

J. Environ. Treat. Tech. ISSN: 2309-1185

Journal web link: http://www.jett.dormaj.com

Green Synthesis of Spherical Silver Nanoparticles Using *Ducrosia Anethifolia* Aqueous Extract and Its Antibacterial Activity

Mohammad Amin Jadidi Kouhbanani $^{\dagger\,a}$, Nasrin Beheshtkhoo $^{\dagger\,a}$, Pourya Nasirmoghadas b , Samira Yazdanpanah c , Kamiar Zomorodian c , Saeed Taghizadeh d , Ali Mohammad Amani *a,e

^aDepartment of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

^bDepartment of Microbiology, Faculty of Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran ^cDepartment of Medical Mycology and Parasitology, School of Medicine and Center of Basic Researches in Infectious Diseases, Shiraz University of Medical Sciences

^dDepartment of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

^ePharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

The present study introduces a simple, cost-efficient, and eco-friendly method for the synthesis of silver nanoparticles (AgNP) using aqueous extract *Ducrosia anethifolia* and its antibacterial activity. *Ducrosia anethifolia* aqueous extract was used both as a reducing and capping agent. Synthesized silver nanoparticles were characterized using several techniques including UV-Vis spectroscopy, powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), dynamic light scattering method (DLS), and FT-IR analysis. The results demonstrated that the size range of the synthesized nanoparticles was 4 to 42.13 nm, with the average size of 11.4 nm and in a spherical shape. Moreover, X-ray diffraction analysis indicated that the silver nanoparticles were highly crystalline in nature. Examination of antibacterial activity of synthesized on Grampositive and Gram-negative bacterial revealed that they had a substantial antibacterial effect.

Keywords: Ducrosia Anethifolia; silver nanoparticle; Green synthesis; antimicrobial performance

1 Introduction

Given their unique properties, metal nanoparticles have a broad array of applications, each of which is associated with a certain characteristic. (1.4) Moreover, of such nanoparticles, silver nanoparticles are utilized in a vast variety of fields such as catalyst in chemical reactions, solar cells, photography, electronics, food industry, dentistry, and most importantly, antibacterial effects on Gram-positive and Gram-negative bacteria (5). This bioactivity is due to the particle and nanometer size (1-100) of silver nanoparticles, giving them special physical, chemical, magnetic, and optical properties which are different from their bulk structure (8-6). Therefore, silver nanoparticles are considered as a potent antibacterial material, comparable to, and even in some cases, stronger than common antibiotics (9). Currently, there are various physical and chemical methods of producing metal nanoparticles (10, 13) which include chemical reduction (14), electrochemistry (15), mold-based synthesis (16), hydrothermal synthesis (17), and vacuum deposition or vaporization (18), and Sol-Gel technique (19).

However, it should be noted that chemical methods have a poorer performance and that chemical methods are toxic due to the use of toxic reducing chemicals like citrate, borohydride, and other organic, toxic compounds (20). In addition, other disadvantages of these techniques include costliness, high energy consumption, and ecotoxic nature. Thus, the need for a biocompatible and cost-efficient method, devoid of the abovementioned drawbacks, is strongly felt. Biosynthesis methods can benefit from microorganism cells or plant extracts to produce nanoparticles. Recently, green synthesis techniques have turned into an important branch of nanotechnology (21-29).

This is the reason for the wide application of medical plants in the synthesis of silver nanoparticles (30-33). In fact, medical plants have bioactive molecules which make possible the green synthesis of silver nanoparticles. Such

Corresponding author: Dr. Ali Mohammad Amani, Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. E-mail: Amani_a@sums.ac.ir. Tel: +98 9171324701.

[†] These authors contributed equally to this work.

active molecules work as reducing and capping agents for nanoparticle synthesis, making nanoparticles useable for biomedical applications (34-35). Synthesis of nanoparticles, an indicator of the relationship between biotechnology and nanotechnology, has increased due to the rising demands for eco-friendly technologies (36).

Various studies have shown that different plant compositions abound in high levels of strong antioxidants such as polyphenols, sugar, nitrogen reserves, and amino acids (37). These compounds function as reducing (38) and coating agents for NPS-synthesis (39-40). The plant extract used to synthesize NPS can be useful due to their lack of need for processes such surface coating, and lower reaction time (41). Additionally, they do not produce any detrimental waste (42).

An aromatic and medicinal plant belonging to the *Apiaceae* family, *Ducrosia anethifolia* grows wild in areas of Iran-Turan as well as the Gulf of Oman. In Persian language, this plant is called *Moshgak*, *Roshgak*, and *Moshkbu* (*literally* meaning Musk-smelling) and has anti-inflammatory and pain-relieving effects (43). The main chemical compositions of this herb include: n-decanal, n-dodecanal, chrysanthenyl acetate, myrcene-limonene, and α-pinene. Also, the aliphatic compounds of this plant are believed to act as an antibacterial agent against Grampositive and Gram-negative bacteria (44). The present study introduced a quick way of producing

silver nanoparticles using *Ducrosia anethifolia* plant extracts and examined their properties and inhibitory effects on Gram-positive and Gram-negative bacteria.

2 Materials and method

2.1 Instruments

The powder X-ray diffraction (XRD) pattern measurements of the samples were recorded on a Holland-Philips X-ray powder diffractometer using Cu K radiation (λ = 0.1542 nm) with scattering angles (2 \square) of 5-80°, operating at 40 kV and a cathode current of 20 mA. Additionally, some specimens of synthesized silver nanoparticles AgNPs for TEM studies were prepared by ultrasonic dispersion of the NPs in ethanol, and the suspensions were dropped onto a carbon-coated copper grid. TEM was carried out using a (CM30 3000Kv). FT-IR spectra were recorded to investigate the functional group on samples which carried out on a Bruker VERTEX 80 v model using the KBr disk method. The size distribution of Ag NPs was characterized by the DLS approach, using a computerized inspection system (MALVERN Zen3600) with DTS® (nano) software. UV-Vis spectroscopy (UV-Vis) analyses were taken using a Varian Cary 50 UV-vis spectrophotometer. Spectra were recorded in a range of 350-800 nm.

2.2 Materials and methods

Silver nitrate (AgNO₃) was purchased from Merck Company for this study and was used without any renewed purification. Fresh samples of Ducrosia anethifolia parts consisting of leaves and stems were identified and collected. To remove pollution, all of glassware were cleaned with dilute HNO₃ and rinsed with distilled water as well as dried in an oven under air atmosphere.

Fresh Ducrosia anethifolia extract was preferably used to reduce aqueous Ag+ solution to Ag NPs. So, the collected Ducrosia anethifolia was washed with distillated water to remove any previous contamination, and then dried in the shade at the room temperature. Afterwards, the

dried plant was grinded so as to yield powders with mesh 20. In the next step, 5g powder was added to 50 ml distillated water while being completely stirred for 2h. The solution was cooled at room temperature and filtered through Grade1 Whatman filter paper. The obtained fresh extract was used to prepare AgNPs.

In this research, several concentration ranges from 20 ml of 5% to 20% of plant extract was used to synthesis Ag NPs. Typically, 20 ml fresh filtered extract was interacted with 5 ml aqueous 0.01 mM AgNO₃ under reflux by magnetic stirred. After interaction for 30 min, color of suspension changed from light-yellow to brown which this change indicates formation of Ag NPs. The brown Ag suspension was cooled at room temperature and kept for characterization by several techniques.

3 Result and discussion

3.1 UV-Vis Assessment

After silver nitrate (AgNO3) was added to extracts of Ducrosia anethifolia, the color of the suspension changed within some minutes. The extract was yellow by itself, but it turned brown during the process of silver nanoparticles synthesis which was due to the surface plasmon resonance (SPR) of silver nanocrystals as they are dependent on the size and shape of nanoparticles. As shown by Fig. 1, there is a sharp peak almost 465 nm which supports silver nanoparticles synthesis. According to the previous literature, the observed bond corresponds to absorption by colloidal silver nanospheres in 450-500 nm(33, 45-47).

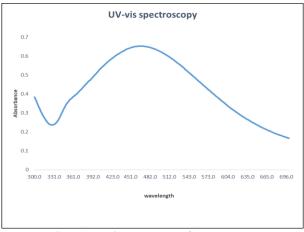


Figure1: UV-vis spectroscopy of Ag NPs.

3.2 TEM and DLS investigation

Morphology and size distribution of synthesized nanoparticles was investigated by TEM images (Fig. 2). Fig. 2 shows high-quality crystalline structure and spherical morphology of AgNPs which is matched with observed peak for nanospheres in UV-Vis spectroscopy.

The size distribution of synthesized silver nanoparticles was in the ranges from 4 to 42.13 nm with average size of 11.4 nm. Fig. 3 depicts the particle size distribution histogram for nanoparticles obtained from DLS technique. According to the analyses, the silver nanoparticles had an average size of 117 nm. These findings are not in agreement with those achieved from TEM technique. The reason for this difference is that DLS measures hydrodynamic diameter of nanoparticles as well as their surrounding cover. Moreover, in an aqueous environment, it is likely that some nanoparticles connect to each other and create an aggregation of nanoparticles. Subsequently, DLS measures the overall diameter of the

set of nanoparticles. Depending the size of nanoparticles as well as the magnitude of biological components connected to various plant extract nanoparticles, the particle size distribution of nanoparticles accounts for a highly narrow to a highly broad range in DLS. Similar findings were reported by G. Singhaj et al who showed that silver nanoparticles formed from extracts of Ocimum sanctum differed on average in terms of their particle size nanoparticles in DLS and TEM techniques, suggesting that the latter showed the average particle size of 14.3 nm, while the former the average particle size of 22.3 nm(48).

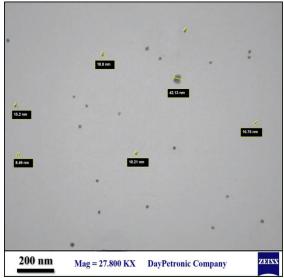


Figure 2: TEM image of synthesized AgNPs using Ducrosia
Anethifolia extract

3.3 FTIR analysis

To investigate the functional groups of extracts on the surface of AgNPs, FTIR analysis was carried out. Several peaks were observed in FTIR plot (Figure 4) that were indicate of various functional groups on the surface of AgNPs. According to Fig. 4, the peaks witnessed at 3500 cm-1 range was associated with the amide group N-H stretching, whereas the band seen at 3232 cm-1 accounted for the O-H stretching of the carboxylic acid group. Furthermore, the peak witnessed at 3500-3200 cm-1 was corresponded to alcohol/phenol O-H stretching which is

capable of overlapping with carboxylic acid and amine groups. Also, the weak peak seen at 2918 cm-1 accounted for the alkane C-H stretching vibrations of methyl, methylene, and methoxy groups. Two strong peaks at 1622 and 1616 cm-1 represented the C=O stretching vibrations due to carbonyl stretching groups in carboxylic acid, and moreover, the peaks at 1383, 1100 and 616 cm-1 were assigned to C-H bending, C-OH bond stretching and aromatic ring, respectively (49). All of the mentioned bands were considered as principal functional groups in molecular structures in Ducrosia anethifolia extract which play a major role in formation of silver nanoparticles

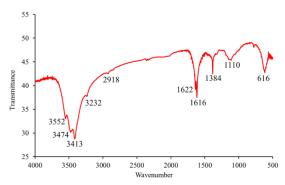


Figure 4: FTIR spectroscopy of prepared silver nanoparticles by green synthesis

3.4 XRD spectroscopy

The peaks caused by X-ray diffraction at $2\theta=3.2^{\circ}$, 44.2° , 64.5° , and 77.8° , all shown by Fig. 5. These angles can be indexed to the 111, 200, 220 and 311 planes of reflections of silver, respectively. This diffraction pattern is indicative of natural crystalline structure of silver nanoparticles and those produced with a face-centered cubic structure (FCC). These findings are in line with those obtained from silver nanoparticles produced from plant extracts. Likewise, there was a series of peaks witnessed at ranges 10 to 20 which corresponded to the bioorganic crystalline phase of plant extracts. For instance, in the previous study conducted on silver nanoparticles synthesis using Wheat grass extracts, we showed that peaks caused by X-ray diffraction at 20=38.22°, 44.37°, 64.54°, and 77.47°, suggesting that the results of the present study are supported (43, 49-53).

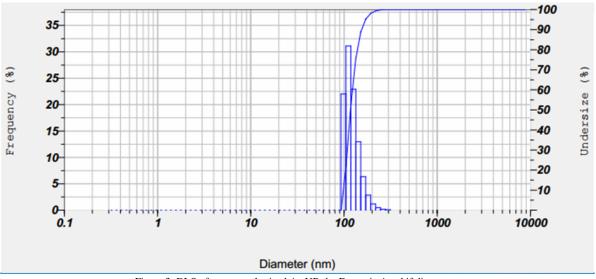


Figure 3: DLS of green synthesized Ag NPs by $\overline{\text{Ducrosia}}$ Anethifolia extract

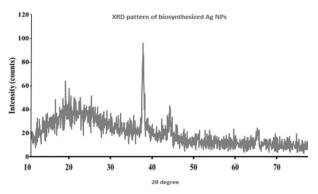


Figure 5: XRD pattern of biosynthesized Ag NPs using Ducrosia Anethifolia extract

Nonoparticles were effective against all strains of tested Gram-positive and Gram-negative bacteria at ranges 32-128 µg/ml. Both Enterococcus faecalis and Pseudomonas aeruginosa showed similar values for MICs and MBCs.Nanoparticles had no bactericidal activity in concentration up to 128µg/ml.Mechanism of AgNPs bacterial inhibition was performed in four ways as follows: i) Ag+ could form a stable complex with thiols and phosphate in amino acids and nucleic acids, ii) AgNPs led to the disruption ATP formation and DNA replication by producing Ag+, iii) AgNPs was capable of generating reactive oxygen species (ROS) or oxygen radical species (they could damage the DNA by means of oxidative

stress), and iv) AgNPs disrupted the respiration functions of the cell and permeability through attaching and penetrating into the cell membrane of bacterial. By addressing this reasons, the green synthesized AgNPs demonstrated the best antibacterial activity(54-55-56).

4 Antibacterial activity of green Ag NPs

The MICs and MBCs obtained from synthetic nanostructures against various strains of bacteria are shown in Table 1.

5 Conclusion

Given the wide application of metal nanoparticles in industry as well as the desperate need for a low-risk and safe treatment without any adverse effects on both humans and environment, it is believed that green synthesis methods are less costly, highly safer and eco-friendly. In this study, Ducrosia anethifolia aqueous extracts were used as the reducing agent for reduction of Ag+ cation to the AgNO3 to Ag0. Therefore, AgNO3 reaction at the presence of Ducrosia anethifolia aqueous extracts resulted in the synthesis silver nanoparticles (AgNPs). Various methods of identifying the characterization of nanoparticles such as XRD, TEM, FTIR, DLS, and UV-Vis have supported successful synthesis of AgNPs. Likewise, the synthesized nanoparticles were shown to have substantial anti-bacterial properties, especially against Gram-positive and Gram-negative bacteria.

Gram positive bacteria Gram negative bacteria Enterococcus Staphylococcus Escherichia coli Pseudomonas faecalis (ATCC 25922) aureus aeruginosa (ATCC 25923) (ATCC51299) (ATCC27853) MIC MBC MIC MBC MIC MBC MIC MBC 32 ND 128 ND 64 ND 128 ND

Table 1: The MICs and MBCs obtained from green Ag NPs

References

- Nadaroğlu H, Güngör AA, Ince S. Synthesis of nanoparticles by green synthesis method. International Journal of Innovative Research and Reviews. 2017;1(1):6-9.
- Siraj KT, Rao PP. Review on current world water resources scenario and water treatment technologies and techniques. IJAR. 2016;2(4):262-6.
- Leontowich AF, Calver CF, Dasog M, Scott RW. Surface properties of water-soluble glycine-cysteamine-protected gold clusters. Langmuir. 2009;26(2):1285-90.
- Wong TS, Schwaneberg U. Protein engineering in bioelectrocatalysis. Current Opinion in Biotechnology. 2003;14(6):590-6.
- Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, et al. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. International journal of nanomedicine. 2012;7:5603.
- Bogunia-Kubik K, Sugisaka M. From molecular biology to nanotechnology and nanomedicine. Biosystems. 2002;65(2-3):123-38.
- Zharov VP, Kim J-W, Curiel DT, Everts M. Self-assembling nanoclusters in living systems: application for integrated

- photothermal nanodiagnostics and nanotherapy. Nanomedicine: Nanotechnology, Biology and Medicine. 2005;1(4):326-45.
- Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nature nanotechnology. 2007;2(8):469.
- Roy R, Hoover MR, Bhalla A, Slawecki T, Dey S, Cao W, et al. Ultradilute Ag-aquasols with extraordinary bactericidal properties: role of the system Ag-O-H2O. Materials Research Innovations. 2007;11(1):3-18.
- Fendler JH. Nanoparticles and nanostructured films: preparation, characterization, and applications: John Wiley & Sons; 2008.
- Makarov V, Love A, Sinitsyna O, Makarova S, Yaminsky I, Taliansky M, et al. "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия). 2014;6(1 (20)).
- 12. Kundu S, Maheshwari V, Niu S, Saraf RF. Polyelectrolyte mediated scalable synthesis of highly stable silver nanocubes in less than a minute using microwave irradiation. Nanotechnology. 2008;19(6):065604.
- Okitsu K, Mizukoshi Y, Yamamoto TA, Maeda Y, Nagata Y. Sonochemical synthesis of gold nanoparticles on chitosan. Materials Letters. 2007;61(16):3429-31.

- Zhu Y-C, Zhao J-Z, Zhou B, Zhao X, Wang Z-C. Preparation of metallic iron nanoparticles with liquid phase chemical reduction method. Chemical Journal of Chinese Universities. 2008;10:024.
- Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. Aqueous NaHSO 4 catalyzed regioselective and versatile synthesis of 2thiazolamines. Monatshefte für Chemie/Chemical Monthly. 2008;139(10):1241-5.
- 16. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. An efficient one-pot procedure for the preparation of 1, 3, 4-thiadiazoles in ionic liquid [bmim] BF4 as dual solvent and catalyst. Heteroatom Chemistry: An International Journal of Main Group Elements. 2008;19(3):320-4.
- Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A, Amani AM, Taghizadeh S. Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Applied Physics A. 2018;124(5):363.
- Rostamizadeh S, Abdollahi F, Shadjou N, Amani AM. MCM-41-SO 3 H: a novel reusable nanocatalyst for synthesis of amidoalkyl naphthols under solvent-free conditions. Monatshefte für Chemie-Chemical Monthly. 2013;144(8):1191-6.
- Amani A. Synthesis and biological activity of piperazine derivatives of phenothiazine. Drug research. 2015;65(01):5-8.
- Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Sina S, Amani AM. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding. Radiation Physics and Chemistry. 2018;146:77-85.
- Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Applied microbiology and biotechnology. 2014;98(19):8083-97.
- Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Advanced science letters. 2010;3(2):138-43.
- Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in colloid and interface science. 2009;145(1-2):83-96.
- Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19(4):1357-61.
- Umashankari J, Inbakandan D, Ajithkumar TT, Balasubramanian T. Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquatic biosystems. 2012;8(1):11.
- Shankar SS, Rai A, Ahmad A, Sastry M. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials. 2005;17(3):566-72.
- Richardson A, Chan B, Crouch R, Janiec A, Chan B, Crouch R. Synthesis of silver nanoparticles: an undergraduate laboratory using green approach. Chem Educ. 2006;11:331-3.
- Vaidyanathan R, Kalishwaralal K, Gopalram S, Gurunathan S. RETRACTED: Nanosilver—The burgeoning therapeutic molecule and its green synthesis. Elsevier; 2009.
- Zhan G, Huang J, Du M, Abdul-Rauf I, Ma Y, Li Q. Green synthesis of Au–Pd bimetallic nanoparticles: single-step bioreduction method with plant extract. Materials Letters. 2011;65(19-20):2989-91.
- Kumar VG, Gokavarapu SD, Rajeswari A, Dhas TS, Karthick V, Kapadia Z, et al. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids and Surfaces B: Biointerfaces. 2011;87(1):159-63.
- Smitha S, Philip D, Gopchandran K. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009;74(3):735-9.
- 32. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International journal of nanomedicine. 2012;7:483.

- Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry. 2010;45(7):1065-71.
- 34. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and Surfaces B: Biointerfaces. 2013;108:255-9.
- Sathishkumar M, Sneha K, Won S, Cho C-W, Kim S, Yun Y-S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces. 2009;73(2):332-8
- Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV, et al. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir. 2014;30(20):5982-8.
- Harshiny M, Iswarya CN, Matheswaran M. Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder technology. 2015;286:744-9.
- 38. Raveendran P, Fu J, Wallen SL. Completely "green" synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society. 2003;125(46):13940-1.
- 39. Rostamizadeh S, Amani AM, Aryan R, Ghaieni HR, Norouzi L. Very fast and efficient synthesis of some novel substituted 2-arylbenzimidazoles in water using ZrOCl 2⋅ nH 2 O on montmorillonite K10 as catalyst. Monatshefte für Chemie-Chemical Monthly. 2009;140(5):547-52.
- 40. Kouhbanani MAJ, Beheshtkhoo N, Amani AM, Taghizadeh S, Beigi V, Bazmandeh AZ, et al. Green synthesis of iron oxide nanoparticles using Artemisia vulgaris leaf extract and their application as a heterogeneous Fenton-like catalyst for the degradation of methyl orange. Materials Research Express. 2018;5(11):115013.
- 41. Asgari Neamatian M, Yaghmaei P, Mohammadi S. Assessment of the antinociceptive, antiinflammatory and acute toxicity effects of Ducrosia anethifolia essential oil in mice. Scientific Journal of Kurdistan University of Medical Sciences. 2017;22(3):74-84.
- Sefidkon F, Javidtash I. Essential oil composition of Ducrosia anethifolia (DC.) Boiss. from Iran. Journal of Essential Oil Research. 2002;14(4):278-9.
- 43. Kouhbanani MAJ, Beheshtkhoo N, Fotoohiardakani G, Hosseini-Nave H, Taghizadeh S, Amani AM. Green Synthesis and Characterization of Spherical Structure Silver Nanoparticles Using Wheatgrass Extract. Journal of Environmental Treatment Techniques. 2019;7(1):142-9.
- 44. Dubey SP, Lahtinen M, Sillanpää M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;364(1-3):34-41.
- Jagtap UB, Bapat VA. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Industrial crops and products. 2013;46:132-7
- 46. Kouhbanani MAJ, Beheshtkhoo N, Taghizadeh S, Amani AM, Alimardani V. One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2019;10(1):015007.
- 47. Lohrasbi S, Kouhbanani MAJ, Beheshtkhoo N, Ghasemi Y, Amani AM, Taghizadeh S. Green Synthesis of Iron Nanoparticles Using Plantago major Leaf Extract and Their Application as a Catalyst for the Decolorization of Azo Dye. BioNanoScience. 2019;9(2):317-22.
- 48. Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research. 2011;13(7):2981-8.
- Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and surfaces A: Physicochemical and engineering aspects. 2009;339(1-3):134-9.
- Singh A, Jain D, Upadhyay M, Khandelwal N, Verma H. Green synthesis of silver nanoparticles using Argemone mexicana leaf

- extract and evaluation of their antimicrobial activities. Dig J Nanomater Bios. 2010;5(2):483-9.
- 51. Choi Y, Ryu GH, Min SH, Lee BR, Song MH, Lee Z, et al. Interface-controlled synthesis of heterodimeric silver–carbon nanoparticles derived from polysaccharides. ACS nano. 2014;8(11):11377-85.
- Rao NH, Lakshmidevi N, Pammi S, Kollu P, Ganapaty S, Lakshmi P. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Materials Science and Engineering: C. 2016;62:553-7.
- Allafchian A, Mirahmadi-Zare S, Jalali S, Hashemi S, Vahabi M. Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. Journal of Nanostructure in Chemistry. 2016;6(2):129-35.
- 54. Seyedi-Marghaki F, Kalantar-Neyestanaki D, Saffari F, Hosseini-Nave H, Moradi M. Distribution of Aminoglycoside-Modifying Enzymes and Molecular Analysis of the Coagulase Gene in Clinical Isolates of Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus. Microbial Drug Resistance. 2019;25(1):47-53.
- Nave HH, Mansouri S, Sadeghi A, Moradi M. Molecular diagnosis and anti-microbial resistance patterns among Shigella spp. isolated from patients with diarrhea. Gastroenterology and hepatology from bed to bench. 2016;9(3):205.
- Kittler S, Greulich C, Diendorf J, Koller M, Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chemistry of Materials. 2010;22(16):4548-54.