Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 341-348  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
CO Removal from Gas Mixtures by Aqueous  
2
Solutions of MEA and (MEA+AEEA) and  
Results Comparing Using the Modified Kent-  
Eisenberg Model  
1
2
Nasibeh Alishvandi , Alireza Jahangiri  
1- Chemical Engineering Department, Jami Institute of Technology, Isfahan, Iran  
2- Faculty of Engineering, Shahrekord University, Shahrekord, Iran  
Received: 12/01/2019  
Accepted: 24/06/2019  
Published: 01/12/2019  
Abstract  
Considering the growing importance of alkanolamine aqueous solvents in gas refineries or other powerhouses, it is  
essential to achieve the appropriate solution for CO absorption. This requires to produce systematic vapor-liquid  
equilibrium data in a wide range of temperature, CO partial pressure and different alkanolamines concentration. In this  
research with the application of equilibrium pilot plant in local atmospheric pressure, CO solubility data have been reported  
in MEA solvent and its blend with AEEA in temperatures (303, 313 and 323) K, CO partial pressures of (8.44, 25.33 and  
2.22) kPa, concentrations of 12 wt% for MEA and (12+1, 12+2 and12+3) wt% for (MEA+AEEA). The measured solubility  
2
2
2
2
4
was then predicted by the theoretical model of modified Kent Eisenberg. The constant parameters of the apparent  
equilibrium for the porotonation and carbamate reaction in the Modified Kent Eisenberg model were optimized with the  
2 2  
MATLAB software. It was conclude that CO solubility values in all the studied experiments increased with increasing CO  
partial pressure while increasing temperature and solvent concentration decreased the solubility. The comparison between  
the CO absorption into the MEA solvent alone and AEEA activated MEA shows that (MEA+AEEA) blend in compare to  
2
2
the single MEA has a higher CO loading. Also %AAD values for the solubility of MEA and (MEA+AEEA) were found to  
be 3 and 17.28 respectively.  
Keywords: CO  
2
solubility, MEA, AEEA, Modified KentEisenberg model, correlation  
1
energy consumption in recycling, and requirement of  
large volume of absorption. Hence, it is greatly essential  
to find a new solvent compound with low energy demand  
1
Introduction  
Industrialization and rapid population growth during  
the previous century have led to further contaminations  
on planet earth. CO is one of the major gases released  
from chimneys of factories and exhaust of vehicles and is  
regarded among the critical industrial concerns (1). CO  
can be collected from gas mixtures through several  
different methods including chemical-physical  
absorption, selective absorption by means of solid  
absorbent, and membrane separation (2). Among these  
technologies, chemical absorption using aqueous  
alkanolamine solution is the most developed and reliable  
one. Among the alkanolamine solutions, MEA is the  
most popular and common solvent among the available  
solvents and one of the most conventional amines used  
and acceptable cost-effectiveness. For higher CO  
2
2
solubility, activators such as AEEA, PZ, and HMDA can  
be used as well. AEEA is a di-amine containing a first  
type and a second type amine group. This composition  
2
causes AEEA to have a good potential for CO  
absorption. In (CO -AEEA-H O) system, CO  
2
2
2
2
simultaneously reacts with both amine groups present in  
the molecular structure of AEEA. Daniel Bonenfant et al.  
3) demonstrated that AEEA has the greater capacity of  
CO absorption compared to MEA whereas its CO  
2
2
desorption capacity is lower than MEA. Also in another  
study (4), the researchers analyzed the absorption  
capacities of CO  
mixture with MDEA and TEA solvents. Zoghi et al. (5)  
measured absorption capacity of CO gas at high partial  
2 2  
and H S in AEEA solution and its  
2
for CO absorption from natural gases or mixture of  
gases. Compared to other amine solvents. This solvent  
has the highest absorption rate of acidic gases. Low  
molecular weight, low absorption of hydrocarbons, and  
high alkalinity are among its other advantages (2).  
However, certain important challenges exist in utilization  
of MEA like high corrosion rate of equipment, high  
2
pressures and reported effect of addition of AEEA as  
activator to MDEA solution. Mondal & Bajpai (6)  
studied CO solubility in combination of DEA and  
2
AEEA solutions. Their results indicated that increase in  
molar fraction of AEEA in the solvent mixture led to an  
2
increase in CO solubility, the same trend was observed  
with increase of partial pressure. It is essentially  
necessary to have knowledge about gas  liquid  
Coressponding author: Dr. Alireza Jahangiri, Faculty  
of Engineering, Shahrekord University, Shahrekord, Iran.  
E-mail: jahangiritmu@gmail.com.  
341  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 341-348  
equilibrium of acidic gases in alkanolamines. Therefore,  
of CO  
2
. The respective system consists of the following  
a
practical thermodynamic model is required; the  
elements as illustrated in Figure 1.  
respective model is supposed to be capable of  
comprehensively and accurately predicting solubility  
under different conditions of temperature, pressure,  
amine concentration, and acidic gas loading. The most  
notable instances of such models include: Kent and  
The research method is explained as follows; water  
temperature is fixed at a specific value, then the mercury  
vessel attached to the gas burette is lowered by means of  
the jack. The capsule valve is opened to fill the apparatus  
by the tested gas. Subsequently, the gas inlet valve is  
closed and the gas will be pressurized inside the burette  
by moving the mercury vessel upwards by means of the  
movable jack and blocking the gas outflow by water.  
Then, the valve of burette containing solvent is opened  
so as to let the solvent enter the spiral tube. The internal  
pressure of apparatus will be reduced proportional to the  
amount of gas dissolved into the solvent. The pressure  
drop is compensated by raising the mercury vessel in  
order to carry out the experiment at constant pressure.  
Pressure is adjusted using the height variations of the  
solution in two arms of the U-shaped tube. The molar  
volume of the dissolved gas is computed via the equation  
of state of ideal gas (Equation (1)):  
Eisenberg, Deshmukh Mather, electrolyte-NRTL  
derived from Chen & Evans and extended UNIQUAC  
7). In this research, the performance of MEA and AEEA  
mixture in the CO absorption was investigated at  
2
different operating conditions. Also, the Kent Eisenberg  
thermodynamic model was used based on the  
experimental data. The model parameters were optimized  
using a rigorous optimization method by minimizing an  
objective function.  
2
Materials and Methods  
2
.1 Materials  
Sample solutions of MEA (purities > 99.5 mass %)  
and AEEA (purities > 98.0 mass %) were obtained  
from Merck Co. The mixture of CO (purity > 99.9 mol  
), and nitrogen (N ) (purity > 99.6 mol %) was  
2
P  
RT  
(1)  
%
2
purchased from ISFAHAN GAS Co; and all of the  
solutions were prepared with deionized water.  
And through Equation (2), number of CO  
determined by dividing the recorded volume in the  
laboratory to the acquired molar volume:  
2
moles will be  
2.2 Apparatus and Experimental Procedure  
The solubility system used in the present project for  
conducting the experiments is analogous to the stems  
utilized by jahangiri et al. (8-11) for acquiring solubility  
V
n   
(2)  
Figure. 1 Schematic diagram of the solubility apparatus  
342  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 341-348  
Equation (3) is used to calculate the number of moles  
of the solvents consumed in a multi-component mixture:  
3
Modified Kent-Eisenberg Model  
& Eisenberg (12) developed  
Kent a simple  
thermodynamic model for prediction of equilibrium data  
in (Amin + H O + CO ) systems using apparent  
Vd  
2
2
nt   
(3)  
equilibrium constants. In the respective model, activity  
coefficients of all substances present in equilibrium  
reactions is assumed equal to 1 and non-ideality of  
system is incorporated into the equilibrium constants and  
are modified as tuning parameters (13). The gaseous  
phase is assumed as ideal taking into account the values  
obtained for compressibility coefficient, and of course,  
low overall pressure of 1 atm (14).  
MW  
where “V” is volume, d is density, and Mw is the  
molecular mass. “n is total number of models  
consumed from the mixture of solvents and it can be  
w i  
written. In the equations above, x , d , and (M )  
t
i
i
respectively denote molecular percentage of solvent “i”  
in the mixture, density of solvent “i”, and molecular  
mass of solvent “i”. Having values of CO  
2
. This  
3.1 Model Framework  
procedure is resumed until certain volume of gas is  
consumed and the consumed volume is read from the  
3.1.1 Physical and chemical equilibria  
2
into an amine solution  
includes both phase and chemical equilibria. The gas  
phase CO first dissolves into the aqueous phase:  
The absorption of CO  
scaling burette. The CO  
2
loading can be determined  
using Equation (4):  
H
CO  
2
molco2  
molamine  
  
(5)  
CO (g)  
CO (aq)  
2
  
co2  
(4)  
2
The dissolved CO  
2
undergoes a series of chemical  
reactions and forms various ionic species. For  
MEA+AEEA) blends, the following reactions are  
(
considered:  
K
1
  
(6)  
(7)  
Dissociation of water : H O  
H  OH  
2
  
K
2
3
  
Dissociation of carbon dioxide: CO  H O  
HCO  H  
2
2
  
K
3
2  
  
(8)  
Dissociation of bicarbonate ion: HCO3  
CO3  H  
  
K
4
MEA H  
  
(9)  
Dissociation of protonated MEA: MEAH  
  
K
5
  
(10)  
(11)  
(12)  
Formation of carbamate MEA: MEA  HCO3  
MEACOO  H O  
  
2
K
6
AEEA H  
  
Dissociation of monoprotonated AEEA: AEEAH  
  
K
7
  
Dissociation of diprotonated AEEA: HAEEAH  
AEEAH  H  
  
K
8
   
AEEACOO  H ,  
P
  
Formation of carbamates : AEEA  CO2  
  
(
(
13)  
14)  
K
9
S
  
AEEA CO2  
AEEACOO  H  
  
K
10  
P
  
Dissociation of protonated carbamates:  
HAEEACOOP  
AEEACOO  H  
  
K
11  
S
  
HAEEACOOS  
AEEACOO  H  
  
K12  
P
S
  
(15)  
Formation of dicarbamate : AEEACOO  AEEACOO  2CO  
2 OOCAEEACOO  2H  
2
  
Jacobsen et al.(15) proposed the governing equations  
of AEEA-CO -H O system using NMR equations. Based  
2 2  
on the respective equations, there exist diverse ion  
components in the solution. AEEA is composed of two  
groups of primary and secondary amines. Nevertheless, it  
reacts similar to monoamines. Its difference is in gas  
absorption capacity and also larger number of its  
components that formed in comparison with  
monoamines. According to the test performed by  
Jacobsen & Mamun, 14 components have the possibility  
to be present in the aqueous solution of system.  
343  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 341-348  
P
S
P
S
AEEA, AEEAH , HAEEAH , AEEACOO , AEEACOO , HAEEACOO , HAEEACOO , OOCAEEACOO  
3
2  
3
,
CO , HCO ,CO , H O, H ,OH  
2
2
In addition to the above equations, the following equations also apply to the system:  
Electoroneutrality :  
3
2  
3
P
S
[
MEAH ][AEEAH ][H ] 2[ HAEEAH ] [HCO ] 2[CO ][AEEACOO ][AEEACOO ][MEACOO ][OH ]  
   
2[ OOCAEEACOO ]  
CO balance:  
2
 2       
[MEA  AEEA]total [CO ][HCO ][CO ][AEEACOO ][AEEACOO ][ HAEEACOO ][ HAEEACOO ]  
2 3 3 P S P  
    
S
[
MEACOO ][ OOCAEEACOO ]  
MEA balance:  
   
MEA] [MEA][MEAH ][MEACOO ]  
t
[
AEEA balance:  
P
S
P
S
[
AEEA]  [AEEA][AEEAH ][AEEACOO ][AEEACOO ][ HAEEACOO ][ HAEEACOO ][ HAEEAH ]  
t
   
[ OOCAEEACOO ]  
The vapor liquid equilibrium for CO (HenryLaw):  
2
P
 HCO2 .[CO2 ]  
CO  
2
where HCO2 and PCO2 are the Henry’s constant and partial  
pressure of CO , respectively. Chemical equilibrium  
constant is taken as a function of temperature and  
expressed as in Equation (16). The values of parameters  
A, B, C, and D for each reaction are specified in Table  
represented in the values of functions Kꞌ  
8
and Kꞌ10. It  
2
must be noted that in this method only values of  
parameters Kꞌ and Kꞌ are modified using optimization of  
8
8
proposed parameters, and, for the rest of reactions, the  
same initial equilibrium constants are used. The objective  
function used here has been selected based on difference  
of values of the calculated molar load and the molar load  
acquired from experimental results. The value of molar  
load is calculated via Equation (17). The stages of  
solving Kent Eisenberg model are depicted in Figure 2.  
(
1).  
A
2 = 푒푥( T +퐵푙푛푇+ꢀ푇+)  
(16)  
In the modified Kent-Eisenberg model, by adding a  
function in terms of partial pressure, concentration, and  
temperature as a function of K and K10 equilibrium  
constants, non-ideality effect can be somehow  
8
8
 =  퐹,  = 10  
F = exp ( +  / T(K) +  /T(K) +  푙푛 (P (kpa))+  ( (kpa))+ c [MEA]+  [AEEA])  
8
10  
1
3
1
CO2  
퐶푂2  
1
Table 1: Henry's constant and equilibrium constant parameters used in the KentEisenberg model for reactions (5)  (15)  
A
B
C
0
0
0
D
K
K
K
K
K
K
K
K
K
K
K
K
1
-13445.9  
-12092.1  
-12431.7  
-17.3  
-1545.3  
-5865.15  
-5074.99  
4208.91  
17375.05  
18119.88  
-25591.42  
-2169.54  
-8477.711  
-22.4773  
-36.7816  
-35.4819  
0
0
0
0
0
0
0
0
0
140.932  
235.482  
220.067  
-38.846  
2.151  
0.9609  
4.7738  
-31.136  
-63.297  
-76.993  
63.6  
2
3
4
0.05764  
0
0
0
0
0
0
0
5
6
7
8
9
10  
11  
12  
0
2.743  
155.1699  
2  
-21.9574  
0.005780  
344  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 341-348  
2  
[
CO ]  [HCO ]  [CO ]  [MEACOO ]  [AEEACOO ]  [AEEACOO ]  [ HAEEACOO ] [ HAEEACOO ] [ OOCAEEACOO ]  
2
3
3
P
S
P
S
(
17)  
Calc  
[
MEA  AEEA]t  
Figure 2: Computational algorithms using Kent-Eisenberg model based on simultaneous solution of non-linear equations  
O) system. Comparison of the measured loading  
H
2
4
Results and Discussion  
8
Kꞌ (equilibrium constant of amine protonation  
values and calculated loading values using the modified  
Kent-Eisenberg model and absolute error percentage for  
each of the data are provided in Table (3).  
reaction) and Kꞌ10 (equilibrium constant of carbamate  
production) were optimized by the experimental date of  
In the present research, solubility data of CO2  
absorption by MEA and (MEA+AEEA) were measured  
at different temperatures, partial pressure, and  
concentrations by CO2 absorption system at local  
atmospheric pressure. The results were reported in Table  
(3) and Figure (3 (A, B, C)). The diagrams were similar  
to one another for different temperatures, partial  
pressure, and concentrations (each one individually).  
And for the same reason, illustration of all diagrams is  
skipped here.  
CO  
2
solubility in MEA solution. The acquired  
coefficients are included in Table (2). Average absolute  
error of model is determined via the equation (18):  
n
1
(18)  
%
AAD  n  
calculated experimental 100  
i1  
According to Equation (18), average absolute error of  
Kent-Eisenberg model compared to experimental data  
was predicted equal to 17.28% for (MEA-AEEA-CO  
2
-
345  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 341-348  
8
Table 2: Optimized coefficients of Kꞌ and Kꞌ10 equilibrium constants  
a
1
a
2
a
3
b
1
b
2
c
1
c
2
-0.789  
-3.866  
1.0575  
4.1444  
0.1942  
4.4854  
0.0185  
-1.0996  
2.3147  
4.9750  
-4.3255  
3.3813  
1.5214  
3.5043  
8
1  
0
2
Table 3: Experimental and calculated loading of CO in the aqueous solution of MEA and MEA+AEEA at different  
operating conditions  
CO  
2
Loading (α)  
Exp.  
Calc.  
AD%  
Exp.  
Calc.  
AD%  
Exp.  
Calc.  
AD%  
Exp.  
Calc.  
AD%  
MEA (12 wt %) , AEEA (1  
wt %)  
MEA (12wt%) , AEEA  
(2wt%)  
MEA (12 wt %)  
MEA (12 wt %) , AEEA (3 wt %)  
T=303 K, PCO2=8.44 kPa  
0
.01  
3
0
0
.015  
0.043  
0.034  
2.81  
2.15  
0.012  
0.367  
0.367  
0.366  
0.06  
35.54  
0.012  
0.368  
36.94  
37.12  
37.76  
4.95  
0.393  
0.395  
0.394  
0.052  
0.041  
0.0333  
0.086  
0.068  
38.04  
38.39  
39.16  
5.48  
T=313 K, PCO2=8.44 kPa  
.012  
0.01  
1
0
.009  
35.79 0.038  
T=323 K, PCO2=8.44 kPa  
0.011  
0
0
0
.00  
3
0
0
0
0
.006  
.142  
.125  
.085  
0.028  
0.129  
0.102  
0.083  
0.216  
0.17  
2.16  
1.31  
2.35  
0.21  
5.44  
6.02  
3.4  
0.005  
0.103  
0.091  
0.085  
0.182  
0.172  
0.161  
36.14 0.038  
T=303 K, PCO2=25.33 kPa  
0.004  
.10  
7
4.35 0.056  
T=313 K, PCO2=25.33 kPa  
0.105  
.08  
9
0.047  
0.038  
0.01  
4.38  
0.09  
0.044  
4.63  
4.84  
T=323 K, PCO2=25.33 kPa  
0
.07  
9
4.68  
0.036  
4.32  
0.073  
0.216  
0.186  
0.135  
3.97  
T=303 K, PCO2=42.22 kPa  
0
.19  
5
0
.27  
.23  
8.29  
0.092  
10.27  
11.12  
8.62  
12.99  
11.81  
7.98  
T=313 K, PCO2=42.22 kPa  
0
.18  
4
0
0.078  
9.32  
0.073  
T=323 K, PCO2=42.22 kPa  
0
.14  
5
0
.172  
0.138  
0.064  
9.76  
0.059  
0.055  
%
AAD= 3.17  
%AAD = 16.47  
%AAD = 17.3  
%AAD = 18.07  
4
.1 Effect of temperature for the systems of (MEA-  
AEEA-H O-CO  
Effects of temperature variations on CO  
2
solution showed that CO solubility is improved by  
2
2
)
increasing the partial pressure. In Table (3), for the  
(MEA + AEEA) mixture at partial pressure of 8.44, the  
loading value calculated by the model was largely  
different from the value acquired from experimental data.  
It can be therefore asserted that the model does not  
provide good prediction for this solution at low partial  
pressure.  
2
loading  
values are illustrated in Figure (3(A)). It is clear that  
loading trend declines with increasing temperature. This  
decline is reasonable taking into account the exothermic  
reaction because gas dissolution in liquid is normally  
exothermic. Accordingly, the temperature increase  
applied to the solution causes a change in the system and  
shifts the system toward the reactants so as to reduce this  
change. As a result, equilibrium concentration of gaseous  
phase will increase and gas solubility will decrease.  
Chao Guo et al. (18) Mondal & Bajpai (6) and Kim &  
Sevendsen (19) demonstrated that AEEA acts like amine  
solvents, and as a result, temperature increase for this  
solvent will lead to reduction of molar load.  
4.3 Effect of concentration for the systems of (MEA-  
AEEA-H O-CO )  
2 2  
Reviewing the experimental results provided in Table  
(3) and Figure (3(C)), it is observed that addition of  
AEEA to MEA at temperatures of 303 K and 313 K  
2
results in increase of CO loading (it increases less at  
temperature of 313 K), and also at the temperature of 323  
K, increase of loading is observed at the temperature of  
323 K with addition of AEEA in the first step and then a  
reduction of loading happens. This is indicative of the  
fact that solubility value declines at very high  
temperatures of AEEA. It can be also inferred that AEEA  
at high temperatures has a high absorption up to a certain  
concentration and the decline after the respective value  
might be attributed to release of carbamate ion at high  
temperatures.  
4
.2 Effect of partial pressure for the systems of (MEA-  
AEEA-H O-CO  
Figure (3(B)) indicates that CO  
2
2
)
2
solubility in the  
solution increases with increasing partial pressure at any  
temperature. This trend signifies that gas concentration  
will rise in liquid phase and hence, solubility will  
increase. For instance, Mondal & Bajpai (6) and also  
Najafloo et al. (20) in their research works for AEEA  
346  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 341-348  
0.23  
0.21  
0.19  
0.17  
0.15  
0.13  
0.11  
(
B)  
(
A)  
PCO = 42.22 kPa  
T = 323 K  
2
5
0
C = %12MEA  
C =  
C = %12MEA  
C =  
%
12MEA+%1AEEA  
%
12MEA+%1AEEA  
5
300  
305  
310  
315  
320  
325  
0
0.05  
0.1  
0.15  
0.2  
Temprature (K)  
Loading (mol CO /mol Amine)  
2
0
.24  
.22  
.2  
(
C)  
PCO2 = 42.22 kPa  
0
0
0
0
0
0
.18  
.16  
.14  
.12  
T = 303  
T = 313  
T = 323  
0
.1  
%12  
%12+%1  
%12+%2  
%3  
Concentration (gr)  
loading for (MEA-AEEA-CO  
Figure 3: effect of operating conditions on CO  
2
2
2
-H O) system based on:  
(
A): Temperature, (B) CO Partial pressure, (C): Solvent concentration  
2
The conclusions derived from the present research can be  
summarized as below:  
With increasing concentration of AEEA in (MEA-  
AEEA-CO -H O) system, solubility of CO gas increases  
at temperatures of 303 and 313 K but decreases at  
temperature of 323 K. The reason is due to release of  
carbamate ion.  
5
Conclusions  
In the present research, first the measured data of  
solubility and (MEA+AEEA) mixture were  
*
CO  
2
2
2
2
experimentally determined and calculated at weight  
concentrations of 12% for MEA and weight  
concentrations of (12+1), (12+2) and (12+3) wt% for  
(
3
MEA+AEEA) mixture at temperatures of 303, 313 and  
23 K, and partial pressures of 8.44, 25.33, and 42.22  
*
(
The experimental data of CO  
MEA+AEEA) mixture was modeled by means of Kent-  
Eisenberg model as well and the value of average  
2
gas solubility in  
kPa Then, the vapor  liquid equilibrium data were  
modeled using modified Kent  Eisenberg model.  
347  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 341-348  
absolute error for (MEA-CO  
CO -H O) system were predicted equal to 3.17 and  
7.28, respectively.  
2
-H  
2
O) and (MEA-AEEA-  
CO2 partial pressure capturing: New experimental  
and theoretical analysis. Energy. 2018;165:164-78.  
11. Niknam H, Jahangiri A, Alishvandi N. Removal of  
CO2 from gas mixture by aqueous blends of  
monoethanolamine + piperazine and thermodynamic  
analysis using the improved kent eisenberg model.  
Journal of Environmental Treatment Techniques.  
2
2
1
Reference  
1
. Grimston M, Karakoussis V, Fouquet R, Van der  
Vorst R, Pearson P, Leach M. The European and  
global potential of carbon dioxide sequestration in  
2
019;7(1):158-65.  
2. Kent RL. Beter data for amin treating.  
Hydrocarbon processing. 1976.  
3. Zoghi AT, Feyzi F, Dehghani MR. Modeling CO2  
solubility in aqueous N-methyldiethanolamine  
solution by electrolyte modified PengRobinson plus  
1
1
tackling  
climate  
change.  
Climate  
policy.  
2001;1(2):155-71.  
2
3
. Shafeeyan MS, Daud WMAW, Shamiri A. A review  
of mathematical modeling of fixed-bed columns for  
carbon dioxide adsorption. Chemical engineering  
research and design. 2014;92(5):961-88.  
. Bonenfant D, Mimeault M, Hausler R. Comparative  
analysis of the carbon dioxide absorption and  
association equation of state. Industrial  
Engineering Chemistry Research. 2012;51(29):9875-  
5.  
&
8
1
1
4. Le Tourneux D, Iliuta I, Iliuta MC, Fradette S,  
Larachi F. Solubility of carbon dioxide in aqueous  
recuperation  
capacities  
in  
aqueous  
2-(2-  
aminoethylamino) ethanol (AEE) and blends of  
aqueous AEE and N-methyldiethanolamine solutions.  
solutions  
of  
2-amino-2-hydroxymethyl-1,  
3-  
propanediol. Fluid Phase Equilibria. 2008;268(1):121-  
Industrial engineering chemistry research.  
&
9.  
2005;44(10):3720-5.  
5. Jakobsen JP, da Silva EF, Krane J, Svendsen HF.  
NMR study and quantum mechanical calculations on  
the 2-[(2-aminoethyl) amino]-ethanolH 2 OCO 2  
4
5
. Bonenfant D, Mimeault M, Hausler R. Estimation of  
the CO2 absorption capacities in aqueous 2-(2-  
aminoethylamino) ethanol and its blends with MDEA  
and TEA in the presence of SO2. Industrial &  
Engineering Chemistry Research. 2007;46(26):8968-  
system.  
008;191(2):304-14.  
6. Larbia DM, Azeddine K. Vapour-Liquid  
Equilibrium Prediction of Carbon Dioxide in an  
Aqueous Alkanolamine Solution Using Deterministic  
and Stochastic Algorithms. 2015.  
7. Zoghi AT, Feyzi F, Zarrinpashneh S. Equilibrium  
solubility of carbon dioxide in a 30wt.% aqueous  
solution of 2-((2-aminoethyl) amino) ethanol at  
pressures between atmospheric and 4400kPa: An  
experimental and modelling study. The Journal of  
Chemical Thermodynamics. 2012;44(1):66-74.  
Journal  
of  
Magnetic  
Resonance.  
2
1
1
71.  
. Zoghi AT, Feyzi F. Equilibrium solubility of carbon  
dioxide in aqueous 2-((2-aminoethyl) amino) ethanol  
and N-methyldiethanolamine solution and modeling  
by electrolyte mPR-CPA EoS. The Journal of  
Chemical Thermodynamics. 2013;67:153-62.  
6
7
. Bajpai A, Mondal MK. Equilibrium Solubility of  
CO2 in Aqueous Mixtures of DEA and AEEA.  
Journal of Chemical  
013;58(6):1490-5.  
&
Engineering Data.  
2
18.  
Guo C, Chen S, Zhang Y. Solubility of carbon  
. Amin Ale-Ebrahim Dehkordi AJ, Amirreza  
Talaiekhozani, A.Heidari Semiromi. Pilot-Scale  
Evaluation of CO2 Loading Capacity in AMP  
Aqueous Solution beside the Improvers HMDA-NH3  
under a Series of Operational Conditions. J Environ  
Treat Tech 2018;6(4):74-80.  
dioxide in aqueous 2-(2-aminoethylamine) ethanol  
(
AEEA) solution and its mixtures with N-  
methyldiethanolamine/2-amino-2-methyl-1-propanol.  
Journal of Chemical Engineering Data.  
013;58(2):460-6.  
&
2
1
2
9. Kim I, Svendsen HF. Heat of absorption of carbon  
dioxide (CO2) in monoethanolamine (MEA) and 2-  
8
9
1
. Jahangiri A, Pahlavanzadeh H, Mohammadi A.  
Modeling of CO2 Removal From Gas Mixture by 2-  
amino-2-methyl-1-propanol (AMP) Using the  
Deshmakh-Mather Model. Petroleum Science and  
Technology. 2014;32(16):1921-31.  
. Jahangiri A, Pahlavanzadeh H, Mohammadi A. The  
Modeling of CO2 Removal From a Gas Mixture by 2-  
amino-2-methyl-1-propanol (AMP) Using the  
Modified Kent Eisenberg Model. Petroleum Science  
and Technology. 2014;32(9):1104-13.  
(
aminoethyl) ethanolamine (AEEA) solutions.  
Industrial engineering chemistry research.  
007;46(17):5803-9.  
&
2
0. Najafloo A, Zoghi AT, Feyzi F. Measuring solubility  
of carbon dioxide in aqueous blends of N-  
methyldiethanolamine and 2-((2-aminoethyl) amino)  
ethanol at low CO 2 loadings and modelling by  
electrolyte SAFT-HR EoS. The Journal of Chemical  
Thermodynamics. 2015;82:143-55.  
0. Hassankiadeh MN, Jahangiri A. Application of  
aqueous blends of AMP and piperazine to the low  
348