Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 229-233  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Treatment of Dye Wastewater by  
Functionalization of Bentonite-Methylene  
Blue with Sodium Persulfate  
1
&4*  
2 3  
, Parveen Fatemeh Rupani , Loh Kar Woon , Mohd Hafiz  
4 2 2 3  
Asha Embrandiri  
1
Jamaludin , Mohd Azrul Naim , Jianzhong Sun , Weilan Shao and Suzy Ismail  
1
- Faculty of Agro-Based Industry, University Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia  
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China  
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia.  
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia.  
2
3
4
Received: 21/02/2019  
Accepted: 02/05/2019  
Published: 01/06/2019  
Abstract  
Bentonite has been effectively used in many studies for the removal of methylene blue (MB) laden waste waters. This is  
due to its high swelling ratio, good adsorptive properties and environmentally friendly characteristics. In spite of this,  
prolonged use renders the BMB non-functional and cause for discard. Sodium persulfate (SPS), has been reported to be an  
excellent flocculating agent for the functionalization of spent adsorbent due to some of its unique properties. In this study,  
the functionalization of spent bentonite-methylene blue (BMB) adsorbent in dye wastewater treatment was carried out using  
SPS at varying temperature conditions. Results revealed that the addition of SPS to MB-loaded adsorbent demonstrated  
efficient adsorption, high flocculation efficiency as well as faster equilibrium (60 min). The BMB loaded adsorbent showed  
9
5% removal efficiency up to three cycles. A plausible mechanism was proposed and discussed on the basis of the results.  
Thus, exhausted BMB was found to be effectively used for treatment of coloured wastewater on an industrial scale.  
Keywords: Bentonite; Methylene blue; Sodium persulfate; Dye wastewater; Functionalization.  
of other industrial applications as well (9).  
1
Introduction1  
Triarylmethane is also very useful in the laboratories for  
staining purposes in microbiology and histo-pathological  
techniques.  
The textile industry utilises enormous volumes of  
water as a medium range mill uses about 1.6 million  
litres of water per day (1). Textile wastewater has  
become a major cause of water pollution due to the  
increasing the demand of textile products as well as the  
utilization of synthetic dyes (2). Owing to the high  
stability and extreme conditions, huge quantities of dyes  
are not eliminated during conventional wastewater  
treatment processes and remain in the ecosystem (3). Azo  
dyes from the textile industry are reported to be  
recalcitrant during their biodegradation and often  
perceived as xenobiotic (4). In spite of this,  
environmental legislation has made it mandatory for  
industries to eliminate colour from their dye effluents  
before discharge (5). Therefore, the textile industries  
have received considerable attention in the recent years  
In recent times low-cost adsorbents are being sought  
after as the alternative for activated carbon in waste  
water treatment (8, 10). These adsorbents are most often  
natural materials, biosorbents and agricultural or  
industrial waste materials. Amongst all other natural  
materials, clay occupies a prominent position due to low  
costs, easy availability, good sorption properties and  
environmentally safe (10, 11). Adsorbents of clay origin  
(diatomite, kaolinite, bentonite and fullers earth) are  
utilized because of the presence of organic and inorganic  
molecules (12). Bentonite, composed of montmorillonite  
clay of the aluminum phyllosilicates group is a well-  
known adsorbent used in wastewater treatment due to its  
unique properties such as high porosity, surface area and  
of high adsorption capacity (13, 14). The adsorption of  
methylene blue on clay is controlled by the ion-exchange  
processes. This implies that the adsorbing capacity  
fluctuates with pH variation (15).  
Removal of organic pollutants, phenol and dyes is  
already an extensively studied area of waste water  
research (16-18). However, investigation on regeneration  
and recovery of adsorbed molecules on the adsorbent  
surface is an area which needs to be explored. The reuse  
of adsorbent is paramount to ensure an economical and  
environmentally friendly process (19). Adsorbents can be  
(6) with regards to effective removal methods.  
Triarylmethane (triphenylmethane) a universally used  
textile dye, makes up approximately 30%40 % of the  
overall dye consumption (7) and have been extensively  
applied on wool, cotton, silk and nylon (8). It is used for  
coloring food, paper, leather, plastics, waxes and a host  
Corresponding author: Asha Embrandiri, Faculty of  
Agro-Based Industry, University Malaysia Kelantan, Jeli  
Campus, E-mail:  
ashanty66@gmail.com. ORCID: 0000-0001-5038-3538.  
Malaysia.  
2
29  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 229-233  
regenerated by chemical, thermal, solvent, and biological  
methods (20). Regeneration is a method of adsorbent  
recovery that ensures sustainable re-use of the bentonite  
for at least 4 cycles. Regeneration or recyclability of low-  
cost adsorbents is still not well-developed. Organic dyes  
that are strongly adsorbed onto the adsorbent (bentonite)  
is unfavourable for desorption. Sodium persulfate  
of dye solution. Particle size of the flocs were determined  
by a Zetasizer Nano Series (Malvern Instruments Ltd,  
UK) and Hach pH meter for the pH measurements.  
2.1 Preparation of solutions  
Commercial grade cationic dye Methylene Blue  
(MB) was used to prepare the stock solution ( 1.0 g of  
MB in 1 L distilled water) and diluted to the required  
concentrations at room temperature (27±2ºC).  
Absorbance curve for different concentrations (0-  
15mg/L) of dye were calibrated at 664 nm using UV-Vis  
Spectrophotometer.  
2 2 8  
(Na S O ) (SPS), has been recently found to be a  
potential remedy for regenerating the adsorbents in  
textile effluents (21). It dissociates in water to form  
2
-
persulfate anion (S  
2
O
8
0
). The persulfate (PS) anion has a  
redox potential ( E = 2.01 V) and is chemically  
4-  
thermally activated to the sulfate radical (SO •), with a  
0
/
stronger oxidant with redox potential, E = 2.4 V (22).  
Persulfate has the potential to degrade organic  
contaminants (ethylene blue) and the recovery of  
bentonite to ensure its reusability and long term usage.  
Most treatment processes involve advanced oxidation  
processes (AOP) however, this study employed the  
thermal activation of sodium persulfate to remove the  
coloured pollutant (MB). Pollutants attached to bentonite  
are expected to be fully degraded by this method which is  
a significant contribution in the realm of coloured waste  
water treatment.  
2.2 Decolourisation of Methylene blue in aqueous  
solution  
100mL of phosphate buffer (PBS) was prepared by  
mixing Na  
2
HPO  
4
2 4 2  
(3.2025 g) and NaH PO ·2H O  
(5.3038g) to obtain a neutral pH. 100 ppm MB was  
thereafter added to PBS (5 mL each) to attain the desired  
concentration of each reactant at 70 °C. The  
decolourisation of MB in the aqueous solution was  
observed in 75 min.  
2.3 Decolourisation of MBloaded bentonite  
After adsorption of MB (1h), the MB-loaded  
bentonite was centrifuged at 4000 rpm and transferred  
into a beaker (250 mL). To 50 mL of PB stock solution,  
2
Materials and methods  
Figure 1 gives an annotated description of the  
1
00ppm sodium persulfate (SPS) was added and  
proposed method to be used in this experiment. The  
chemicals used in this study were Methylene  
immersed into a water bath at 70 °C. The decolourisation  
of MB and regeneration ability of bentonite was tested at  
four different conditions:  
Blue[adsorbate], Bentonite[adsorbent], Sodium  
persulfate (SPS) oxidant (Na ) of [99% purity],  
Sodium dihydrogen phosphate dihydrate  
NaH PO ·2H O) [>99% purity] and Di-sodium  
hydrogen phosphate anhydrous (Na HPO ). The UV  
2 2 8  
S O  
(
(
(
(
1) heated for 6 hours (#A1),  
2) heated for 24 hours (#A2),  
3) not heated (at room temperature) (#A3), and  
4) as a control (without SPS into the bentonite loaded  
(
2
4
2
2
4
visible spectrophotometer (HACH DR-5000 Hach,  
Colorado, USA) was utilized to measure the absorbance  
with MB at room temperature) (#A4).  
Figure 1: A proposed Scheme for the adsorption of MB and coagulation on bentonite by the addition of SPS.  
2
30  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 229-233  
2
.4 Modification of Bentonite with sodium persulfate  
The same procedures were followed as above without  
Initially, there was a reduction in the concentration of  
MB (100 % at 0 min.) to 2.25 % (at 5 min.) which  
gradually decreased. Up to 97.8%, color removal  
the adsorption prior to the addition of SPS to identify  
whether SPS can modify or activate raw bentonite to  
efficiency of MB was attained in  
5 min which  
improve its performance on MB removal.  
conditions were tested with raw bentonite: (1) heated  
upto 70 °C (#B1) and (2) at room temperature (#B2) for  
Two  
corroborates other studies on the efficiency of adsorption  
of MB onto bentonite. This is owing to the basic  
structure of bentonite montmorillonite consisting of two  
tetrahedrically aligned sheets of silicon ions surrounded  
by an octahedrically synchronized sheet of aluminum  
ions (13). This permits the isomorphous substitutions of  
6
h. Then, the modified raw bentonite was put into MB  
solutions (100 ppm).  
3+ 4+ 2+ 2+  
Al for Si in the tetrahedral sheet and Mg /Fe for  
3+  
2
.5 Reusability of bentonite  
The reusability study was carried out using 100 ppm  
MB solution. The procedures were repeated for three  
cycles.  
Al in the octahedral sheet resulting in the negatively  
charged surface of bentonite. Thus, MB is a cationic dye  
that is adsorbed onto bentonite demonstrating a strong  
affinity towards heteroaromatic dyes (24). Electrostatic  
attraction between cations (dye molecules) and  
negatively charged monmorillonite (anions) surfaces  
result in the adsorption of MB onto bentonite. It also  
occurs via cation exchange. (25). In the study, adsorption  
of MB onto bentonite decreased over time, with the same  
initial MB concentration (100 ppm) (Fig. 4). For all  
samples the percentage removal of MB up to 99.9 % was  
achieved after an hour. Interestingly, flocculation of MB  
was observed instead and only adsorption for #A1, #A2,  
and #A3. The bentonite and MB coalescence resulted in  
the formation of flocs. After 10 min of stirring and 1h  
settling, a colour was obtained. A clear solution was  
obtained for each sample.  
3
Results and Discussion  
Degradation of methylene blue (MB) was examined  
using thermally activated (SPS) and PBS at pH 7. The  
results revealed complete decolourization of MB at 70°C  
in 60 min. Decline in color efficiency of MB aqueous  
solution with time (as shown in Fig. 2) demonstrated  
almost 99.99 % removal capacity was achieved in 60  
min. Concentration of MB from 60 to 75 min also  
remained the same (99.99 % removal). As a result,  
complete decolourisation took place in 1 h. Change in  
colour of MB solutions during oxidation with SPS (100  
ppm) at different times is shown in Fig. 3. The colour  
variation covered trend as: dark blue > dark green > pale  
green > yellow > colorless.  
Figure 4: Adsorption of MB onto bentonite with respect to time.  
On the other hand, no observable formation of flocs  
was found for #A4. The bentonite and MB agglomerated  
and settled down together, however, still remained in  
powdery form. Figure 5 shows the transparent colour  
solution when the flocs formed settled down at the  
bottom of beaker for #A1, #A2, and #A3 whereas a  
relatively bluish-clear solution for #A4 when powdery  
bentonite and MB had settled down. There is aggregation  
of MB and bentonite after the regeneration with SPS  
which implies that the addition of SPS to bentonite led to  
flocculation. Thus, the regeneration process with SPS  
promotes the flocculation of bentonite and MB which is  
explained by the high adsorptive capacity of bentonite  
Figure 2: Concentration of MB in the aqueous solution with  
respect to time. At time = 60 min, the concentration of MB is  
almost equal to zero.  
(13). Regeneration of bentonite with SPS occurs  
superficially within the interlayers of bentonite (26). This  
increases the quantity of MB adsorbed which results in  
formation of bigger flocs-molecules. In addition, it also  
involves charge neutralization among the individual  
molecules which further enhances bonding between MB  
and bentonite (27).  
Figure 3: Change in colour of MB solution (100 ppm) by the  
oxidation of SPS (100 mM) with respect to different times  
showing complete decolourisation inr 60 min. Experimental  
condition: pH ~ 7.0, Temperature = 70 °C.  
2
31  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 229-233  
#A1  
#A3  
#A2  
#A4  
Figure 5: Treatments heated for 6 h  
In the control (#4), the aggregation of the particles is  
achieved by the swelling behaviour of bentonite, since  
the surface is hydrophilic, large uptake of water between  
The percentage removal for all cases was found  
relatively same after (99.9 %) which is an  
1
h
achievement in comparison with 85% after first cycle to  
+
th  
platelets can be explained (24, 27). Organic cation (MB )  
47% after 4 cycle in Pandey’s study (15) using  
has more affinity to attract negatively charged surfaces as  
compared to water (26). The inorganic cations are  
eliminated as a result of the substitution of the interlayer  
bentonite beads. MB removal was still effective by using  
the bentonite with SPS as the regenerating agent,  
irrespective of the regenerating conditions (Fig. 6).  
However, the control shows a drastic decrease in  
percentage removal of MB from 99.9 % in the first cycle,  
drops to 32.7 % in the second cycle and lastly to 12.4 %  
in the third cycle. This proved that the SPS plays  
significant role to enhance flocculation of MB and  
bentonite until optimum dye adsorption.  
+
cations with MB thus simultaneously removing the  
water molecules. As a result, bentonite and MB were  
weakly attracted and there was no formation of floc in  
the control sample. They remained in powder form and  
settled down at the bottom of beaker, giving a relatively  
bluish-clear solution.  
It can be inferred from Table 1 that bentonite and  
MB in #A1 has the biggest floc size (5993±0.01nm)  
among all whereas the size of particles in #A4 were the  
smallest (2450 ± 0.06nm) owing to the formation of  
powdery agglomerates instead of flocs. This indicates  
that flocculation occurs only in MB-loaded bentonite  
with SPS. However, based on the result obtained the floc  
size in #A1, #A2, and #A3 ranges from 3000  6000 nm.  
4
Conclusion  
This is a preliminary study that highlighted the  
regeneration ability of MB-loaded bentonite using SPS.  
Regenerated bentonite has been effectively used for MB  
removal in MB solutions. Flocculation of bentonite and  
MB was observed instead of degradation of dye using  
oxidation process. The process of adsorption and  
flocculation was found to be very fast and equilibrium  
was reached in 1 hour with 99% removal efficiency.  
However, by last cycle the efficiency reduced to 12.4%.  
This study proved that SPS has great potential in  
extending the life of the bentonite loaded with MB.  
Therefore, more studies need to be carried out to validate  
all possible errors in the process. The study would go a  
long way in reutilizing the MB-bentonite, thereby  
ensuring sustainability in the textile waste water  
treatment process.  
Conflict of Interest  
The authors have declared no conflict of interest.  
Figure 6: Percentage removal of MB with SPS after three cycles  
Acknowledgments  
Mr Woon is grateful to Universiti Sains Malaysia  
(USM) for the research facilities during his study period.  
Table 1: Floc size of all samples (#A1- 4).  
#A2  
Sample  
Floc Size (nm)  
A1: heated for 6 hours  
#A1  
5993± 0.02  
#A3  
3678±0.08  
A#4  
2450±0.06  
3084±0.01  
#
#
#
#
A2: heated for 24 hours  
A3: not heated (at room temperature)  
A4: SPS not added (at room temperature) [serves as control]  
2
32  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 2, Pages: 229-233  
1
1
7. Sunil KaJ, K., . Adsorption for phenol removal-a  
review. Adsorption. 2013;1(2):88.  
References  
1
.
De Castro MLFA, Abad MLB, Sumalinog DAG,  
Abarca RRM, Paoprasert P, de Luna MDG.  
Adsorption of methylene blue dye and Cu (II) ions on  
EDTA-modified bentonite: isotherm, kinetic and  
thermodynamic studies. Sustainable Environment  
Research. 2018;28(5):197-205.  
8. Idris S, Iyaka, Y.A., Dauda, B.E.N., Ndamitso, M.M.  
and Umar, M.T.,. Kinetic study of utilizing  
groundnut shell as an adsorbent in removing  
chromium and nickel from dye effluent. American  
Chemical Science Journal. 2012;2(1):12-24.  
9. Dutta T, Kim, T., Vellingiri, K., Tsang, D.C., Shon,  
J.R., Kim, K.H. and Kumar, S., . Recycling and  
regeneration of carbonaceous and porous materials  
through thermal or solvent treatment. . Chemical  
Engineering Journal. 2019;364:514-29.  
1
2
.
Ogugbue CJ, Sawidis T. Bioremediation and  
detoxification of synthetic wastewater containing  
triarylmethane dyes by Aeromonas hydrophila  
isolated from industrial effluent. Biotechnology  
research international. 2011;2011.  
2
2
0. Ghauch A, Tuqan AM, Kibbi N, Geryes S.  
Methylene blue discoloration by heated persulfate in  
aqueous solution. Chemical Engineering Journal.  
3
4
5
.
.
.
Suresh S. Treatment of Textile Dye Containing  
Effluents. Current Environmental Engineering.  
2
014;1(3):162-84.  
2
012;213(12):259-71.  
Surwase SV, Deshpande KK, Phugare SS, Jadhav JP.  
Biotransformation studies of textile dye Remazol  
Orange 3R. 3 Biotech. 2013;3(4):267-75.  
Mani S, Chowdhary P, Bharagava RN. Textile  
wastewater dyes: toxicity profile and treatment  
approaches. Emerging and Eco-Friendly Approaches  
for Waste Management: Springer; 2019. p. 219-44.  
Conklin A, Ervin S, Howard G. Fashionable Water  
Water Use and Pollution in the Textile Dyeing  
Industry. 2012.  
Chanwala J, Kaushik G, Dar MA, Upadhyay S,  
Agrawal A. Process optimization and enhanced  
decolorization of textile effluent by Planococcus sp.  
isolated from textile sludge. Environmental  
Technology & Innovation. 2019;13:122-9.  
1. Krzemińska D, Neczaj E, Borowski G. Advaced  
Oxidation Processes For Food Industrial Wastewater  
Decontamination. Journal of Ecological Engineering.  
2
015;16(2):61-71.  
2. Doulia D. Adsorption of Cationic Dyes onto  
Bentonite. Separation Purification Methods.  
015;44(1):74-107.  
2
2
2
2
&
2
6
7
.
.
3. Azha SF, Ahmad AL, Ismail S. A New Approach of  
Thin Coated Adsorbent Layer for Batch Adsorption  
Using Basic Dye. AJChE 2015. 2015;15:10-21.  
4. Tahir SS, Rauf N. Removal of a cationic dye from  
aqueous solutions by adsorption onto bentonite clay.  
Chemosphere. 2006;63(11):1842-8.  
5. Li ZH, Chang PH, Jiang WT, Jean JS, Hong HL.  
Mechanism of methylene blue removal from water  
by swelling clays. Chemical Engineering Journal.  
8
9
.
.
Thakur S, Chauhan MS. Treatment of Dye  
Wastewater  
Electrocoagulation and Fenton Oxidation: A Review.  
018.  
Ghaly AE, Ananthashankar, R., Alhattab, M.V.V.R.  
and Ramakrishnan, V.V.,. Production,  
from  
Textile  
Industry  
by  
2
011;168(3):1193-200.  
2
2
6. Wang Y, Gao BY, Xu XM, Xu WY, Xu GY.  
Characterization of floc size, strength and structure in  
various aluminum coagulants treatment. Journal of  
Colloid & Interface Science. 2009;332(2):354-9.  
7. Bian X, Cui, Y.J. and Li, X.Z.,. Voids effect on the  
swelling behaviour of compacted bentonite.  
Géotechnique. 2018:1-13.  
2
characterization and treatment of textile effluents: a  
critical review. Journal of Chemical Engineering  
Process and Technology. 2014;5(1):1-19.  
1
1
0. Azha SF, Ismail ALA, S. Thin coated adsorbent layer  
Characteristics and performance study. Desalination  
Water Treatment. 2015;55(4):956-69.  
1. Azha SF, Shahadat M, Ismail S. Acrylic polymer  
emulsion supported bentonite clay coating for the  
:
&
List of symbols  
1. Persulfate anion = (S  
2. Redox potential = E0  
3. Sulfate radical = SO  
O
2-)  
8
2
-
analysis of industrial dye. Dyes  
017;145:550-60.  
&
Pigments.  
4
2
4. Sodium persulfate = SPS  
1
1
2. Adeyemo AA, Adeoye IO, Bello OS. Adsorption of  
dyes using different types of clay: a review. Applied  
Water Science. 2017;7(2):543-68.  
3. Pandey LM. Enhanced adsorption capacity of  
designed bentonite and alginate beads for the  
effective removal of methylene blue. Applied Clay  
Science. 2019;169:102-11.  
1
1
1
4. Shaban M, Abukhadra MR, Shahien MG, Ibrahim  
SS.  
Novel  
bentonite/zeolite-NaP  
composite  
efficiently removes methylene blue and Congo red  
dyes. Environmental Chemistry Letters. 2017(2):1-6.  
5. Rafatullah M, Sulaiman O, Hashim R, Ahmad A.  
Adsorption of methylene blue on low-cost  
adsorbents:  
A
review. Journal of Hazardous  
Materials. 2010;177(1):70-80.  
6. Chincholi M, Sagwekar, P., Nagaria, C., Kulkarni, S.  
and Dhokpande, S., . Removal of dye by adsorption  
on various adsorbents: a review. International Journal  
of Science, Engineering and Technology Research  
2
014;3:835-40.  
2
33