Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 220-228  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Quantitative Oil Source Fingerprinting and  
Diagnostic Ratios: Application for  
Identification of Soil Residual Hydrocarbon  
(SRH) in Waste Dump Areas within Oil Well  
Clusters  
Ayobami Omozemoje Aigberua  
*
Received: 20/02/2019  
Accepted: 29/04/2019  
Published: 01/06/2019  
Department of Chemical Sciences, Faculty of Science, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria.  
Abstract  
The elucidation of soil residual hydrocarbon (SRH) in oil-impacted dumpsite soils is aimed at distinguishing the  
principal source (municipal waste dumpsite or oil well-head clusters) of petroleum and polycyclic aromatic hydrocarbons in  
the mangrove environment receiving mineral oil loading form mixed anthropogenic influences. Chemical fingerprints of soil  
specimen were obtained on determination by gas chromatographic  flame ionization detection (GC-FID) technique using an  
HP 5890 series II instrument. Flt/Pyr ratios revealed the presence of petrogenic hydrocarbons while carbon preference index  
(CPI) showed soils composed mainly of degraded material and fossil fuels, apart from location E-2 which was loaded with  
non-biodegraded biological materials using Ph/nC18 data. Elucidation of Pr/nC17 ratios showed that the retention of non-  
biodegraded hydrocarbon was decimated at locations E-4 and E-6 due to reduced microbial degradation in comparison to the  
other field areas. Overall, the soil was insignificantly impacted by terrestrial sources, as greater magnitude came from  
surrounding oil well clusters. Therefore, soil toxicants are likely to be bio-accumulated in crops growing along proximate  
farmlands, especially nypa palm fruits which are commonly consumed. It is imperative to avoid ingesting herbage or other  
nutriments from this area until residual oil seepages are effectively controlled and hydrocarbons have been monitored for  
substantial degradation.  
Keywords: Soil residual hydrocarbon, Carbon preference index, Total petroleum hydrocarbon, Polycyclic aromatic  
hydrocarbon, Eagle Island  
1
water (4). Correlations have been established between  
1
Introduction  
PAH levels and anthropogenic input into waste dumps.  
PAH levels in waste dumps were often higher than in  
pristine soils. Also, levels of PAHs have been reported to  
exceed 0.02 g/g as stipulated in the guidelines of  
Canadian Environmental Quality (5).  
The release of petroleum and aromatic hydrocarbons  
into the immediate and surrounding environment of the  
Eagle Island is not limited to the anthropogenic inputs  
emanating from waste dumps alone. The area is  
characterized by the presence of crude oil equipment  
Like most urban cities across Nigeria, Port Harcourt  
metropolis is characterized by series of open waste  
dumpsites. These dumpsites have been known to  
contaminate surface waters that are within close  
proximity (1). They have also been known to moderately  
contaminate air mainly from fossil fuel burning and  
vehicular exhausts, especially around industrial zones  
(
2). Soils within the vicinity of auto-mechanic work areas  
depicted spiked levels of petroleum hydrocarbons in  
relation to those from cultivated farmlands, thereby  
suggesting direct impact of anthropic releases (3). Most  
dumpsites within Port Harcourt have been observed to  
consist of discarded household electronics, plastic and  
food waste. Mechanic waste dumps have been reported  
(such as oil well heads). In the event of equipment failure  
or seepages from worn-out metal joints, the proximity of  
the study area to nearby creeks can make the soil and  
aquatic resources vulnerable to crude oil contamination,  
creeks receives domestic, municipal and industrial wastes  
due to human activities from settlements, commerce and  
industries within its vicinity, this in turn alters soil  
chemistry and decimates plants population (6-8). Crude  
oil is a complex mixture containing several hydrocarbon  
compounds (such as aliphatic, volatile and semi-volatile  
aromatics, as well as the organometallic heavy metal  
complexes) which can be fractionally separated into sub-  
products such as: kerosene, jet and diesel fuel, heating  
to represent  
a
potential source of hydrocarbon  
contamination of soils, sediment, surface and ground  
Correspoinding author: Ayobami Omozemoje  
Aigberua, Department of Chemical Sciences, Faculty of  
Science, Niger Delta University, Wilberforce Island,  
Bayelsa State, Nigeria. E-mail:ozedee101@gmail.com.  
Contact: +234 8032765181.  
2
20  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 220-228  
oil, etc. Crude oil transportation lines linking oil well  
heads are susceptible to acts of vandalism or self-rupture.  
The presence of hydrocarbon in soil, whether from  
municipal or oil wastes can result in variation of  
microbial population, negative physicochemical changes  
in the environment, release of cancer-causing aromatic  
complexes, consequent loss of food, herbage, water and  
other resources (6-14).  
2
Materials and Methods  
2
.1 Study area  
Eagle Island is located within the Rumueme -  
Oroakwo axis of Port Harcourt. Its geographical  
coordinates lie within the different latitudes and  
longitudes: E1 (N4º 47.223’, E6º 58.134’), E2 (N4º  
4
(
5
7.223’, E6º 58.134’), E3 (N4º 47.327’, E6º 58.573’), E4  
N4º 47.326’, E6º 58.574’), E5 (N4º 47.327’, E6º  
8.574’), E6-control (N4º 47.204’, E6º 58.336’) (Plate  
Total petroleum hydrocarbons (TPHs) in the form of  
alkanes and isoprenoids (nC8 to nC ) can be used to  
40  
1). The waste dump environment is located within the  
mangrove/nypa palm forest zones of Eagle Island in Port  
Harcourt city local government area. It is bound by  
surrounding creeks and river tributaries. The common  
occupation of settlement dwellers within the area is fish  
farming and crop production. The soil environment is  
susceptible to hydrocarbon (petrogenic, pyrogenic or  
biogenic) contamination emanating from either or both of  
the municipal waste dumps and oil well heads.  
trace the source of an oil spill (whether emanating from  
source rock or secondary anthropogenic sources) (15-17).  
Similarly, polycyclic aromatic hydrocarbons (PAHs) can  
be classified as petrogenic (petroleum) or pyrogenic  
(
combustion) origins; they can be further classified as  
resulting from natural and anthropogenic sources (11, 18-  
0). Examples of anthropogenic sources of PAHs in the  
2
environment include: burning of refuse waste dumps (5),  
burnt remnants and soot samples (21), indiscriminate  
deposition of mechanic wastes (4), urbanized municipal  
waste effluents (19) and from oil spillage (11, 22). PAHs  
tend to move across soil regions while being slow to  
biodegradation, especially by indigenous microorganisms  
2
.2 Field Sampling and pre-treatment  
Five (5) samples of soil were randomly collected  
from areas most visibly impacted by waste dumps at  
depths of 0  15 cm using soil auger. One (1) was  
collected about 1 meter away from impacted area (as  
control). However, the field area was within close  
proximity of oil equipment and well heads. Samples were  
transferred into pre-cleaned aluminum foil packs and  
preserved with ice in cold-storage box prior to laboratory  
delivery.  
(
20). On the other hand, alkanes and isoprenoids showing  
nC8 to nC40 petroleum hydrocarbon compounds have  
been used as diagnostic tools for the identification of oil  
sources in soil (16), ambient air (23), crude oil (15, 17,  
2
4) and shellfish (25), etc.  
Oil source fingerprinting is an environmental  
forensics technique that uses analytical chemistry to  
determine the origin of oil residues in environmental  
samples by comparing to a known or suspected source of  
oil (22). Even though PAHs have been major constituents  
of hydrocarbon contaminated environmental media, its  
distribution and source identification has been carried out  
by the application of diagnostic PAH ratios (11, 18-20,  
2
.3 Statistical analysis  
In order to determine field sample areas of close  
association (or mutual dependence) and those of mutual  
independence, the hierarchical cluster analysis was  
carried out using Euclidean distance based on average  
linkage between groups. Only one variable (sample  
location) across the waste dump soil was statistically  
evaluated. Clustering techniques are used to separate  
objects related with a specific cluster; such objects  
should be quite alike (or homogenous). Hydrocarbons of  
mutual dependence show similarities or closeness in  
features while those of mutual independence mirror  
diverging attributes. Principal component analysis (PCA)  
is a multivariate analysis technique used in transforming  
original sample composition data into new, smaller and  
uncorrelated variables called principal components. The  
hypothesis is based on expressing the total variance of  
the variables with two factors, accounting for the  
maximum variance of the variables (17, 29).  
2
6) which is a fingerprinting technique used for the type  
and source identification of hydrocarbons in the  
environment. For the alkanes and isoprenoids, typical  
diagnostic ratios are: pristane/phytane (Pr/Ph),  
pristane/nC17  
(Pr/nC ),  
17  
phytane/nC18  
(Ph/nC ),  
18  
nC /nC , carbon preference index (CPI), (Pr  
+
2
5
18  
nC )/(Ph + nC ), have been applied by (15-17, 24-25)  
1
7
18  
to determine the extent of biodegradation (Ph/nC ), level  
1
8
of oil maturation (CPI), determination of oil source  
Pr/Ph), etc. Whereas, PAH ratios such as:  
phenanthrene/anthracene (Ph/anth), benzo (a)  
anthracene/chrysene (BaA/Ch) and fluoranthene/pyrene  
Flt/Pyr) have been applied by (17), other mixed PAH  
(
(
isomeric ratios such as: (Ant/Ant + Ph), (Flt/Flt + Pyr),  
BaA/(BaA + Ch) and benzo (a) pyrene/(benzo (a) pyrene  
2
.4 Sample Preparation, Quality Control Procedure and  
+
chrysene) (BaP/BaP + Ch) have been used to  
Analytical Data Validation  
o
distinguish between petrogenic and pyrogenic sources  
Soil samples were refrigerated at 4 C and analyzed  
within the first 3 days from time of sample collection.  
Glass wares were acid-washed, rinsed under tap water  
and, further rinsed with distilled water. Washed glass  
wares were oven-dried at 105 C for 30 minutes and  
cooled in a desiccator.  
(
11, 18, 27-28).  
The need to specify the prevalent source of  
hydrocarbons within the Eagle Island environment was  
necessary, this is due to the presence of various waste  
streams (primarily consisting of waste dumps and oil  
well-heads) which represent human burden within the  
area of study. The diagnosis of aliphatic and aromatic  
hydrocarbon sources is concurrently aimed at identifying  
the nature of residual mineral oil and its effect on  
biodegradability over time. Also, the scarcity of literature  
in chemical fingerprinting of soils receiving multiple  
waste streams such as is typical of this study location  
makes this work quite unique.  
o
2
.4.1 TPH extraction  
Exactly 5 grams wet-weight soil was mixed with two  
spatulas-full of anhydrous Sodium Sulphate (as drying  
agent), depending on the moisture level of the sample.  
Also, a volatile surrogate (2-bromobenzofluoride) was  
mixed with sample prior to extraction. A 16 hour soxhlet  
extraction was applied for TPH extraction using 95% n-  
hexane solvent (11).  
A
1:1 mix ratio of n-  
2
21  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 220-228  
hexane/dichloromethane solvents was used to extract  
PAHs by the cold-extraction method adopted by (11, 18).  
Gas chromatography with flame ionization detection was  
the method of analysis. Helium gas (at flow rate of 14.81  
psi) was streamed as mobile phase, while an Agilent HP-  
less mode) which are often observed in trace amounts.  
When the target analyte concentrations (in this case,  
volatile or semi-volatile aromatics) are so low that  
splitting the sample in the injection port will not allow an  
adequate signal from the detector, the spit-less mode is  
usually a preferred option.  
5
GC capillary column, with 100% 1,3-dimethylsiloxane  
stationary phase material, length (30 m), internal  
diameter (0.320 mm), and film diameter (0.25 µm) with  
temperature range (-60 C to 325 C), was used for the  
separation of vapor constituents of different hydrocarbon  
fractions. Hydrogen and air (at flow rates of 30 psi)  
served as ignition gases (10).  
2.4.3 Instrument Calibration  
o
o
A three (3) point linear calibration curve was  
prepared from working solutions of 25, 50 and 250 µg/ml  
stock of hydrocarbon window defining standard solution  
of TPH (500 µg/ml). Another series of working solutions  
(25, 50 and 250 µg/ml) were prepared from 1,000 µg/ml  
2
.4.2 Instrument Conditions  
Table 1 shows the instrument conditions. The split  
of the proposed DEP(MA)  PAH mix and used for  
instrument calibration of the polycyclic aromatic  
components. All standard solutions were purchased from  
AccuStandard-USA. The aliphatic and aromatic  
hydrocarbons were determined with an HP5890 series II  
Gas chromatograph-Flame ionization detector (GC-FID),  
manufactured in USA (10).  
and split-less injection techniques were used for this  
analysis. Hence, the samples were introduced into the  
heated injection port as solvent-dissolved extracts. The  
inlet vent was purged at a split ratio of 10:1 for aliphatic  
hydrocarbons. This is because of their typically high  
concentrations when compared to the aromatics (split-  
Plate 1: Map of study area  
Table 1: GC-FID operating conditions  
TPH  
Parameters  
Initial oven temperature ( C)  
Final oven temperature ( C)  
PAH  
65  
290  
o
50  
310  
o
Column flow rate (ml/min)  
0.8  
275  
320  
1.2  
275  
310  
o
Injector temperature ( C)  
o
Detector temperature ( C)  
Inlet condition  
Split ratio (10:1)  
Split-less  
2
22  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 220-228  
2
.4.4 Instrument Blank (IB)  
Immediately after instrument calibration, method  
0.50 ml respectively, into sample vials. Each volume was  
made up to the 1.0 ml mark using a 500 µl micro syringe.  
PAH standards were prepared in a similar manner.  
blanks were analyzed as quality control at the start and  
end of run of each fractional species. A solvent blank  
was injected into the GC system using the injection  
solvent (95% n-hexane) to establish the chromatographic  
baseline and to ensure its suitability. The resulting TPH  
and PAH concentrations for the IB were below the  
reported detection limit (0.01 µg/g). The two IB  
concentrations generated at the start and end of sample  
analysis were averaged and subtracted from  
corresponding sample concentrations.  
3
Results and Discussion  
3
.1 Hydrocarbon source diagnostics in soil environment  
Table 2 shows the levels of petroleum (aliphatic) and  
polycyclic (aromatic) hydrocarbons in soil, the amounts  
are compared against the regulatory limit of DPR. Apart  
from soils of E6 (control) all other field areas depicted  
TPH values exceeding stipulated limit. On the other  
hand, PAHs were least in the control area even though  
samples of E1, E2 and E3 were mostly impacted with  
residual oil. Results reflect a spike in contaminant levels  
of oil-contaminated soils in relation to the less  
contaminated control zones. This corroborated the  
findings of (10) where oil spill affected soils showed  
increased elevation in hydrocarbon contamination as  
against soils from proximate farmlands.  
The level of total petroleum hydrocarbon in soil  
ranged from 26.57 to 348.08 mg/kg. Reported values  
were compared against the DPR limit of 50 mg/kg. Apart  
from samples of control location E-6 that depicted the  
least concentration (which was within DPR limit),  
residual petroleum hydrocarbon exceeded regulatory  
comparison for all other sample locations (E-1 to E-5)  
2
.4.5 Calibration Authentication Standard (CAS)  
Mid-concentration standards for TPH (100 µg/ml)  
and PAH (200 µg/ml) prepared from stock solution was  
analyzed before and after sample injection. The average  
concentrations, TPH (89.7 µg/ml) and PAH (192.5  
µg/ml) obtained was within the acceptance criteria of ±  
2
0% of target value.  
2
.4.6 Sample Duplicates  
A second aliquot of one (1) of the six (6) test soil  
samples was weighed for each of the TPH/PAH  
extraction as “sample check”. The duplicate sample was  
subjected to all sample preparation steps applied earlier.  
(
Table 2). Similarly, the least concentration of total  
2
.4.7 Surrogate Compounds  
volatile surrogate  
polycyclic aromatic hydrocarbon was observed for the  
control location. Overall, total PAHs ranged from 0.162  
to 1.581 mg/kg. Samples of point E-4 and E-5 also  
depicted values slightly below DPR limit for PAHs in a  
standard soil (1.0 mg/kg) [30]. For this study, samples  
were collected during the dry season month of  
November, 2018. Results obtained compared with (11)  
that reported mean values of 148.9 mg/kg total  
hydrocarbon content (THC) and 0.99 mg/kg PAHs for oil  
spill contaminated soils of Rumuolukwu during the  
month of November, 2013. Results of the different  
isomeric ratios applied for TPH and PAH across the  
different field locations are recorded in Table 3.  
A
compound  
(2-  
bromobenzofluoride) was added to each sample in 95%  
n-hexane solution prior to extraction. Percentage  
recovery was calculated as 94.2%.  
2
.5 Reagents and Chemicals  
The following analytical grade reagents and  
chemicals were used: 95% n-hexane (Riedel-de Haen,  
Germany), dichloromethane (BDH, Poole-England), 99%  
sodium sulphate anhydrous, AR (JHD Guangdong  
Guanghua Sci-Tech Co., Ltd.). Working solutions of 25,  
5
0 and 250 mg/l concentrations were prepared from a  
TPH stock solution of 500 mg/l in n-hexane. This was  
done by transferring aliquot volumes of 0.05, 0.10 and  
Table 2: Concentration of total petroleum and polycyclic aromatic hydrocarbons in soil  
Total TPHs  
mg/kg)  
Sample Identity  
Total PAHs  
(mg/kg)  
1.174  
1.581  
1.039  
0.744  
0.704  
0.162  
1
(
E-1  
E-2  
E-3  
E-4  
E-5  
E-6  
234.06  
348.08  
208.28  
132.60  
123.50  
26.57  
50  
DPR Limit for standard soil  
Table 3: Calculated diagnostic ratios of aliphatic and aromatic hydrocarbon fractions in soil  
E-1 E-2 E-3 E-4 E-5  
Diagnostic Ratios  
Pr/Ph  
Pr/nC17  
Ph/nC18  
nC25/nC18  
CPI  
E-6  
0.81  
1.26  
2.21  
0.40  
1.16  
1.00  
0.46  
29.66  
20.87  
2.45  
1.54  
0.93  
8.57  
2.74  
1.95  
2.81  
0.95  
0.04  
0.91  
0.68  
1.71  
2.06  
1.29  
1.42  
3.16  
1.01  
2.33  
2.11  
4.70  
1.44  
3.43  
0.79  
1.51  
5.64  
0.91  
0.86  
0.35  
0.62  
4.33  
9.11  
0.67  
0.80  
1.26  
3.97  
2.82  
0.92  
3.82  
3.48  
55.80  
1.33  
0.91  
1.29  
0.08  
0.16  
(Pr+nC17)/(Ph+nC18)  
Ph/anth  
BaA/Ch  
Flt/Pyr  
2
23  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 220-228  
Figures: (1) TPH fingerprint of location E-2 (point of highest CPI and lowest oil maturation), (2) TPH fingerprint of location E-5 (point of  
lowest CPI and highest oil maturation), (3) PAH fingerprint of location E-1 (point of highest Flt/Pyr ratio and most petrogenic source), (4)  
PAH fingerprint of location E-2 (point of lowest Flt/Pyr ratio and least petrogenic source).  
The diagnostic ratios depicted the following ranges:  
Pr/Ph (0.35 - 2.45); Pr/nC17 (0.62 - 4.70); Ph/nC18 (0.93 -  
in China. Only soil from location E-2 reflected non-  
biodegradation as Ph/nC18 was observed below 1.0.  
All other sample locations suggested that samples  
were being biodegraded. Ph/nC18 ratio from this study  
reportedly exceeded levels reported by (17) where values  
ranged from 0.14 to 0.99 for Agbada-1 oil spill impacted  
sites in the Niger Delta. The nC /nC ratio revealed the  
4
.33); nC /nC (0.40 - 55.80); CPI (0.67 - 2.74); (Pr +  
25 18  
nC )/(Ph + nC ) (0.80 - 1.95); Ph/anth (0.46 - 5.64);  
1
7
18  
BaA/Ch (0.08 - 29.66); Flt/Pyr (0.04 - 20.87) (Table 3).  
Some light hydrocarbon fractions (C - C ) (Figures 1 -  
8
10  
5
) were not observed probably because of evaporative  
2
5
18  
loss during sample processing and weathering of oil spill  
samples after the incident (15, 17).  
The chemical composition of aliphatic components  
had not undergone significant alteration. The low Pr/Ph  
ratio for the soils at locations E-1 (0.81), E-3 (0.91), E-5  
shortest weathering process for soil E-1 (0.40) and the  
longest for control soil E-6 (55.80), while (E-3 (2.06) &  
E-4(3.43)) with (E-2 (8.57) & E-5 (9.11)) showed similar  
weathering processes. Results from this study partially  
agreed with (17) where nC /nC ratio reportedly ranged  
2
5
18  
(0.35) and E-6 (0.92) suggests that the residual oil in soil  
from 0.93 to 3.52.  
is not derived from source rock with insignificant  
terrestrial contribution. On the other hand, the high Pr/Ph  
ratio for soils at locations E-2 (2.45) and E-4 (2.11)  
reflects significant terrestrial contribution and is an  
indication that the source of residual oil in soil is crude  
oil or petroleum; this may have emanated due to the  
presence of oil well heads in the vicinity of the waste  
dumpsite. [31] revealed Pr/Ph ratios of crude oil  
contaminated soils to decrease from 2.358 to 1.626 on  
amendment with oil degrading pseudomonas consortium.  
Also, (15) recorded Pr/Ph ratios to depict ranges from  
Apart from location E-2 that depicted oils of low  
maturation with CPI value of 2.74, all other sample  
locations depicted CPI<1.5 thereby reflecting oils of high  
maturation. Crude oils from Umutu/Bomu fields in the  
Niger Delta had been reported to be of high maturation  
levels even though they lacked a specific maturity trend  
(15). Similarly, (17) had reported oils of high maturation  
in soils of Agbada-1 oil spill impacted sites in the Niger  
Delta. Also, (33) had reported CPI>5 to reflect  
significant contributions due to recent biological material  
while CPI≈1 reflected significant contributions from  
degraded material and fossil fuel compounds.  
Consequently, residual oil in soils of location E-2 with  
CPI 2.74 reflects the presence of biological materials  
most likely from municipal waste dump source while  
other locations may reflect a mixed combination of  
degraded biological material and fossil fuels.  
8
.78 to 32.27 for crude oils from Umutu/Bomu fields in  
the Niger Delta.  
The application of the Pr/nC17 ratio in this study  
reveals that soils from locations E-4 (4.70) and E-6  
(
3.80) are depicted by weak microbial activity and  
tendency for a slower rate of bio-degradation while all  
other sampling points may require relatively less time to  
be decomposed. (32) applied pristine isomerization ratio,  
reporting values between 0.42 and 0.97 to reflect  
increased thermal maturity in coal rocks of river Junggar  
Flt/Pyr ratio greater than unity (>1) is indicative of a  
petrogenic source of PAHs (11, 15, 17). Similar to the  
CPI ratios, location E-2 depicted the lowest Flt/Pyr ratio  
and the least petrogenicity with value of 0.04. Other  
points of low petrogenic inputs were locations E-4 (0.86)  
2
24  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 220-228  
and E-6 (0.16). Location E-1 (20.87) represented the area  
of most petrogenic contribution while E-3 (2.33) and E-5  
PAH sources for oil contaminated soils of Agbada-1 oil  
spill sites. Oil impacted soils of Rumuolukwu  
community had earlier been reported to consist  
predominantly of pyrogenic hydrocarbons (11).  
(2.82) also indicated petrogenic sources of residual PAHs  
in soil. Results from this study partially compares to (17)  
with Flt/Pyr ratio (>1) and an indication of petrogenic  
Figures: (5) Hierarchical dendograms of sample locations, (6) Hierarchical dendograms of diagnostic TPH/PAH ratios.  
2
25  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 220-228  
Statistical analysis like the hierarchical cluster  
analysis (HCA) carried out across the geospatially  
varying sample locations revealed the closest association  
or mutual dependence for samples of locations E-3 and  
E-4. Similarly, locations E-2 and E-5 showed close  
association, while samples of locations E-1 and E-6  
reflected the greatest mutual independence, hence,  
showing no similarities with other sampling points  
recommendation for future studies and regulation for  
soils receiving hydrocarbon waste from multiple point  
sources. PCA relationship in this study is similar to (17)  
where there was observed relationship between locations  
PC1 and PC2, with only point PC3 depicting divergent  
characteristics with TPH isomeric ratios.  
4
Conclusion  
Typical of the study area is the availability of mixed  
(Figure 5). The close interlink between most of the  
sampling points is a reflection of strong similarities  
between sources of residual oil in soils of the  
environment. Sample locations belonging to the same  
cluster or group are likely to have originated from a  
common source. The high level of similarity between  
interlinked sample locations is strong conformation of a  
common source of spilled oil and residual oil from waste  
dumps. In conclusion, both the aliphatic and aromatic  
hydrocarbons in the study area depict an anthropogenic  
organic source which may have emanated from the  
numerous human influences within the environment.  
Similarly, (17) had reported a common source for spilled  
oil in soils of Agbada-1 oil impacted field area, high  
levels of similarity (98%) were observed from results of  
cluster analysis. HCA of TPH and PAH diagnostic ratios  
revealed close associations for the following groups of  
sources of anthropogenic inputs. Results of chemical  
fingerprinting for soils of the area revealed an equal  
amount of low and high petrogenic hydrocarbons based  
on Flt/Pyr ratio. CPI revealed soils of location E-2 to be  
composed mainly of biological materials while other  
sample points reflected soils with residual oil resulting  
from degraded material and fossil fuel sources.  
Consequently, all other sample locations reflected  
biodegraded soils apart from location E-2 which  
composed mainly of non-biodegraded hydrocarbons  
based on Ph/nC18 ratio. Apart from soils of locations E-4  
and E-6 (control) which reflected Pr/nC17 ratios greater  
than 1.0 indicating poor microbial utilization of mineral  
oil, all other areas showed maturation of organic  
material. Generally, soil residual hydrocarbons (SRH)  
depicted insignificant terrestrial contribution with higher  
levels emanating from crude oil or petroleum sources.  
The HCA applied to locations of sample collection  
showed close interlinks and strong associations except  
for location E-6; this indicates a common source of spilt  
oil. Using PCA, discrete locations of the sites indicated  
dissimilarities in the source diagnostic ratios applied due  
to variability in hydrocarbon sources across the study  
site. The numerous anthropogenic influences such as  
waste dumps, oil wells, amongst others are responsible  
for the presence of oil in soil, but oil seepages are most  
liable. This may impact negatively on nypa palm fruits  
which are found growing in this area and commonly  
consumed by the indigenous inhabitants who farm along  
the near coastal stretch of the creek.  
variables (Pr/Ph and (Pr+nC )/(Ph+nC )), (Pr/nC and  
1
7
18  
17  
Ph/anth) and (BaA/Ch and Flt/Pyr) while the variable of  
highest mutual independence was (nC /nC and CPI)  
2
5
18  
(Figure 6).  
3
2
1
2
4
6
8
0
8
CP( PrP r IP+ hn C17)/(Ph+nC18)  
Ph/anth  
Pr/nC17  
Ph/nC18  
E4  
E E2 3  
E5  
nC25/nC18 E6  
-
Flt/Pyr  
Acknowledgement  
-
-
-
-
16  
24  
32  
40  
The author acknowledges the immense technical  
support of Anal Concept Laboratories, Port Harcourt,  
Nigeria.  
E1  
BaA/Ch  
Competing interests  
-
64 -48 -32 -16  
0
16  
32  
48  
64  
The author declares that there is no conflict of  
interest that would prejudice the impartiality of this  
scientific work.  
Component 1  
Figure 7: Scatter diagram principal component analysis  
The study also found that variables such as Ph/anth,  
Authors Profile  
Pr/nC , Ph/nC , Pr/Ph, (Pr+nC )/(Ph+nC ) and CPI  
1
7
18  
17  
18  
Ayobami Omozemoje Aigberua is a Ph.D research  
student of the department of chemical sciences in the  
Niger Delta University, Wilberforce Island, Amassoma,  
Bayelsa State, Nigeria. His research interests extend  
across environmental topics that are relevant within sub-  
Saharan Africa, while partly sharing the passion to  
research food and herbal drugs toxicity. He is also an  
environmental laboratory expert, with over 12 years of  
experience carrying out operations and maintenance of  
specialized laboratory equipment such as Flame atomic  
absorption spectrophotometer, Gas chromatograph-flame  
ionization detector, Gas chromatograph-mass selective  
detector, amongst others. He has published several  
research articles in the area of oil spill pollution studies.  
He is currently working on the use of chemical  
accounted for the locational separation of sites E-2, E-3,  
E-4 and E-5 while Flt/Pyr and BaA/Ch accounted for the  
distinction of location E-1. Also, nC /nC accounted for  
2
5
18  
the locational distinction of site E-6 in the PCA (Figure  
). The inter-relationships between locations E-2 to E-5  
7
may have resulted due to similar characteristics of the  
soil and the related degradable and non-biodegradable  
toxicants that persist in the environment. Contrastingly,  
the dissimilarities in samples of E-1 and E-6 may have  
been due to their locational distance from the most  
impacted areas which are directly receiving municipal  
waste leachates and oil spill seepages (Plate 1). This  
finding reflects the soil residual hydrocarbon sources in  
the contaminated soils around dumpsites of the Eagle  
Island at the time of this study and serves as  
2
26  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 220-228  
fingerprinting techniques to identify sources of residual  
hydrocarbons in environments that are prone to  
anthropogenic influences.  
in Niger Delta, Nigeria. Archives of Applied Science  
Research, 2012, 4(1): p. 246-253.  
15. Rushdi, A. I., et al., Occurrence and sources of  
aliphatic hydrocarbons in surface soils from Riyadh  
city, Saudi Arabia. Journal of the Saudi Society of  
Agricultural Sciences, 2012, 12: p. 9-18.  
References  
1
.
Arimieari, L. W., et al., Assessment of Surface Water  
Quality in Some Selected Locations in port Harcourt,  
Nigeria. International Journal of Engineering  
Research and Technology, 2014. 3(7): p. 1146-1151.  
Azeez, J. O., et al., Soil Contamination at Dumpsites:  
Implication of Soil Heavy Metals Distribution in  
Municipal Solid Waste Disposal System: A Case  
Study of Abeokuta, Southwestern Nigeria. Soil and  
Sediment Contamination, 2011, 20: p. 370-386.  
1
6. Onojake, M. C., et al., Geosci. J., 2014, 18(3): p.  
65-371.  
3
1
7. Onojake, M. C., et al., Chemical fingerprinting and  
diagnostic ratios of Agbada-1 oil spill impacted sites  
in Niger Delta, Nigeria. Egyptian Journal of  
Petroleum, 2016, 25: p. 465-471.  
8. Inengite, A. K., et al., Evaluation of Polycyclic  
Aromatic Hydrocarbons in Sediment of Kolo Creek  
in the Niger Delta. Int. J. App. Env. Sci., 2010, 5(1):  
p. 127-143.  
9. Inengite, A. K., et al., Sources of Polycyclic  
Aromatic Hydrocarbons in an Environment  
Urbanized by Crude Oil Exploration. Environ and  
Nat Resource Research, 2012, 2(3): p. 62-70.  
0. Inengite, A. K., et al., Source identification of  
polycyclic aromatic hydrocarbons in sediments of a  
creek around a flow station. Int. J. Environ. Sci.  
Technol., 2013, 10: p. 519-532.  
1. Liu, P., Roberts, W. L., The growth of PAHs and  
soot in the post-flame region. Proceedings of the  
Combustion Institute, 2019, 37(1): p. 977-984.  
2. Meyer, B. M., “Quantitative Oil Source-  
Fingerprinting Techniques and Their Application to  
Differentiating Crude Oil in Coastal Marsh  
Sediments”. LSU Doctoral Dissertations. 2016, p.  
2
.
1
1
2
3
4
5
.
.
.
Khan, A. B., Kathi, S., Evaluation of heavy metal  
and total petroleum hydrocarbon contamination of  
roadside surface soil. Int. J. Environ. Sci. Technol.,  
2
014. 11: p. 2259-2270.  
Salaudeen, I., et al., polycyclic aromatic  
hydrocarbons in air from industrial areas in Lagos  
and Ogun States, Nigeria. Pollution, 2017. 3(4): p.  
5
61-573.  
Aigberua, A., Moslen, M., Space and Time  
Dynamics of Surface Water Quality of an Estuarine  
creek in the Niger Delta in Nigeria. Current Studies  
in Comparative Education, Science and Technology,  
2
2
2
017. 4(1): p. 141-155.  
6
7
8
.
.
.
.
Moslen, M., Aigberua, A., Sediment contamination  
and ecological risk assessment in the upper reaches  
of the Bonny Estuary, Niger Delta, Nigeria. Journal  
of Environmental Toxicology and Public Health,  
7
79.  
2
018a, 3: p. 1-8.  
2
2
3. Dvorska, A., et al., Use of diagnostic ratios for  
studying source apportionment and reactivity of  
ambient polycyclic aromatic hydrocarbons over  
Central Europe. Atmos. Environ., 2011, 45(2): p.  
Moslen, M., Aigberua, A., Heavy Metals and  
Hydrocarbon Contamination of Surface Water in  
Azuabie Creek Within Bonny Estuary, Nigeria. J.  
Appl. Sci. Environ. Manage., 2018b, 22(7): p. 1083-  
4
20-427.  
1
088.  
4. Alumona, T. N., et al., Comparative Assessment of  
Carbon Preference Index and Degree of Waxiness in  
Different Crude Oils as Indicator of Maturity and  
Organic Matter Input: A Case Study of Ebocha and  
Kwali Crude Oil Niger Delta, Nigeria. Recent Adv  
Petroleum Sci., 2018, 4(1): p. 555630.  
5. El Nemr, A., et al., Distribution and sources of n-  
alkanes and polycyclic aromatic hydrocarbons in  
Shellfish of the Egyptian Red Sea Coast. Egyptian  
Journal of Aquatic Research, 2016, 42: p. 121-131.  
6. Bhupander, K., et al., Distribution, Composition  
Profiles and Source Identification of Polycyclic  
Aromatic Hydrocarbons in Roadside Soil of Delhi.  
India. J. Environ. Earth. Sci., 2012, 2(1): p. 2224-  
Tanee, F. B. G., Albert, E., Reconnaissance  
Assessment of Long-Term Effects of Crude Oil Spill  
on Soil Chemical Properties and Plant Composition  
at Kwawa, Ogoni, Nigeria. Journal of Environmental  
Science and Technology, 2015. 8(6): p. 320-329.  
Kumar, V., Kothiyal, N. C., Distribution behavior of  
polycyclic aromatic hydrocarbons in roadside soil at  
traffic intercepts within developing cities. Int. J.  
Environ. Sci. Technol., 2010, 8(1): p. 63-72.  
9
1
2
2
0. Aigberua, A. O., et al., Evaluation of Total  
Hydrocarbon Content and Polycyclic Aromatic  
Hydrocarbon in an Oil Spill Contaminated Soil in  
Rumuolukwu Community in Niger Delta. J. Environ.  
Treat. Tech., 2016a, 4(4): p. 130-142.  
3
216.  
1
1
1. Aigberua, A. O., et al., Seasonal variation of nutrient  
composition in an oil spill contaminated soil: a case  
of Rumuolukwu, Eneka, Port Harcourt, Nigeria.  
Biotechnol Res., 2016b, 2(4): p. 179-186.  
2. Izah, S. C., Aigberua, A. O., Assessment of  
Microbiological Quality of Cassava Mill Effluents  
Contaminated Soil in Rural Community in the Niger  
Delta, Nigeria. EC Microbiology, 2017, 13(4): p.  
2
2
7. Rajput, P., et al., Atmospheric polycyclic aromatic  
hydrocarbons and isomer ratios as tracers of biomass  
burning emissions in Northern India. Environ. Sci.  
Pollut. Int., 2014, 21(8): 5724-9.  
8. Denis, E. H., et al., Polycyclic aromatic hydrocarbons  
(PAHs) in lake sediments record historic fire events:  
Validation using HPLC fluorescence detection.  
Organic Geochemistry, 2012, 45: p. 7-17.  
9. Onojake, M. C., et al., Geosci. J., 2014, 18(3): p.  
1
32-140.  
2
3
1
1
3. Nduka, J. O., Aigberua, A. O., Heavy Metals and  
Physicochemical Characteristics of Soils from the  
Banks of Effluent Waste Water Retention Pits in the  
Niger Delta, Nigeria. Biotechnol Res., 2018, 4(1): p.  
3
65-371.  
0. DPR, Environmental Guidelines and Standards for  
the Petroleum Industry in Nigeria. Lagos, Nigeria.  
Department of Petroleum Resources, 2018, p. 184.  
4
8-53.  
3
1. Mittal, A., Singh, P.,  
A Feasibility study for  
4. Oforka, N. C., et al., Petroleum hydrocarbon  
fingerprinting of crude oils from Umutu/Bomu fields  
Assessment of In-situ Bioremediation Potential of a  
2
27  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 220-228  
Crude Oil Degrading Pseudomonas Consortium. J.  
Sci. Res., 2010, 2(1): p. 127-137.  
3
3
2. Wu, Y., et al., The Geochemical Characteristics of  
Coals from the Junggar Basin in Northwest China  
and the Relation of the Configuration of Pristane  
with Maturity in Highly Mature and Over-Mature  
Samples. Oil & Gas Science and Technology-Rev.  
IFP Energies nouvelles, 2016, 71(35): p. 1-11.  
3. Kanzari, F., et al., Distributions and sources of  
persistent organic pollutants (aliph and sources of  
persistent organic pollutants (aliphatic hatic  
hydrocarbons, PAHs, PCBs and pesticides) in surface  
sediments of ydrocarbons, PAHs, PCBs and  
pesticides) in surface sediments of an industrialized  
urban river (Huveaunne), France. Sci. Total Environ.,  
2
014, 478: p. 141-151.  
2
28