Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 289-294  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Application of Cementation Technology in a  
Chemical Recycle Plant Treating Waste Copper-  
Bearing Solution from Micro-Etching Processes  
Nan-Min Wu* and Wen-Chin Chen  
Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsin Chu City, Taiwan  
Received: 30/03/2019  
Accepted: 11/06/2019  
Published: 30/09/2019  
Abstract  
Waste copper-bearing solution generated from the micro-etching process of printed circuit boards (PCBs) was studied using  
cementation technology in a chemical recycle plant. Operation parameters include initial copper ion concentrations (15, 23, 30  
g/L) and pH values (pH = 1, 2, 3, 4) were assessed. Results showed that, within the range from 15 to 30 g/L of copper ion  
concentration, the reaction rate decreased with increasing the initial concentration. In addition, the higher the pH value the  
slower the copper cementation rate. And at pH = 4, the rate is as low as about 40 %, compared to the other pH values. It is  
attributed that, presumably as the pH of the solution increases, the copper hydroxide may be deposited onto the iron sheet surface  
to form a passivation layer, resulting in the blocking of solid-liquid interface mass transfer. Results from mass balance  
calculations indicated that the unit operation of the plant was quite in agreement with expectations. However, the average  
resource conversion rate (RCR) was at 58.7%. In order to increase the resource conversion rate, it is suggested that either a  
reduction of water consumption or a water recycling program to the process should be taken into consideration to increase the  
RCR. The result of this study is beneficial to shorten the gap between theoretical research and practical operations for chemical  
recycle plant that is positive to industrial waste reduction and resource sustainability.  
Keywords: Micro-etching, cementation technology, passivation, mass balance, resource conversion rate  
1
result is not only a large amount of copper-bearing  
hazardous sludge, but also increase the environmental  
loading.  
1
Introduction  
Electronic products are widely used in various fields of  
life, and have been linked to instant and mobile devices,  
making the manufacturing process of printed circuit boards  
For waste copper-bearing solution, chemical treatment  
methods such as precipitation, electrolysis, and cementation  
are commonly used in industry [4-5]. The advantage of  
precipitation and electrolysis is that the reaction rate is  
speedy, while the major disadvantage is that the post-  
treated liquid is still in large quantity and needs to be  
subsequently processed. As for the cementation method, it  
is theoretically to use iron having a lower reduction  
potential to recover copper metal having a higher reduction  
potential in waste liquid [6-9]. Although the reaction rate  
of cementation is generally slower than precipitation and  
electrolysis, both the products after solid-liquid separation  
procedure are industrial reusable.  
Although there have been many investigations on the  
copper-iron cementation, the results using waste liquid  
from the PCBs factories were mostly laboratory scale, let  
alone employed a chemical recycle plant to evaluate the  
control parameters. The objective of this study is to assess  
the effect of the initial copper content and pH value on  
cementation technology using the waste copper-bearing  
solution produced by the PCBs micro-etching process.  
This study has been carried out in a chemical recycle plant,  
(
PCBs) more prosperous in recent years. According to the  
survey report [1], up to 2018, the global PCBs output value  
will increase to US$ 68 billion, and the average annual  
compound growth rate is 3.9%.  
High-precision and effective micro-etching is an  
important process to enhance the productivity of PCBs  
[
2~3]. The micro-etching process can be divided into three  
sections: inner layer etching, plated through hole and line  
etching, and outer layer etching. Among them, the plated  
through hole and line etching process generates a waste  
copper-bearing solution with copper content less than 30  
g/L. However, partially due to this low concentration of  
copper in the waste liquid, most of the chemical plants lack  
of incentives to recycle. As the PCB factory discharged  
this waste liquid into the wastewater treatment system, the  
Coressponding author: Nan-Min Wu, Department of  
Environmental Engineering and Health, Yuanpei  
University of Medical Technology, Hsin Chu City, Taiwan.  
E-mail: nanmin0919364834@gmail.com.  
2
89  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 289-294  
and the results are capable of direct application to benefit  
both industrial waste reduction and resource sustainability.  
3
Results and Discussion  
3
.1 Composition of Waste Copper-Bearing Solution  
The constancy of the waste liquid component plays an  
2
Experimental section  
important role on the progress of this study. The waste  
copper-bearing solution has a total of 3 trips of tank-truck  
entering plant for testing. The analytical results of the  
composition are summarized in Table 1. As shown in  
Table 1, the content of copper is between 25.8 and 30.2  
g/L. There is no significant difference in the remaining  
composition of the waste liquid. This waste copper-bearing  
solution from micro-etching process of PCBs is classified  
as hazardous waste solution as its pH 2.0 in Taiwan.  
2
.1 Procedure  
The testings were carried out using a stirring drum  
reactor schematized in Figure 1. The reactor is mainly  
composed of two parts: (1) a stainless-steel drum coated  
with PE-inliner film, and (2) an automatic programmable  
mortar mixer. The waste copper-bearing solution, tank-  
truck delivered from a PCBs factory, was added in 2.0 m  
each time in batch process. The ironic sheets (5 cm  5 cm  
3
0.01 cm) were obtained from  
a
recycling plant  
specializing in waste vehicle bumper.  
procedure is as follows:  
The testing  
Table 1: Analysis of waste copper-bearing solution.  
Tank Truck Entering Chemical Plant  
Item  
unit  
1
2
3
Specific  
Gravity  
pH  
Cu  
Hg  
-
1
.10  
1.14  
1.19  
-
1.4  
18.3  
ND  
0.03  
ND  
0.05  
0.01  
ND  
ND  
ND  
1.4  
25.8  
ND  
0.04  
ND  
0.05  
0.02  
ND  
ND  
ND  
1.2  
30.2  
ND  
0.04  
0.01  
0.06  
0.02  
ND  
g/L  
Pb  
Cd  
Cr  
Cr  
6
+
mg/L  
Figure 1: Schematic of the Cu-Fe Cementation Reactor.  
As  
Se  
Ba  
(1) Pump the waste copper sulphate liquid to the  
cementation reactor.  
ND  
ND  
(
2) Adjust the pH to the testing conditions using liquid  
NaOH or sulfuric acid (pH = 1.0~4.0 ± 0.1), then add  
iron sheets to the reactor and start mortar mixer.  
3) Take samples to analyse copper and iron  
concentration at 2-hour intervals over a period of 14  
hours, then terminate the stirring pump.  
3
.2 Effects of Initial Copper Ion Concentration  
In this study, three different initial concentrations of  
(
(
(
copper ions were prepared to investigate the effect of initial  
copper ion concentration on the cementation reaction. The  
initial concentrations were prepared for 15, 23, and 30 g/L,  
respectively. The stirring speed was set at 60 rpm during  
the test. The pH value is chosen to be fixed at 3.0 first.  
Figure 2 shows the change of the copper ion concentration  
in the cementation reactor with the change of reaction time.  
From the figure it is obvious that the copper ion  
concentration decreases with the reaction time, while at the  
end of the reaction the residual copper ion concentration  
increases with the increase of the initial concentration. It is  
noted that from Figure 3, the result at 30 g/L is different  
from the other two initial concentrations.  
4) Wait for 10 hours for copper precipitation, then pump  
the supernatant liquid from the cementation reactor to  
the storage tank of the ferrous sulphate solution.  
5) Add 1 m3 of tap water to flush the cementation. The  
residual liquid cleaning work was carried out, and the  
stirring pump was again turned on for about 10  
minutes, and then left to stand for 10 hours.  
(
6) Pump the supernatant liquid in the cementation  
reactor to the wastewater treatment facility, and  
remove the cemented copper manually into press  
filter to dewatering operations.  
(7) After dewatering, the cooper cake is weighed and  
analysed in the plant laboratory.  
2
.2 Analytical Methods  
All samples were stored in amber glass bottles to prevent  
metal ions from being attached to the bottle wall, and were  
analyzed immediately after each batch of test to avoid any  
potential interference. The analyses of metal ions were  
carried out using flame atomic absorption spectrometry  
(AAS 932Plus, GBC Scientific Equipment). The analytical  
method was adapted according to the National Institute of  
Environmental Analysis (NIEA M111.01C) [10].  
Figure 2: Effects on initial copper ion concentration to the  
cementation reactions.  
As the cementation reaction proceeds, the order of the  
reaction can be evaluated by analysing the change of the  
2
90  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 289-294  
concentration of copper ions with respect of the change of  
reaction time. Previous studies have suggested that copper-  
iron cementation reactions as first-order reaction [11~13],  
and can be expressed as Equation (1):  
concentration tank, so as increased the viscosity coefficient  
and the diffusion layer between solid and liquid. An  
increase in these parameters may lead to a decrease in the  
diffusion rate of copper ions in the solution, which  
eventually result in a decrease in the rate of cementation  
reaction, and is relatively in agreement with previous  
studies [14~15].  
2
]
d [Cu  
A
2   
]
(1)  
 k ( )[ Cu  
dt  
V
2
]
d [Cu  
where the-  
is the rate of change of copper ion  
dt  
concentration with respect to reaction time (t), k is the  
reaction rate constant, A is the total area of the iron piece,  
and V is the volume of the waste copper sulfate solution in  
the reactor. Integrate Equation (1) and let t = 0, the initial  
2
+
2+  
copper ion concentration [Cu ] = [Cu ] , the reaction rate  
o
can be expressed as Equation (2):  
2
]
[
Cu  
A
(2)  
ln  
  k ( )  t  
2
[
Cu ]o  
V
Since each batch of this study keeps constant in volume  
and in weight of the iron at the same pH, the (A/V) can be  
regarded as a constant value. Figure 3 shows the  
cementation reaction constant (k) obtained by changing the  
Figure 4: Change of reaction rate constants (k) respect to initial  
copper ion concentrations.  
3.3 Effects of pH Value  
+
+
o
reaction time with ln([Cu ]/[Cu ] ). Comparing the  
As stated in previous section, the pH of the waste copper  
sulfate solution produced by the micro-etching process is  
usually less than 2.0. Factors including number of plated  
holes, number of layers of the circuit board, and frequency  
of cleaning, may result in the variation of pH in the waste  
copper sulfate solution discharged from batch to batch.  
Therefore, it is necessary to evaluate the effect of pH on the  
cementation reaction for the recycling plant operation. In  
this study, the range of pH was set from 1.0 to 4.0, and the  
initial copper ion concentration was controlled at 23  
g/L.Figure 5 shows the copper ion concentration in the  
solution decreases with the increase of the reaction time. It  
is obvious that the cementation rate of pH=4 is much lower  
2
2
slopes of the reaction straight lines of each initial  
concentration in Figure 4, it is clear that the slopes of the  
initial concentration of 15 g/L and 23 g/L are larger and  
closer. As concentration increases to 30 g/L, the slope is  
lower than 15 g. /L and 23 g/L.  
than that of the other pH=1~3.  
The copper ion  
concentration is reduced from 23 g/L to 14 g/L, indicating  
the change of cementation is about 40%.  
2+  
2+  
o
) in the cementation reactor  
Figure 3: Change of Ln([Cu ]/[Cu ]  
with respect to time.  
The rate of chemical reaction is often affected by the  
initial concentration of the reactants. In order to explore the  
extent of the effect, this study formulated three sets of  
initial concentrations for cementation reactions. Figure 4  
shows the cementation reaction rate constant (k) plotted  
+
against the initial copper concentration [Cu ] . From the  
2
o
figure, the cementation rate constant decreases as from  
.257 hr-1 to 0.234 hr-1, with the increases of initial  
Figure 5: Change of copper ion concentration respect to pH value.  
0
concentration from 15 g/L to 23 g. This change of k is  
slightly minor. But the change of k becomes obviously  
greater, that is reduced from 0.234 hr-1 to 0.162 hr-1. It is  
postulate that, since the cementation of metal is  
heterogeneous reaction, the higher the initial concentration  
of copper ions, the higher the activity of the solution in the  
Figure 6 shows the emerge of ferrous ions in the  
cementation reactor with pH=1~4. It can be seen that the  
concentration of ferrous ion at pH=4 is only 7.7 g/L, which  
is significantly lower than the other pH=1~3 (up to 19.5  
g/L). In comparison with the other groups of pH=1~3, the  
2
91  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 289-294  
copper-iron cementation rate a at pH=4 is only about 40%.  
Previous research results have suggested that the increase  
of pH in cementation reactor may result in reducing the  
reaction rate [16~17].  
Figure 7: Schematic diagram of mechanism for copper-iron  
2+  
cementation reaction. (=Cu ions entering liquid-solid diffusion  
2+  
boundary layer from bulk solution;  =Cu ions precipitated from  
electric double-layer interface to form Cu metals;  =Fe metal  
2
+
2+  
2+  
transfers electron to Cu ions and become Fe ;  = Fe ions  
2
+
diffuse outward from electric double-layer interface;  = Fe ions  
entering bulk solution from liquid-solid diffusion boundary layer.)  
Figure 6: Change of ferrous ion concentration respect to time.  
In the copper-iron cementation system, increasing the  
Table 2: Mass balance and resource conversion rate.  
Items  
Unit  
pH=1  
2280  
2.0  
pH=2  
2280  
2.0  
pH=3  
2280  
2.0  
-
pH value indicates that the concentration of [OH ] in the  
Weight Kg  
solution is increased, and it is intended to cause a reaction  
of forming a hydroxide precipitate with the copper ion, as  
expressed in the following reaction equation:  
Waste  
Copper-  
Bearing  
Solution  
Volum  
3
m
e
2+  
[
Cu ]  
o
g/L 23.00  
Copper Kg  
NaOH Kg  
23.00  
46.00  
64.10 398.31  
23.00  
46.00  
46.00  
0.00  
2
+
-
Total  
Input  
Cu + 2OH  Cu(OH)  
(3)  
2
pH  
Adjuster  
H
2
SO  
4
Kg  
36.92  
0.00  
0.00  
In case that a large amount of copper hydroxide  
precipitates and accumulates on the surface of the iron  
sheet, then it is intended to form a passivation phenomenon  
Iron Sheets Weight Kg  
7
5.09  
79.20  
1000  
92.12  
1000  
Cleaning Water  
Sum  
Kg  
1000  
Kg 3392.01 3423.30 3770.43  
[
18~19]. From the viewpoint of reaction kinetics, as  
Ferrous Weight Kg 1912.77 1944.20 2163.96  
indicated in the Equation (1), the reduction of the active  
area (A) of the iron sheet may directly decrease the  
cementation reaction. In addition, the passivation of the  
surface of the iron sheet, as shown in Figure 7, may highly  
hinder the outward transfer of electrons. As in Figure 8, the  
mechanism of the cementation reaction can be subdivided  
into five main steps. It is noted that in the third step, if the  
iron sheet is subjected to surface passivation, the iron ions  
may be ineffectively entering the electric double-layer and  
diffuse outward, causing a limit to the electrons delivering  
to copper ion. The rate of cementation reaction will  
eventually be greatly reduced. Therefore, by evaluating  
from the results of this study, the waste copper-bearing  
solution should be controlled to pH  3.0 for operation in  
chemical recycling plant.  
Sulfate  
Solution  
Copper Kg  
Iron Kg  
Weight Kg  
0.21  
72.82  
64.92  
0.22  
76.77  
65.08  
0.23  
90.01  
64.44  
Total Cemented  
Output Copper Copper Kg  
45.67  
45.63  
45.49  
Weight Kg 1414.3 1414.0 1542.0  
Copper Kg  
Iron Kg  
Cleaning  
Water  
0.12  
2.27  
0.15  
2.43  
0.28  
2.11  
Sum  
Resources Conversion Rate  
Kg 3392.01 3423.30 3770.43  
%
58.30 58.69 59.10  
As illustrated in Table 2, the items of total input include  
waste copper-bearing solution, pH adjuster, iron sheets and  
cleaning water. The items of total output include ferrous  
sulfate solution, cemented copper and cleaning water.  
Each item in total input and total output is measured,  
respectively. The results show that the total input is equal  
to output, and in terms of the mass balance in the  
cementation reaction, it is quite consistent with the  
theoretical estimates. In addition, the resources conversion  
rate (RCR) has been calculated using the cementation  
products, namely ferrous sulfate solution and cemented  
copper, as expressed in Equation (5):  
3
.4 Calculations of Resource Conversion Ratio  
The assessment of mass balance is important to  
understand the flow of raw materials and products, and to  
improve the efficiency of unit operations. In this study, the  
copper-iron cementation reaction is carried out in a  
recycling plant, and the overall mass balance calculation is  
presented as a result of the batch testings as shown in  
Equation (4):  
ꢃꢄꢅꢆꢇꢈ ꢉꢊ ꢊꢄꢋꢋꢉꢌꢍ ꢍꢌꢎꢊꢏꢈꢄ ꢍꢉꢎꢌꢈꢅꢉꢐꢑꢃꢄꢅꢆꢇꢈ ꢉꢊ ꢒꢄꢓꢄꢐꢈꢄꢔ ꢒꢉꢕꢕꢄꢋ  
ꢁꢀ(ꢂ) =  
(5)  
ꢖꢉꢈꢏꢎ ꢗꢐꢕꢌꢈ  
푇표푡푎푙 퐼푛푝푢푡 = ∑ 푇표푡푎푙 푂푢푡푝푢푡  
(4)  
It can be seen from Table 2 that the RCR is between 58.3  
and 59.1 %, with the average value at 58.7 %. By  
%
2
92  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 289-294  
examining the items in Table 2, the cleaning water is the  
major cause account for this lesser of RCR. Accordingly,  
the cementation technology may have the application  
benefit of recycling the waste copper-bearing solution  
produced by the micro-etching, the water consumption of  
cleaning the cementation reactor should be further reduced,  
or the water recycling program be included to improve the  
RCR.  
Aknowledgment  
This study was partially supported by the Dong Dah  
Industrial Company, Inc., Taiwan, through the project  
contract No. 1020174. The results, however, are for  
reference only and do not represent the operation  
conditions of the company.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
4
Conclusions  
In this study, the cementation technology is applied to an  
(avoidance of guest authorship), dual submission,  
industrial waste treatment plant, and the control parameters  
of the waste copper-bearing solution produced by the PCB  
micro-etching process are evaluated. Both initial copper  
concentration and pH value are the major operational  
concerns, so as to set as test parameters. All tests were  
recorded, including input and output amount, copper  
concentration, weight of iron sheet, and weight of cemented  
copper. Experimental results were also used to estimate the  
kinetic rate constants and RCR of the reaction. The  
conclusions of the study are listed below.  
manipulation of figures, competing interests and  
compliance with policies on research ethics. Authors  
adhere to publication requirements that submitted work is  
original and has not been published elsewhere in any  
language.  
Competing interests  
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
(
1) Three sets of initial copper concentration were  
tested at 15, 23, 30 g/L, respectively. It was found  
that the first-order kinetic rate constant decreased  
with the increase of the initial copper concentration.  
The increase of copper concentration causes the  
diffusion layer between solid and liquid to b  
increased, leading to the decrease of the mass  
transfer rate.  
Authors’ contribution  
All authors of this study have a complete contribution  
for data collection, data analyses and manuscript writing.  
References  
IPC - Association Connecting Electronics Industries, Market  
1
.
Research  
from  
IPC,  
(2018)  
Available  
at:  
(
2) Four experiments were carried out with different pH  
http://www.ipc.org/3.0_Industry/3.2_Market_Research/Market  
-Research-Reports-Brochure.pdf.  
(pH=1~4). The results showed that the cementation  
rate at pH=4 was much lower than that of the other  
pH (pH=1~3). It is attributed that as the pH of the  
solution increases, the surface of the iron sheet is  
deposited by copper hydroxide. As the passivation  
phenomenon prevails, the active area of the iron  
sheet is reduced, resulted in the decrease of  
cementation reaction. The iron is incapable of  
effectively transmitting electrons and diffusing into  
the electric double layer, leading to limit the  
cementation reaction rate.  
2. Taushanoff S., Dubin V.M., Wallace A., Mantooth H. A.  
Copper Plated Through-Holes for 3D Electro-Thermal  
Systems. Int J Intellectual Advancements and Research in  
Engineering Computations. 2018;85:803-814.  
3
.
Mohankumar G.B., Kavisapareeswari V., Swathi T., Vidhya P.  
Printed circuit board etching machine using vaccum generator.  
Int J Intellectual Advancements and Research in Engineering  
Computations. 2018;5:629-632.  
4. Fu F., Wang Q. Removal of heavy metal ions from  
wastewaters: a review. J. Environmental Management. 2011;  
9
2:407-418.  
Gunatilake S.K. Methods of Removing Heavy Metals from  
Industrial Wastewater, Multidisciplinary Engineering  
Science Studies. 2015;1:12-18.  
5
6
.
.
(
3) Three sets of pH (pH=1~3) were carried out to  
perform the mass balance estimation. The results  
showed that the total input amount and the total  
output amount are equal, that is within expectations.  
However, the average RCR is only 58.7%. It is  
J
Ku Y., Chen C.H. Kinetic Study of Copper Deposition on  
Iron by Cementation Reaction, Separation Science and  
Technology. 1992;27:1259-1275.  
suggested that, either  
a
reduction of water  
7. Stefanowicz T., Osińska M., Napieralska-Zagozda S. Copper  
consumption or a water recycling program in the  
cementation reactor should be considered to  
increase the RCR.  
recovery by the cementation method, Hydrometallurgy. 1997;  
4
7:69-90.  
8
9
.
.
Dib A., Makhloufi L. Cementation treatment of copper in  
wastewater: mass transfer in a fixed bed of iron spheres,  
Chemical Engineering and Processing: Process Intensification.  
Though the copper content in the waste copper-bearing  
solution produced by the through-hole micro-etching  
process of PCBs is low (< 50 g/L), the cementation  
technology is capable of recovering the copper and ferrous  
sulphate solution. Therefore, the result of this study is  
beneficial to shorten the gap between theoretical and  
practical operations, as well as to diversify the technology  
in waste treatment that is positive to industrial waste  
reduction and resource sustainability.  
2
004;43:1265-1273.  
I. Birloaga and F. Vegliò, Waste Electrical and Electronic  
Equipment Recycling Waste Electrical and Electronic  
Equipment Recycling: Aqueous Recovery Method, 4-  
Hydrometallurgical processing of waste printed circuit boards,  
Woodhead Publishing Series in Electronic and Optical  
Materials, (2018), pp. 95-113.  
1
0. Environmental Analysis Laboratory, Metal analysis using  
flame atomic absorption spectrophotometer. 2012. NIEA  
M111.01C, Taiwan.  
2
93  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 289-294  
1
1. Lamya R.M., Lorenzen L. A study of factors influencing the  
kinetics of copper cementation during atmospheric leaching of  
converter matte. J the South African Institute of Mining and  
Metallurgy. 2005;105:21-27.  
15. Kokes H., Morcali M.H., Acma E. Dissolution of copper and  
iron from malachite ore and precipitation of copper sulfate  
pentahydrate by chemical process. Engineering Science and  
Technology. 2014;17:3944.  
1
1
1
2. Guerar E. A study of the factors affecting copper cementation  
of Gold from Ammoniacal thiosulphate solution, MS Thesis.  
16. Sousa S., Carvalho J.R., Correia M.J.N. Cadmium Removal  
from Industrial Effluents by Cementation with Zinc Powder.  
Int J Environment and Waste Management, 2012;9:284-292.  
17. Stankovi V., Šerbula S., Jan~eva B. Cementation of copper  
onto brass particles in a packed bed. J Mining and Metallurgy.  
2004; 40(B):21-39.  
18. Ekmekyapar A., Tanaydin M., Demirkiran N. Investigation of  
copper cementation kinetics by rotating aluminum disc from  
the leach solutions containing copper ions. Physicochemical  
Problems of Mineral Processing. 2012;48:355-367.  
1
997. University of British Coloumbia. Canada.  
3. Pal P., Nazim M., Dutta, B. K., AlShoaibi A. Copper  
Deposition and Formation of Nano-Particles. Separation  
Science and Technology.2014; 49:2728-2733.  
4. Umeda H., Sasaki A., Takahashi K., Haga K., Takasaki Y.,  
Shibayama A. Recovery and Concentration of Precious Metals  
from Strong Acidic Wastewaters. Materials Transactions.  
2
011;52:1462-1470.  
1
9. Khudenko B.M. Mechanism and kinetics of cementation  
processes. Water Science & Technology. 1985;17:719-731.  
2
94