Journal of Environmental Treatment Techniques  
2019, Volume 4, Issue 3, Pages: 357-363  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Characterization of Highly Active Keratinase  
Procuder Bacillus cereus KK69 for Biological  
Degradation of Feather Waste  
Kerem Kaya, Emrah Nikerel*  
Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul, Turkey  
Received: 20/07/2019  
Accepted: 05/08/2019  
Published: 01/12/2019  
Abstract  
A Bacillus cereus species, with highly active keratinase have been isolated from chicken feather waste. The keratinase is used  
to valorise feather containing approximately 90% protein, mostly keratin which is hard-to-degrade and insoluble in water. Although  
there are many old methods for decomposing feather such as incineration, burying, and chemically, enzymes have shown that are  
to be useful. This study focuses on characterizing the microorganism and its keratinase enzyme where the microorganism that  
produces enzyme can degrade more than 90% of the initial chicken feather in 2 days. Optimum working conditions of the enzyme  
is determined. Enzyme shows maximum activity at pH 9 and 50ºC. Bioinformatic analysis of Bacillus cereus KK69 genome  
revealed that there are many possible proteases for degradation of feather. Comparing to literature, this microorganism have  
displayed that produces highly active keratinase. Beside proteases, industrially important other enzymes also have been screened  
from annotations.  
Keywords: Bacillus cereus, industrial biotechnology, chicken feather degradation, protease, keratinase enzyme  
1
equipped with genetic material encoding the enzyme of  
1
Introduction  
interest using well-established protocols of recombinant  
DNA technology. Complementary to this, natural producers,  
isolated usually from extreme environments are important to  
unravel the genetic diversity present in nature, are highly  
specific to its substrate and their enzyme production is  
relatively inexpensive. Isolates either should possess desired  
properties of production hosts or these should provide  
unique and useful genetic material. Industrial workhorses  
should grow fast, be safe and “easy-to-cultivate”, produce  
fast with minimal by-products, sustain to harsh bioprocess  
conditions and should not produce toxic side products during  
fermentation. Especially with the advent of genome editing  
technologies, the efficiency of bioprocesses greatly  
improved [6, 7]. Additionally, using advanced approaches  
such as directed evolution [8] potentially increases product  
yield of natural hosts.  
Enzymes are the Swiss-army-knives of (industrial)  
biotechnology for sustainable bio-economy. They are used  
for various applications such as food, feed, waste  
management, detergents, pulp and paper, dairy, textile, etc.  
[
1]. For this, industrially important enzymes represent a  
significant-market, nearly $4.6 billion in 2014, $4.9 billion  
in 2015, and $5.0 billion in 2016 and by 2021 the market is  
expected to reach $6.3 billion [2]. In several applications,  
enzymes have shown to be an “alternative technology” in  
industry. For instance, in detergent industry enzymes  
(
protease, lipase, amylase, and cellulase) have had been used  
to place surfactants (ethoxylated alcohol, linear alkyl  
benzene sulfonate and sodium soap), resulting saving energy  
due to low temperature operation and being environmentally  
benign [3]. Green(er) industry concepts, wide industrial  
application areas are using enzymes as an alternative [4, 5],  
and economic concerns lead global enzyme market to grow  
every year.  
Microbial production of enzymes is performed using  
either natural hosts or available industrial host cells, also  
referred as “workhorses” e.g. Escherichia coli,  
Saccharomyces cerevisiae, Aspergillus niger, typically  
World population and nutritional demand is increasing  
day-by-day. As one result of this, poultry consumption  
increases every year, resulting further in poultry waste. Due  
to Food and Agriculture Organization statistical database  
(
FAOSTAT, [9]), in last 55 years world live poultry amount  
of stock increased around 20.47 billion per annum  
*Corresponding Author: Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul,  
Turkey. E-mail: emrah.nikerel@yeditepe.edu.tr.  
357  
Journal of Environmental Treatment Techniques  
2019, Volume 4, Issue 3, Pages: 357-363  
worldwide (1961, 4.35 billion; 2016, 24.82 billion) Feather  
waste is hard-to-dispose, becomes a significant pollution  
problem, since it potentially contains pathogenic  
microorganisms, and has effluvium for local area [10].  
Feather contains up to 90% by weight keratin [11] which is  
a structural protein present in several life forms for  
protection and covering via skin, wool, fur, baleen, hair,  
spines, quills; defence and aggregations via horns, claws,  
nails, beaks, teeth, slimes; motions via hooves and feathers  
300 µL samples were taken from the saline solution and  
transferred to feather containing agar plates. The feather  
plates were prepared by using (in g/L): NaCl (0.5), KH  
2 4  
PO  
(1.4), K HPO (0.7), MgSO (0.1), chicken feather (10), and  
2
4
4
agar (10) at pH 7.2. After two days of incubation at 37°C,  
colonies were streaked to Tryptic Soybean Agar (TSA)  
plates for observing single colonies. Liquid media to produce  
the keratinase enzyme, as well for degradation of feather in  
broth was prepared similar to feather agar, except omitting  
agar. Inocula of isolated selected bacteria for culture media  
were grown in Tryptic Soybean Broth (TSB, HiMedia  
M011). All chemicals used in this work are either from  
Sigma-Aldrich or Merck unless otherwise stated. In all  
fermentations for feather degradation, temperature, initial  
pH and rotation of shaker (New Brunswick™ Innova® 44)  
kept at 37°C, 7.2 and 150 rpm, respectively.  
[
12].  
Conventional feather decomposition is carried out using  
either incineration or burying. Beside these methods, thermal  
13], chemical, and enzymatic hydrolysis is performed [14]  
[
to process feather and reclaim its nutritional value.  
Keratinases or keratinolytic proteases are enzymes  
dominantly noted as serine or metallo-proteases that can  
degrade keratin containing substrates [15]. In its essence,  
keratinases constitutes  
a
sub-group of proteases or  
Table 1: Bacillus sp. literature on feather degradation  
peptidases, which in turn are enzymes that hydrolyse  
proteins or peptides. Keratinases is often extracellularly  
produced but also cell-wall bound [16, 17] and intracellular  
Degradation  
Percentage  
Microorganism  
Time Reference  
Bacillus cereus B5esz  
[16, 18] types have been reported. Microbial sources for  
72.1%  
10 days  
-
[24]  
[40]  
[37]  
producing keratinases are generally isolated from poultry  
wastes, soil, lakes or hot springs [11]. Several fungi are also  
reported to produce keratinase: Aspergillus fumigatus [19],  
Aspergillus oryzae [20], Doratomyces microsporum [21],  
Trichophyton sp. [22]. Alternatively, bacterial keratinases  
are also extensively studied: Bacillus licheniformis [23],  
Bacillus subtilis [24], Bacillus megaterium [25],  
Pseudomonas sp. [26], Thermoanaerobacter keratinophilus  
Bacillus cereus KB043  
Bacillus subtilis FDS15  
78.16%  
79.33 % 21 days  
Bacillus sp.  
FK 46  
Bacillus pumilus FH9  
85%  
7.8%  
5 days  
[39]  
[16]  
9
72 hours  
[27]. Keratinolytic activity is typically measured as percent  
degradation of known initial feather over time. Table 1  
summarizes previous reports on feather degradation (or  
keratinase production) via Bacillus species.  
The keratinase enzyme has been extensively studied for  
its characteristic (e.g. molecular weight) as well as in terms  
of its optimum working conditions, e.g. temperature, pH.  
The reported range for molecular weight is between 18 to  
2.2. Screening of Proteolytic or Keratinolytic Activity  
Skim milk agar was used for primary screening  
proteolytic activity of the isolates, following Alnahdi, 2012  
[30] with minor modifications. Skim milk (100 g/L) and agar  
(20 g/L) are separately prepared, mixed at equal volume and  
autoclaved at 121°C for 5 minutes. The isolates were  
transferred to skim milk agar and the proteolytic activity was  
assessed by visually inspecting the clear zones on the plate.  
Standard protease activity was also measured using Sigma  
Aldrich’s Technical Bulletin [31] based on determination of  
tyrosine released from casein upon hydrolysis with protease.  
130 µL 0.65% Casein solution dissolved in Glycine buffer  
(pH 9) and 25 µL enzyme containing sample is mixed and  
incubated for 10 minutes at 37ºC. This is followed by  
addition 130 µL 110 mM trichloroacetic acid (TCA) and  
incubation of the mixture for 20 minutes at 37ºC. The  
mixture is then centrifuged at 10,000 rpm for 5 minutes.  
Released tyrosine from casein is quantified using Folin’s  
reagent. 250 µL supernatant was added to solution that  
contains 625 µL 500 mM Na CO and 125 µL Folin’s  
Reagent and then incubated for 30 minutes at 37ºC. After  
incubation samples were read at 660 nm in  
spectrophotometer (Thermo Scientific Genesys 10S UV-  
VIS). To correct for tyrosine originating from hydrolysed  
feather, each sample have a read blank that TCA is included  
before casein is added. In addition to the above proteolytic  
activity, keratinolytic activity has been assessed by  
quantifying degraded feather during fermentation relative to  
initially present amount per volume per time.  
2
40 kDa [28], and the optimum working conditions are  
between 6 and 12.5 for pH and mesophilic to thermo stable  
between 40-75°C) for temperature, while seldomly acidic  
(
keratinases has also been reported [28].  
The applications of keratinases is well beyond feather  
decomposition, with various uses in e.g. feed, fertilizer,  
detergent and leather industry, prion degradation, cosmetics,  
and pharmaceutics [29]. Therefore, the isolation,  
identification and characterization keratinase producers  
represents both scientific and industrial significance.  
In the light of the above, the aim of this paper is to report  
firstly the isolation and genomic and biochemical  
characterization of new microorganisms with keratinolytic  
activity. Secondly, the produced enzyme is also  
characterized in its optimum conditions as well as hydrolysis  
kinetics.  
2
3
2
. Material and Methods  
2
.1. Isolation and Growth Media  
Following Cai et al. (2009), isolation of microorganisms  
was performed using 10 g/L of chicken feather added in  
.9% (w/v) NaCl solution and incubated at 37°C for 1 week  
24]. To screen microorganisms with keratinolytic activity,  
0
[
358  
Journal of Environmental Treatment Techniques  
2019, Volume 4, Issue 3, Pages: 357-363  
2
.3. Determination of kinetic parameters for keratinolysis  
3.1. Biochemical characterization of Bacillus cereus KK69  
strain  
푚푎푥  
The kinetic parameters ( and 푣  
) of a standard  
푚푎푥  
Michaelis-Menten equation ( = 푣  
푆/(푆 + 퐾 )) for  
As first step, being the main feature of the new isolate, the  
extent of feather degradation has been characterized (Figure  
2 - Left). Feather degradation over time was measured to be  
up to 82%, 92%, and 93% on 1st, 2nd, and 3rd day  
respectively (Figure 2 - Right), which is far larger than the  
mechanical effect for feather degradation, assessed by  
incubating the feather at same conditions without inoculate,  
as 17% on 3rd day.  
keratinolysis are estimated using kinetic data on feather  
degradation with different initial feather levels. The  
keratinolytic activity vs. initial feather concentration data  
has been fit to the model, using non-linear optimization  
tools, minimizing the squared error between the data and the  
model, corrected for the standard deviation in the  
experimental error, taking thereby the experimentally  
measured variation into account. The initial value for the  
minimization problem has been provided by the calculated  
parameters of a Lineweaver-Burk plot [32].  
2.4. SDS-PAGE for molecular weight determination  
The molecular weight of enzyme’s is estimated by SDS-  
PAGE [33]. Gel, prepared using polyacrylamide resolving  
gel 12% (w/v) and polyacrylamide stocking gels 5% (w/v).  
Coomassie Brilliant Blue R-250 used for staining. The  
resulting bands on SDS-PAGE is used to determine the  
molecular weight of the protein, which is estimated with  
Pageruler™ Prestained Protein Ladder (Thermo Scientific  
26617).  
Figure 2: Typical feather degradation in two days. (Left) Conditions:  
37°C, 150 rpm; 50 mL working volume, 20 g/L feather and (Right)  
the extent of feather degradation as percentage of feather over days.  
2
.5. Whole Genome Sequencing and Bioinformatics  
analyses  
Whole genome of isolated microorganism is obtained  
Later, the effect of initial feather concentration as  
substrate on the hydrolysis kinetics is assessed, which  
yielded typical Michaelis-Menten type curve (Figure 3 -  
Top). Using the resulting hydrolysis data (Figure 3 -  
Bottom), the parameters of the irreversible Michaelis-  
Menten equation are estimated as Km is 14.4 gFeather /L and  
Vmax is 0.60 gFeather/L/hr.  
The feather degradation experiments were followed by  
standard protease activity assays to assess the effect of  
hydrolysis time, pH and temperature on protease activity. In  
doing so, we first define the standard enzyme production and  
assay conditions as 48h fermentation at 37°C, 150 rpm and  
initial pH 7.2 with 20 g/L initial feather concentration and  
the protease assay as 10 minutes hydrolysis at pH 9 and  
temperature 37°C using casein as substrate. Under these  
conditions, we measured the protease activity to be  
using High Pure PCR Template Preparation Kit (Roche, Cat.  
No: 11 796 828 001). Sequencing is performed by  
microbesNG. (https://microbesng.uk). de novo sequence  
assembly is done using velvet and CLC. Annotation is  
performed servers  
using  
RAST  
(
http://rast.nmpdr.org/rast.cgi, [34]). Upon annotation, the  
resulting gene list is filtered for possible keratinase coding  
genes, including peptidases, proteases, together with the  
corresponding nucleotide sequence. The sequence has been  
translated into amino acid sequence and expected molecular  
weight of the enzyme is calculated taking into account the  
molecular weights of the amino acids and the chain length.  
3
Results and Discussion  
Chicken feather has been incubated in saline solution  
and cultures from this solution have been spread to feather-  
agar, whereby isolated were selected and screened for their  
activities on skim milk agar (Figure 1). Selected isolates  
based o clear-zone assay performance, a single colony was  
selected and tested for its feather degradation performance  
in liquid medium. Preliminary identification of the colony  
via Fatty Acid Methyl Ester (FAME) analysis (data not  
shown) pointed that the isolate was Bacillus cereus.  
0.17±0.02 U/mL. We compare the effect of each process  
variable to this base-case scenario.  
3
.2. Effect of initial feather concentration for protease  
activity  
Protease activity is measured over time on different  
starting feather concentrations. At 80 g/L highest activity  
was measured as 0.909 U/mL (49 h), at 40 g/L 0.669 U/mL  
(
32 h), 20 g/L 0.289 (24 h). Here, it should be noted that,  
available feather consisting mainly of keratin, would result  
in free tyrosine in the medium, upon keratinolytic activity  
from the microorganism. This might interfere with protease  
activity measurements, which are themselves based on  
quantification of tyrosine released from casein upon  
proteolytic activity. Therefore, extra care must be taken to  
take this into account by correctly selecting the blank during  
protease assay.  
Figure 1: Protease activity on skim milk agar. a) 29 b) 44 c) 67 d)  
6
9 numbered isolates  
359  
Journal of Environmental Treatment Techniques  
2019, Volume 4, Issue 3, Pages: 357-363  
Figure 3: (Top) Feather degradation at different initial feather  
concentrations and (Bottom) overall keratinase activity on feather  
degradation, inoculum size 10%, 37°C 150 rpm, 2 days  
3
.3. Effect of Temperature and pH on protease activity  
To assess the effect of pH and temperature on the  
protease activity, a series of standard protease assays were  
performed. Temperatures (20°C, 40°C, 50ºC, 60°C, and  
8
0ºC) were performed. The enzyme exhibited highest  
Figure 4: The effect of process parameters on the proteolytic  
activity. (Top) Initial feather concentration on feather degradation,  
activity at 50ºC (Figure 4) and at 80ºC, no activity was  
measured which shows that it is a mesophilic enzyme. As for  
the pH (7, 8, 9, 10, and 11), highest activity was obtained at  
pH 9 which shows that it is an alkaline protease.  
(Middle) protease assay on temperature and (Bottom) protease assay  
on pH.  
For various DNA segments (including the sequence  
3
.4. Genomic characterization of the keratin degrading  
bacteria  
The isolate has been further characterized by Whole  
coding 16S rRNA), the best match was always various B.  
cereus strains, confirming earlier FAME results. Noting the  
absence of perfect match between the DNA sequence of the  
isolate and the ones at available databases, we conclude that  
the feather degrading isolate was Bacillus cereus is new  
isolate and further name it as Bacillus cereus KK69 strain.  
Lastly, we used RAST server to find compare the genome of  
KK69 strain with previously studied organisms. This further  
confirmed that the isolate is a Bacillus strain, close to  
Bacillus cereus Q1 strain.  
Genome Sequencing. Genomic DNA was isolated and the  
DNA has been sequenced as a service using Illumina HiSeq  
2500 infrastructure. Resulting raw reads (submitted to NCBI  
database with SRA number: SRR7691678) has the average  
GC content of 35.3% and have been de novo assembled  
using CLC Genomics Workbench (with final genome size,  
N50 and L50 numbers being 5.5 MB, 431108 and 3  
respectively) and the resulting 143 contigs have been aligned  
to NCBI database.  
The assembled genome sequence was annotated using  
RAST server. The annotation pipeline resulted in 5603  
coding sequences, 44% being assigned to one of the 482  
360  
Journal of Environmental Treatment Techniques  
2019, Volume 4, Issue 3, Pages: 357-363  
subsystems. In particular, the subsystem protein degradation  
contains 56 coding sequences, ranging from metalloendo  
peptidases (EC3.4.24.-), aminopeptidases (EC3.4.11.-),  
optimal temperature scale. As for the pH, standard protease  
activity protocol enzyme have shown its highest activity at  
pH 9, slightly over pH 8. This shows that enzyme is an  
alkaline protease which keratinases are working mostly at  
alkaline conditions. Future directions for this host include,  
reactor optimizations (constant pH, aeration) for scale-up  
studies, use in combination (either in co-culture or in  
tandem) with already known enzyme workhorses, and  
screening other potentially valuable industrial enzymes on  
various applications and different keratin sources (feather,  
hooves etc).  
metallocarboxypeptidases (EC 3.4.17.-)  
endopeptidase (EC 3.4.21.-) and omega peptidases (EC  
.4.19.-), indicating the relatively large genomic portfolio of  
,
to serine  
3
the B.cereus KK69 for protease-like enzymes (Nearly 50  
different protease-like enzymes are found in the annotation  
file, data not shown). The sequences of each protease is  
submitted  
to  
SecretomeP  
2.0  
Server  
(
http://www.cbs.dtu.dk/services/SecretomeP) with the aim  
to pinpoint the sequence of the gene(s) responsible for the  
observed extracellular keratinolytic activity [35], which  
yielded 46 out of 56 proteases being secreted with either  
classical (signal peptide) or non-classical (e.g. secretion  
signal is within the protein sequence) secretion.  
The annotated genome has also been screened for  
possible hydrolysis enzymes that can potentially be used in  
industrial context. With around 200 EC 3.x.x.x enzymes  
annotated, the genome of B. cereus KK69 indeed contains a  
rich portfolio of hydrolysis enzymes. The list contains  
various phosphatases (EC 3.1.3.x triphosphatase, alkaline  
phosphatase, Phosphoglycolate phosphatase), carbohydrate  
degrading enzymes (EC 3.2.1.x, alpha, beta-gluco or  
galatosidases, pulluanases, chitinases), lipases (EC 3.1.x.x,  
monoglyceride, triacylglycerol and Lysophospholipases) as  
well as other proteases including microbial collegenase (EC  
3.4.24.3). Considering that above 15% of the 1310 genes  
assigned to an EC number is classified as hydrolase,  
B.cereus KK69 can be considered as gene source for later  
studies on industrially relevant enzymes.  
The keratinolytic activity has been detected in culture  
media, even in the absence of bacteria. To further probe the  
secreted proteins, the supernatant of the culture media has  
been loaded to SDS-PAGE gel for determination of  
Molecular Weights of the secreted proteins. Two bands  
between 15-25 kDa, two bands between 35-40 kDa, one  
band between 55-70 kDa, one band between 70-100 kDa,  
and one band between 100-130 kDa has been observed  
(
Figure 5).  
Possible proteases (both intracellular and extracellular)  
are listed from the genome annotation along with their  
molecular weight. 56 different possible proteases are  
detected, their molecular weight ranges between 8-100 kDa,  
in line with the SDS-PAGE results. One should note that,  
SDS-PAGE results only monitors the approximate  
molecular weight of the protein, yet the secreted proteins  
might also have other, possibly hydrolysis activity.  
4
Conclusions  
A new bacteria with high keratinolytic activity has been  
isolated based on both clear zone on skim milk agar and  
feather degradation performance. This microorganism,  
Bacillus cereus KK69, has been characterized in its  
degradation kinetics as well as genomic features. The use of  
bacteria allows processing keratinolytic substances,  
allowing generation of high-value added products. The  
bacteria grows optimally between 20-40°C and its enzyme  
portfolio degrades feather up to 92.42% at 2nd day, which  
ranks as highly active when compared to the reports in  
literature. Expectedly, the activity decreases in either end of  
Figure 5: SDS-PAGE analysis of supernatant from degraded  
feather  
361  
Journal of Environmental Treatment Techniques  
2019, Volume 4, Issue 3, Pages: 357-363  
1
1
1
1
1
1 Brandelli A., Bacterial keratinases: useful enzymes for  
bioprocessing agroindustrial wastes and beyond. Food  
and Bioprocess Technology, 2008. 1(2):105-116.  
2 McKittrick J., et al., The structure, functions, and  
mechanical properties of keratin. Jom, 2012. 64(4):449-  
Acknowledgment  
Journal editorial board thanks following reviewers to  
review this article.  
468.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
3 Brebu M., and Spiridon I., Thermal degradation of  
keratin waste. Journal of Analytical and Applied  
Pyrolysis, 2011. 91(2):288-295.  
4 Papadopoulos M.C., Processed chicken feathers as  
feedstuff for poultry and swine. A review. Agricultural  
Wastes, 1985. 14(4):275-290.  
5 Zhang R-X, et al., A metallo-keratinase from a newly  
isolated Acinetobacter sp. R-1 with low collagenase  
activity and its biotechnological application potential in  
leather industry. Bioprocess and biosystems  
engineering, 2016. 39(1):193-204.  
(
avoidance of guest authorship), dual submission,  
manipulation of figures, competing interests and compliance  
with policies on research ethics. Authors adhere to  
publication requirements that submitted work is original and  
has not been published elsewhere in any language.  
Competing interests  
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
1
1
6 Onifade A., et al.,  
A review: potentials for  
biotechnological applications of keratin-degrading  
microorganisms and their enzymes for nutritional  
improvement of feathers and other keratins as livestock  
feed resources. Bioresource technology, 1998. 66(1):1-  
Authors’ contribution  
All authors of this study have a complete contribution  
for data collection, data analyses and manuscript writing  
11.  
7 Nam G-W, et al., Native-feather degradation by  
Fervidobacterium islandicum AW-1, a newly isolated  
keratinase-producing thermophilic anaerobe. Archives  
of Microbiology, 2002. 178(6):538-547.  
8 El-Naghy M., et al., Degradation of chicken feathers by  
Chrysosporium georgiae. Mycopathologia, 1998.  
References  
1
2
3
Li S., et al., Technology prospecting on enzymes:  
application, marketing and engineering. Computational  
and structural biotechnology journal, 2012. 2(3):1-11.  
Dewan S.S., Global Markets for Enzymes in Industrial  
Applications. BCC Research, 2017. Contract No.:  
BIO030J.  
Nielsen P.H., and Skagerlind P., Cost-neutral  
replacement of surfactants with enzymes-a short-cut to  
environmental improvement for laundry washing.  
Household and personal care today, 2007. 4:3-7.  
Gavrilescu M., and Chisti Y., Biotechnologya  
sustainable alternative for chemical industry.  
Biotechnology advances, 2005. 23(7-8):471-499.  
Jegannathan K.R., and Nielsen P.H., Environmental  
assessment of enzyme use in industrial productiona  
literature review. Journal of cleaner production, 2013.  
1
1
2
143(2):77-84.  
9 Santos R.M., et al., Keratinolytic activity of Aspergillus  
fumigatus Fresenius. Current Microbiology, 1996.  
33(6):364-370.  
0 Farag A.M., and Hassan M.A., Purification,  
characterization and immobilization of a keratinase from  
Aspergillus oryzae. Enzyme and Microbial Technology,  
4
5
2004. 34(2):85-93.  
2
1 Gradišar H., et al., Similarities and specificities of fungal  
keratinolytic proteases: comparison of keratinases of  
Paecilomyces  
marquandii  
and  
Doratomyces  
microsporus to some known proteases. Applied and  
Environmental Microbiology, 2005. 71(7):3420-3426.  
2 Anbu P., et al., Extracellular keratinase from  
Trichophyton sp. HA-2 isolated from feather dumping  
soil. International Biodeterioration & Biodegradation,  
42:228-240.  
6
Choi J., and Lee S., Secretory and extracellular  
production of recombinant proteins using Escherichia  
coli. Applied microbiology and biotechnology, 2004.  
2
2
2
2
2
64(5):625-635.  
2
008. 62(3):287-292.  
3 Williams C.M., et al.,. Isolation, identification, and  
characterization of feather-degrading bacterium.  
Applied and environmental microbiology, 1990.  
6(6):1509-1515.  
7
8
9
Demain A.L., and Vaishnav P., Production of  
recombinant proteins by microbes and higher organisms.  
Biotechnology advances, 2009. 27(3):297-306.  
Yang H. et al., Molecular engineering of industrial  
enzymes: recent advances and future prospects. Applied  
microbiology and biotechnology, 2014. 98(1):23-29.  
FAOSTAT. FAO statistical database Food and  
Agriculture Organization of the United Nations  
a
5
4 Cai C-g, et al., Keratinase production and keratin  
degradation by a mutant strain of Bacillus subtilis.  
Journal of Zhejiang University Science B, 2008. 9(1):60-  
6
7.  
5 Park G-T, and Son H-J. Keratinolytic activity of Bacillus  
megaterium F7-1, feather-degrading mesophilic  
bacterium. Microbiological research, 2009. 164(4):478-  
85.  
[
Available from: http://www.fao.org/faostat/en/#home.  
(
Last Access: 18.02.2018)  
a
1
0 Shih J.C., Recent Development in Poultry Waste  
Dizgestion and Feather UtilizationA Review. Poultry  
science, 1993. 72(9):1617-1620.  
4
6 Cai S-B, et al., Identification of a keratinase-producing  
bacterial strain and enzymatic study for its improvement  
on shrink resistance and tensile strength of wool-and  
362  
Journal of Environmental Treatment Techniques  
2019, Volume 4, Issue 3, Pages: 357-363  
polyester-blended fabric. Applied biochemistry and  
biotechnology, 2011. 163(1):112-126.  
2
2
2
7 Riessen S., and Antranikian G., Isolation of  
Thermoanaerobacter keratinophilus sp. nov., a novel  
thermophilic, anaerobic bacterium with keratinolytic  
activity. Extremophiles, 2001. 5(6):399-408.  
8 Brandelli A., and Daroit D.J., Riffel A., Biochemical  
features of microbial keratinases and their production  
and applications. Applied Microbiology and  
Biotechnology, 2010. 85(6):1735-1750.  
9 Gupta R, Sharma R, Beg QK. Revisiting microbial  
keratinases: next generation proteases for sustainable  
biotechnology. Critical reviews in biotechnology.  
2013;33(2):216-228.  
3
3
0 Alnahdi H.S., Isolation and screening of extracellular  
proteases produced by new isolated Bacillus sp. Journal  
of Applied Pharmaceutical Science, 2012. 2(9):71.  
1 Aldrich S., Protease Colorimetric Detection Kit -  
Technical Bulletin: Sigma Aldrich; [Available from:  
https://www.sigmaaldrich.com/content/dam/sigma-  
aldrich/docs/Sigma/Bulletin/pc0100bul.pdf.  
(Last  
Access: 20.02.2018)  
3
3
3
2 Lineweaver H., and Burk D., The determination of  
enzyme dissociation constants. Journal of the American  
Chemical Society, 1934. 56(3):658-666.  
3 Laemmli U.K., Cleavage of structural proteins during  
the assembly of the head of bacteriophage T4. Nature,  
1970. 227:680-685.  
4 Overbeek R., et al., The SEED and the Rapid Annotation  
of microbial genomes using Subsystems Technology  
(
RAST). Nucleic acids research, 2013. 42(D1):D206-  
D214.  
3
3
5 Bendtsen J.D., et al., Non-classical protein secretion in  
bacteria. BMC Microbiol, 2005. 5:58.  
6 Łaba W., and Rodziewicz A., Keratinolytic potential of  
feather-degrading Bacillus polymyxa and Bacillus  
cereus. Pol J Environ Stud, 2010. 19(2):371-378.  
7 Swetlana N., and Jain P., Feather degradation by strains  
of Bacillus isolated from decomposing feathers.  
Brazilian journal of microbiology, 2010. 41(1):196-200.  
8 Sekar V., et al., Isolation and Screening of Keratinolytic  
Bacteria from Feather Dumping Soil in and Around  
Cuddalore and Villupuram, Tamil Nadu. Proceedings of  
the National Academy of Sciences, India Section B:  
Biological Sciences, 2015. 1-9.  
3
3
3
4
9 Suntornsuk W., and Suntornsuk L., Feather degradation  
by Bacillus sp. FK 46 in submerged cultivation.  
Bioresource Technology, 2003. 86(3):239-243.  
0 El-Refai H., et al., Improvement of the newly isolated  
FH9 keratinolytic activity. Process Biochemistry, 2005.  
40(7):2325-2332.  
363