and Nano  
Blends, 2017. 1 (p. 207-235). Woodhead Publishing.  
[33] van Keulen, H., Asseng, S. Simulation models as  
tools for crop management. Encyclopedia of Sustain-  
ability Science and Technology. 2018. p.1-20.  
[34] García, MC., Uberman, PM. Nanohybrid Filler-  
Based Drug-Delivery System. InNanocarriers for  
Drug Delivery, 2019. 1 (p. 43-79). Elsevier.  
[35] Popa, L., Ghica, MV., Dinu-Pîrvu, CE. Hydrogels-  
Smart Materials for Biomedical Applications.  
[36] Aguilar, MR., San, Román J. Introduction to smart  
polymers and their applications. In Smart polymers  
and their applications, 2019. 1 (p. 1-11). Woodhead  
Publishing.  
[37] Sabbagh, F., Muhamad, II. Production of poly-  
hydroxyalkanoate as secondary metabolite with main  
focus on sustainable energy. Renewable and Sustain-  
able Energy Reviews, 2017. 1(72):p.95-104.  
[38] Batista, AH., Rate, AW., Gilkes, RJ., Saunders, M.,  
Dodd, A. Scanning and transmission analytical elec-  
tron microscopy (STEM-EDX) can identify structur-  
al forms of lead by mapping of clay crystals, Ge-  
oderma 2018 15(310):p.191-200.  
2
014. 2(99): p. 666-678.  
[
[
[
15] Zhu, Y., Jiang, H., Ye, SH., Yoshizumi, T., Wagner,  
WR. Tailoring the degradation rates of thermally re-  
sponsive hydrogels designed for soft tissue injection  
by varying the autocatalytic potential. Biomaterials,  
2
015. 1(53): p.484-493.  
16] Dragan, ES., Perju, MM., Dinu, MV. Preparation  
and characterization of IPN composite hydrogels  
based on polyacrylamide and chitosan and their in-  
teraction with ionic dyes. Carbohydrate polymers,  
2
012. 88(1): p.270-281.  
17] Muhamad, II., Sabbagh, F., A Karim, NA. Polyhy-  
droxyalkanoates: a valuable secondary metabolite  
produced in microorganisms and plants. Plant Sec-  
ondary Metabolites, Volume Three: Their Roles in  
Stress Eco-Physiology, 2017. 6: p. 185.  
18] Ohira, T., Yamamoto, O. Correlation between anti-  
bacterial activity and crystallite size on ceramics.  
Chemical engineering science, 2012. 68(1): p. 355-  
[
[
3
61.  
19] Kenne, L., Gohil, S., Nilsson, EM., Karlsson, A.,  
Ericsson, D., Kenne, AH., Nord, LI. Modification  
and cross-linking parameters in hyaluronic acid hy-  
drogelsdefinitions and analytical methods. Carbo-  
hydrate polymers, 2013. 91(1): p. 410-418.  
[
20] Dash, R., Foston, M., Ragauskas, AJ. Improving the  
mechanical and thermal properties of gelatin  
hydrogels cross-linked by cellulose nanowhiskers.  
Carbohydrate polymers, 2013. 91(2): p.638-645.  
21] Rani, M., Agarwal, A., Maharana, T., Negi, YS. A  
comparative study for interpenetrating polymeric  
network (IPN) of chitosan-amino acid beads for  
controlled drug release. African Journal of Pharmacy  
and Pharmacology, 2010. 4(2): p.035-054.  
[
[
[
[
22] Shalviri, A., Liu, Q., Abdekhodaie, MJ., Wu, XY.  
Novel modified starchxanthan gum hydrogels for  
controlled drug delivery: Synthesis and characteriza-  
tion. Carbohydrate Polymers, 2010. 79(4): p.898-  
9
07.  
23] Sabbagh, F., Muhamad, II. Acrylamide-based hy-  
drogel drug delivery systems: release of acyclovir  
from MgO nanocomposite hydrogel. Journal of the  
Taiwan Institute of Chemical Engineers, 2017.  
1
(72):p.182-193.  
24] Santhanam, A., Sasidharan, S. Microbial production  
of polyhydroxy alkanotes (PHA) from Alcaligens  
spp. and Pseudomonas oleovorans using different  
carbon sources. African Journal of Biotechnology,  
[39] Sankaran, S., Becker, J., Wittmann, C., del Campo,  
A. Optoregulated drug release from an engineered  
living hydrogel.  
[40] Puspitasari, T., Raja, KM., Pangerteni, DS., Patriati,  
A., Putra, EG. Structural organization of poly (vinyl  
alcohol) hydrogels obtained by freezing/thawing and  
2
010.9(21):p.3144-3150.  
[
25] Sabbagh, F., Muhamad, II. Physical and chemical  
characterisation of acrylamide-based hydrogels,  
Aam, Aam/NaCMC and Aam/NaCMC/MgO. Journal  
γ-irradiation processes:  
A
small-angle neutron  
218  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 211-219  
scattering (SANS) study. Procedia Chemistry, 2012.  
erties, Synthesis, and Applications. In Smart Poly-  
mers and their Applications (p. 279-321). Woo  
1
(4):p.186-193.  
[
41] Montero, A., Valencia, L., Corrales, R., Jorcano, J.  
L., & Velasco, D. (2019). Smart Polymer Gels: Prop-  
dhead Publishing.  
219