Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Effectiveness of Vetiver Grass versus other Plants  
for Phytoremediation of Contaminated Water  
1
2
3
4
Negisa Darajeh *, Paul Truong , Shahabaldin Rezania , Hossein Alizadeh , David W.M.  
Leung1  
1
School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand  
2
TVNI Technical Director and Director for Asia and Oceania, Brisbane, Australia  
3
Department of Environment and Energy, Sejong University, Seoul 05006, South Korea  
4
Bio-protection Reseach Center, Lincoln University, Lincoln 7647, New Zealand  
Received: 01/07/2019  
Accepted: 26/08/2019  
Published: 29/08/2019  
Abstract  
Worldwide water pollution level in the last few decades has been exponentially increased as a result of industrialisation. This global  
increase occurs in both developed and developing countries, but more significantly in the latter. Vetiver System Technology, which is  
based on Vetiver grass (Chrysopogon zizanioides L. Roberty) has been successfully used as a phytoremediation tool to remediate both  
polluted water (municipal wastewater such as sewage effluent, landfill leachate, urban runoff, drainage channels, industrial wastewater  
such as food processing factories, contaminated land (mine overburden and tailings, solid waste dumps, etc.), due to its extraordinary  
and unique morphological and physiological characteristics. This review focuses on the treatment of polluted domestic and industrial  
wastewater by hydroponics and constructed wetlands treatment methods. Based on the finding, Vetiver grass (Chrysopogon zizanioides  
L. Roberty) has a similar potential and often more effective rather than two other Vetiver genotypes and other commonly used  
macrophytes such as Cyperus species, Phragmites species, Typha species in treating a wide range of industrial and domestic wastewater,  
polluted rivers and lakes. In addition, Vetiver has the potential to be used for additional benefits after phytoremediation, such as raw  
material for handicrafts, essential oil and its derived products, industrial products (raw material for pulp and paper), fibreboard.  
Keywords: Vetiver grass; Chrysopogon zizanioides; Cyperus, Phragmites; Typha; Eichhornia; Schoenoplectus; Phytoremediation;  
Constructed Wetlands  
1
1
Introduction  
The depth of water suitable for the plants to grow in  
shallow versus deep water)  
Ability of plants to withstand desiccation  
The local climate  
Wastewater contaminants in the wetland  
Potential interaction with animals and the possibility of  
plant destruction by animals  
(
1
.1 Selection of wetland plants  
Species selection is one of the most important  
considerations for phytoremediation studies, especially using  
Constructed Wetlands (CW). Different wetland plant species  
have different capacities for uptake and accumulation of  
nutrients and heavy metals (1, 2), as well as having variable  
effects on the functioning and structure of bacterial  
communities involved in the removal of contaminants in a CW  
1.2 Vetiver grass (Chrysopogon zizanioides)  
3, 4). It is also necessary to consider the factors that affect the  
Following the discovery in 1994 in Australia that Vetiver  
grass had special characteristics suitable to treat landfill  
leachate and sewage effluent generated from municipal  
wastewater treatment plants (5). Chinese and Thai scientists  
later confirmed these results in 1997 and since then the Vetiver  
Phytoremediation Technology has been adopted widely across  
the tropical and sub-tropical regions of Asia, Africa, Oceania,  
the Americas and Mediterranean countries (5). Although  
Vetiver is a typical C4 tropical grass, it can survive and thrive  
under subtropical and some mild temperate conditions. Vetiver  
is a non-invasive plant as it forms flowers but does not set seed,  
hence it has to be propagated vegetatively by root (crown)  
splitting (7, 8). Vetiver grass has a deep and massive root  
system, which is vertical in nature descending 2-3 meters in the  
first year, ultimately reaching five meters under tropical  
conditions. Although it originates in India, Chrysopogon  
natural distribution of the selected plants both locally and  
within the region and locally, as these have a major impact on  
the successful establishment of the selected plants for  
phytoremediation purposes (5, 6). With these and other  
considerations in mind, the following is a list of selection  
criteria for fit-for-purpose wetland plants to be developed for  
phytoremediation study.  
The species of interest available/suitable for the proposed  
area  
Weediness potential of the plants of interest both within and  
outside the area  
The substrate preferred for the plants to grow in (sand, clay,  
mud, and peat)  
Aerobic and anaerobic conditions of the constructed  
wetland  
Corresponding author: Negisa Darajeh, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.  
4
85  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
zizanioides is widely cultivated in the tropical and subtropical  
regions of the world. Vetiver can easily be controlled by  
uprooting the plant at the crown and drying out the exposed  
roots or by using herbicide.  
Amplified Polymorphic DNAs (RAPDs), this led to the  
merging of the genera Vetiver ia and Chrysopogon. Vetiver ia  
zizanioides (L. Nash) is now known as Chrysopogon  
zizanioides (L Roberty), (9-11), with chromosome base  
number, x=5 and 10, 2n= 20 and 40 (12).  
1
.2.1 Genetic and taxonomic Features  
Vetiver grass (Chrysopogon zizanioides L.) belongs to the  
1.1 Important features  
same grass family as maize, sorghum, sugarcane, and lemon  
grass (Table 1 and Figure 1). It is native to tropical and  
subtropical India and is one of the most widely distributed  
Vetiver grass species in South and Southeast Asia.  
Besides Chrysopogon zizanioides L., there were numerous  
accessions of Vetiver ia zizanioides (L. Nash) and other Vetiver  
species such as Chrysopogon fulvus (Spreng.), C. gryllus,  
Sorghum bicolor (L.) and S. halepense (L.). Since Vetiver ia  
and Chrysopogon are not separable based on Random  
Vetiver has erected and stiff shoots that can grow to 3 m  
tall. When planted close together in hedges it forms a living  
porous barrier that retards surface water flow and acts as an  
effective bio-filter, trapping both fine and coarse sediment in  
runoff water (Figure 1). It has a massive, deep, fast-growing  
root system (Figure 2). Most of the roots in its massive root  
system are very fine, with an average diameter of 0.5-1.0 mm.  
This provides an enormous surface area within the rhizosphere  
for bacterial and fungal growth and multiplication.  
Table 1: Taxonomy of Vetiveria zizanioides  
Scientific classification  
Plantae  
Kingdom  
Order  
Poales  
Family  
Graminae (Poaceae)  
Subfamily  
Genus  
Species  
Panicoideae; Tribe-Andropogoneae; Subtribe-Sorghinae  
Chrysopogon  
zizanioides  
Common name  
Source: (9, 12)  
Vetiver grass  
Figure 1: The erect, stiff shoots Vetiver grass forming a thick hedge when planted close together  
Figure 2: Vetiver Grass roots under hydroponics conditions  
4
86  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
Litterature search between 1995 to 2019 on the use of  
different macrophytes for industrial and domestic wastewater  
treatment including pig farms, dairy farms, a sugar factory,  
textile mills, tannery, sewage effluent from municipal plant to  
septic tank, river and lake water showed that Vetiver was either  
equally and often more effective in treating the polluted  
wastewater than other macrophytes such as Cyperus  
alternifolius, Cyperus exaltatus, Cyperus papyrus, Phragmites  
karka, Phragmites australis, Phragmites mauritianus, Typha  
latifolia, Typha angustifolia, Eichhornia crassipes, Iris  
pseudacorus, Lepironia articutala and Schoenoplectus validus.  
Therefore, the main objective of this paper is to compare the  
effectiveness of Vetiver and other commonly used macrophytes  
for phyroremediating contaminated water in hydroponics and  
constructed wetland conditions.  
water body via atmospheric diffusion, or by direct transfer  
through the plant’s aerenchyma tissues (Figure 3). Darajeh,  
Idris (13) demonstrated that anaerobic conditions negatively  
affect growth of vetiver grass in Palm Oil Mill Secondary  
Effluent (POMSE) when dissolved oxygen (DO) was less than  
0.5 mg/L. The plants died after five days, while the other plants  
survived under 3 mg/L DO (Figure 4).  
2.2 Vetiver hydroponic treatment for Nitrogen and  
Phosphorus, Organic Components, Chemical Oxygen  
Dermand (COD), Biological Oxygen Demand (BOD) and  
Total Susspended solids (TSS)  
Darajeh, Idris (14) demonstrated a relatively simple, low  
cost, green, and environmentally friendly solution by using the  
Vetiver system treatment for POMSE in Malaysia. This  
eliminates the complexity and high costs associated with  
chemical and other conventional treatments to achieve strict  
Dept of Environment effluent regulation limits within less than  
4
weeks. Following the experimental duration of four weeks at  
planting density of 30 plants, an exceptional reduction of 96%  
for BOD and 94% for COD was achieved. The best and lowest  
final BOD (2 mg/L) was recorded at planting density of 15  
Vetiver plants after 13 days for low concentration POMSE,  
which had initial BOD of 50 mg/L. The next best result of BOD  
at 32 mg/L was obtained at density of 30 plants after 24 days  
for medium concentration POMSE which had initial BOD of  
175 mg/L. The study showed that the Vetiver System is an  
effective method of polishing and treating POMSE to achieve  
the stringent acceptable effluent standard.  
Vetiver has a very high capacity of uptaking N and P in  
polluted water. Zheng et al, (1997) reported that the total N and  
P levels of the polluted river water (initial concentrations of 9.1  
and 0.3 mg/L, respectively) were reduced by 71% and 98%,  
respectively, after 4 weeks of treatment. In small-scale  
glasshouse trials under hydroponics conditions, Vetiver takes  
up considerable quantities of both nitrogen and phosphorous  
(13,500 and 1026 kg/ha/year, respectively) higher than other  
plant species (Figure 5).  
Figure 3: The root system of Vetiver grass in a polluted wetland under  
natural conditions  
2
Effectiveness of Vetiver grass in  
phytoremediating contaminated water  
2
.1 Negative effect of some severe environmental conditions  
Under natural wetland conditions, oxygen is supplied to the  
Figure 4: Healthy and dead Vetiver roots under aerobic and severe anaerobic conditions  
4
87  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
4
and 7 days in Thailand. The average TN and NH -N removal  
efficiencies were 9.97-62.48% and 13.35-58.62%, respectively,  
while the average removal efficiencies ranged for TP from  
6
7
.3% to 35.87% and for phosphate from 7.40% to 23.46%. The  
-day HRT had the best treatment performance for BOD, TN,  
and TP, with removal efficiencies of 90.5-91.5%, 61.0-62.5%,  
and 17.8-35.9%, respectively.  
Yang, Zheng (19) investigated the purification of nitrate by  
Vetiver grass in agricultural runoff in China, with effluent  
3
3
concentrations of TN (3.8-7.9 g/m ) and TP (1.2-1.5 g/m )  
using FTWsystem. They reported an efficient removal of  
nitrate-nitrite-nitrogen (NOx-N) of 91%, 97% and 71%  
respectively in 3, 2 and 1 day HRTs, and (17-47%) removal of  
COD and (8-15%) of TP. In another study in China, Sun et al.  
(
2009) investigated TN removal from a polluted river, by using  
the FTW system. They reported removal of TN (72.1%), NO  
N (75.8%), NO -N (95.9%), and COD (94.6%) using Vetiver.  
Numerous reports indicated that high levels of NH , COD and  
BOD caused the death of a few macrophytes. For example  
Tanner (1) reported piggery wastewater with NH level of 222  
3
-
2
3
3
mg/L killed root of macrophytes. In laboratory-scale models  
treated with anaerobic ammonium oxidizing bacteria, Juncus  
effusus died at 91 mg/L of NO and 156 mg/L of NH (Paredes  
3 4  
et al. (2) . Roongtanakiat, Nirunrach (20) also reported that  
Vetiver grass died in leachate with high concentration of COD  
at160 mg/L and BOD at 6,607 mg/L.  
2
.3 Vetiver hydroponic treatment of heavy metals  
Due to its persistence and toxicity the existence of heavy  
metals and metalloids in the environment in general and  
particularly in aquatic environment is a thread to the wellbeing  
of human, fauna and flora by onsite or offsite pollution (21, 22).  
It is possible that the pollutants could further contaminate the  
environment in the long term, by contaminating the soil and  
groundwater. Therefore feasible measures are demanded in  
order to prevent or control this pollution problem (23, 24). Very  
Figure 5: Nitrogen and Phoshphorous adsorbtion by different plant  
species in the glasshouse  
According to Table 2, many researchers have used Vetiver  
grass; Cyperus species, various Phragmites species, various  
Typha species for the removal of contaminants of primary,  
secondary, and tertiary wastewater originating from domestic  
sources and industries. It has been observed that  
phytoremediation of contaminated water using the plant system  
is a predominant method which is economic to construct,  
requires little maintenance and increase the biodiversity, but  
plant treatment capabilities depend on different factors like  
climate, contaminants of different concentrations, temperature,  
etc. The removal efficiency of contaminants like BOD, COD,  
TSS, TN, NH -N, NO and TP varies from plant to plant (15).  
4 3  
Based on Zhang, Jinadasa (16), the removal of TSS  
66.1%) and BOD (65.34%) were satisfactory in treatment  
efficiency for Floating Treatment Wetland (FWS) systems.  
FWS exhibited the lowest performance for the reduction of  
COD by 44.9%. However, FWS CWs were found to be  
high removal rates of Fe (81%) and Pb (81%) and low removal  
2−  
of Ni (38%), Zn (35%), SO  
4
(28%), Mn (27%), Cr (21%), Al  
(
11%) and Cu (8.0%) obtained by Kiiskila, Sarkar (25) over  
one year experimental period to determine the effectiveness of  
Vetiver grass for treating acid mine drainage. Fe was mainly  
localized on the root surface as plaques, whereas Mn and Zn  
had higher translocation from root to shoot. It was also found  
that metal accumulation in Vetiver biomass was not a  
hazardous waste.  
Vetiver grass was shown to be effective in removing heavy  
metals, but the rate of removal and accumulation depends on  
the plant root length and density, and the heavy metals  
concentrations (Suelee, Hasan (26). Vetiver removal efficiency  
for heavy metals in water was in the order of  
Fe>Pb>Cu>Mn>Zn. Except for Fe at low concentration, the  
longer the root length and higher planting density increased the  
uptake of heavy metals. The distribution of heavy metal uptake  
was significantly different in plant parts at different heavy  
metals concentrations, root had a high tolerance towards higher  
concentrations of heavy metals.  
The removal of heavy metals by Vetiver grass decreased  
after seven days, with 96% of Fe was removed. The removal  
rate of other heavy metals was in the order of  
Fe>Zn>Pb>Mn>Cu, Hasan, Kusin (27) also found that Vetiver  
grass with longer root and higher root density was more  
effective in removing heavy metals such as Cu, Fe, Mn, Pb, and  
Zn.  
(
3
efficient in removing nitrate (NO -N) by 51.63%, ammonium  
NH -N) by 60.87%, and total nitrogen (TN) by 43%. The  
(
4
removal of total phosphorus (TP) (49.16%) was moderate and  
highly variable from 19.5% to 96%. In Australia, a surface flow  
Vetiver grass wetland system on a 1.0 ha area was installed in  
South East Queensland to treat sewage effluent from a small  
town with 1,500 residents producing 300 KL/day. The Total N  
of inflow of between 30 and 80 mg/L and total P of 10-20 mg/L  
were reduced to 4.1-5.7mg/L and 1.4-3.3mg/L respectively  
17).  
Boonsong and Chansiri (18) studied the efficiencies of  
Vetiver grass cultivated on a floating platform to treat domestic  
wastewater with three different retention time values of 3, 5,  
4
88  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
Table 2: The removal of nutrients by different plant species in different types of wastewater  
Removal Performance (%)  
Plant Species  
Wastewater Types  
Country  
References  
BOD  
-
COD  
-
TSS  
TN  
-
NH  
4
-N  
NO  
3
TP  
0-75  
83  
Chrysopogon zizanioides  
Chrysopogon zizanioides  
Chrysopogon zizanioides  
Aquaculture Effluent  
Piggery Effluent  
Sewage Effluent  
-
-
-
0-67  
-
-
-
-
Indonesia  
Thailand  
Peru  
74  
70  
87  
49  
96  
90  
94  
89  
Palm Oil Mill Secondary  
Effluent  
Chrysopogon zizanioides  
96  
94  
-
-
-
-
-
Malaysia  
Chrysopogon zizanioides  
Chrysopogon zizanioides  
Chrysopogon zizanioides  
Chrysopogon zizanioides  
Chrysopogon zizanioides  
Chrysopogon zizanioides  
Chrysopogon zizanioides  
Chrysopogon zizanioides  
Chrysopogon zizanioides  
Landfill Leachate  
Fertilizer Processing  
Pinora Juice Effluent  
Palm Oil Proc. Effluent  
Biogas Effluent  
Sewage Effluent  
Pig farm WW  
67  
74  
94  
51  
91  
92  
-
69  
64  
95  
10  
82  
-
-
-
43  
94  
10  
6
56  
Nigeria  
Nigeria  
Ghana  
Ghana  
Ghana  
Ethiopia  
China  
-
-
-
78  
82  
71  
95  
92  
-
-
41  
40  
42  
-
85  
-
19  
-
99  
-
35  
-
87  
-
-
-
75  
99  
71  
-
-
15-58  
85  
Septic tank  
-
-
-
-
Australia  
China  
River Water  
-
-
-
-
99  
Chrysopogon nigritana  
Landfill Leachate  
66  
67  
-
-
-
59  
79  
Nigeria  
Chrysopogon nigritana  
Phragmites karka  
Fertilizer Processing  
Sewage Effluent  
Piggery Effluent  
Pig farm WW  
69  
90  
76  
68  
60  
-
-
-
-
93  
-
80  
86  
65  
-
Nigeria  
Ethiopia  
Thailand  
China  
91  
-
-
-
Scirpus spp  
80  
64  
85  
-
_
20  
_
-
Cluysopogon zizanioides /Cypress tenuifolius  
-
Chrysopogon zizanioides/Phragmites mauritianus  
Typha angustifolia  
Textile WW  
67.5  
81  
46.2  
84  
81.5  
-
-
-
-
-
-
-
Tanzania  
Thailand  
Piggery Effluent  
88  
65  
Eichhornia crassipes  
Wastewater  
-
80  
-
75  
-
-
75  
Malaysia  
4
89  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
Eichhornia crassipes  
POME  
-
50  
48.2  
-
-
-
-
88  
-
-
-
-
-
64  
61  
94  
Indonesia  
Saudi arabia  
Canada  
Typha angustifolia/phragmites  
Domestic WW  
66  
-
66  
21  
Typha latifolia/Typha angustifolia  
Dairy WW  
9
Canna/Phragmites cyprus  
Phragmites australis  
Phragmites australis  
Phragmites australis  
Phragmites australis  
Municipal WW  
River Water  
Oil Produce WW  
Greywater/Secondary  
Black Water/Secondary  
Municipal  
Sludge/Tertiary  
Tannery WW/Secondary 98  
Municipal  
WW /Secondary  
93.6  
15.4  
88  
70.3  
86.4  
92.2  
17.9  
80  
65.9  
83.5  
94  
70  
-
82.2  
89  
-
-
-
-
-
-
-
-
-
-
-
Egypt  
China  
China  
Egypt  
Egypt  
83.4  
10.2  
36  
96  
18.5  
32.4  
56.2  
69.3  
Phragmites australis  
Phragmites australis  
Phragmites australis  
90  
72  
98  
56  
81  
67  
-
-
-
-
-
75  
87  
-
India  
55  
86  
-
Bangladesh  
ElSalvador  
22  
84.2  
39.3  
Phragmites australis/Typha orientalis  
Phragmites australis/Zizania aquatica  
WW /Industrial  
River Water  
70.4  
62.2  
73.5  
71.8  
92.6  
-
40.6  
10.5  
-
-
29.6  
30.6  
China  
China  
90.5  
10.6  
Municipal  
WW/Secondary  
Phragmites australis/ Iris australis  
-
-
-
91.3  
91.2  
88.8  
-
Turkey  
Municipal  
WW/Secondary  
Lake Water  
Municipal  
WW /Secondary  
Typha angustifolia/Scirpus grossus  
Typha angustifolia  
68.2  
-
71.9  
16.5  
65.2  
-
-
-
74.7  
19.8  
58.6  
50  
19  
34.2  
-
-
Sri Lanka  
China  
22.8  
95.75  
35.1  
66.5  
Typha angustifolia  
80.8  
ElSalvador  
Typha angustifolia  
Typha angustifolia  
Lake Water  
-
-
36.9  
40.4  
-
-
52.1  
51.6  
32  
65.3  
62.9  
65.7  
51.6  
China  
China  
Lake Water  
45.9  
Municipal  
Sludge/Tertiary  
River Water  
Typha latifolia/Phragmites mauritianus  
Typha latifolia  
-
-
60.7  
35  
-
-
-
23  
44,3  
-
-
Tanzania  
China  
64.9  
71.25  
61.24  
Municipal WW  
Typha latifolia/Canna indica  
89.3  
64.2  
85.3  
50.6  
61.2  
67.8  
59.61  
China  
/
Secondary  
Municipal WW  
Secondary  
Typha latifolia/Phragmites australis  
Typha angustifolia/Canna iridiflora  
52  
68  
-
79  
-
-
-
-
-
14  
Mexico  
/
Municipal WW  
65.5  
81.6  
50  
88.5  
Sri Lanka  
Cyperus alternifolius  
Cyperus alternifolius  
Cyperus papyrus  
Sewage Effluent  
99  
-
93  
-
_
57  
-
98  
-
-
-
91  
Peru  
Aquaculture Effluent  
Sugar Factory WW  
-
0-67  
36  
42-71  
29  
Indonesia  
Kenya  
-
-
76  
-
4
90  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
Municipal W\V  
Cyperus papyrus  
53  
43.9  
72.9  
-
17.13  
22  
57.14  
Kenya  
/
Secondary  
Cyperus papyrus  
Cyperus papyrus  
Cyperus alternifolius  
Tannery WW /Tertiary  
-
-
-
-
-
72.5  
89.7  
46  
75.43  
89.3  
50  
60.9  
83.23  
84.53  
60  
Uganda  
Uganda  
China  
Tannery WW /Tertiary  
-
-
-
-
Municipal  
WW /Secondary  
90  
70  
Municipal  
WW /Secondary  
Municipal  
Cyperus alternifolius  
Cyperus alternifolius  
-
-
83.6  
84.1  
99  
64.5  
-
71.4  
79.6  
-
-
68.1  
84.5  
China  
China  
99.6  
WW /Secondary  
4
91  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
This is probably related to increased root surface area for  
metal absorption from contaminated water. However, these  
findings indicated that accumulation of heavy metals in plant  
biomass was higher in Vetiver shoot than in root due to metal  
translocation from root to the shoot. In a study conducted by  
Darajeh (64), Vetiver was used to remove Fe, Zn and Mn  
concentrations (0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 mg/L) in aquoas  
solution. They reported that concentrations of Fe, Zn and Mn  
were decreased sharply during the first 40 hours of expriement  
and a plateau reached within a narrow range afterwards (Figure  
been observed that an 88-hour retention time decreased the Fe,  
Zn and Mn from 10 mg/L to below 1.65 mg/L.  
3
Effectiveness of Vetiver grass in treating N and  
P in comparison with forage and agriculture  
crops, and trees  
In a study to determine the effectiveness of Vetiver grass in  
treating domestic sewage effluent Hart, Cody (65) found that  
Vetiver grass was the most effective species compared to some  
crop and trees which commonly grown in Australia (Table 3).  
6
). Vetiver survived and grew in all metal concentrations and  
removed 85% to 99% of the metal ions at the different  
concentrations. The results showed that as the retention time  
increased, the metal removal efficiency also increased. It has  
Figure 6: Effect of retention time (hour) on metal ion uptake by Vetiver grass  
4
92  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
Table 3: Nutrient reductions by hydroponically grown Vetiver grass, and nutrient uptake in selected crops  
Nitrogen  
kg/ha/year)  
2,040  
1,142  
600  
Phosphorus  
Plant species  
(
(kg/ha/year)  
153  
Vetiver pot trials  
Vetiver field trial  
Rhodes grass  
Kikuyu  
149  
90  
500  
90  
Green Panic  
Forage sorghum  
Sorghum + Ryegrass  
Bermuda grass  
Clover  
430  
70  
360  
70  
620  
110  
280  
30-35  
20  
180  
Rye grass  
200-280  
60  
60-80  
50  
Oats  
Lucerne  
269-504  
23-208  
90  
20-39  
3-27  
15  
Wheat  
Eucalypts trees  
Africa, in treating contaminated water in Nigeria. Leachate  
effluent levels of pH, Pb, As, Zn, Fe, Cyanide, P, NO , COD,  
and BOD were measured from quarry and public untreated  
3
4
(
.1 Vetiver grass (C. zizanioides) and Upland Vetiver grass  
C. nemoralis)  
Truong, Hart (66) studied the potential of Vetiver grass in  
landfill. The results indicated that:  
C. nigritana more effective in removing P, and C.  
zizaniodes in removing N and Cyanide.  
No trace of Zn, Fe and Co were found in the leachate after  
managing wastewater using two species of Vetiver grass: the  
commonly known in Thailand as Upland type - C. nemoralis-  
2
days of treatment in both species.  
(
variety Roi Et and Prajoub Kirikhan) and the lowland species  
The BOD of leachate from both sites were also significantly  
reduced.  
-
C. zizanioides (variety Songkhla 3 and Sri Lanka). They were  
grown at three depths of wastewater 5, 10, and 15 cm. It was  
found that plant tillering and dry weight of C. zizanioides  
Vetiver variety. Songkhla 3 (a local variety known only in  
Thailand) were significantly higher than those of C. nemoralis  
variety Prajoub Kirikhan, and Roi Et. The results also showed  
that lowland types of Vetiver grass, C. zizanioides, consumed  
more water than upland types C. nemoralis by 30-70 percent.  
C. nemoralis varieties were more effective in changing  
wastewater quality, but they could tolerate water levels at 10-  
When comparing the effectiveness of C. nigritana and C.  
zizanioides in treating contaminated water, it was founded they  
were equally effective. As C. nigritana is endemic to Africa, it  
should be used to sustainably treat wastewater for reuse. In  
addition, and most importantly for the two key pollutants N and  
P, C. nigritana is more effective in removing P, and C.  
zizanioides in N. Therefore, to maximize the treatment  
efficiency, it is advisable to use both species to gain further  
benefit from their complimentary attributes.  
1
5 cm for only 10 weeks, whereas the lowland types continued  
Oku, Asubonteng (31) assessed the potential of  
hydroponically grown African Vetiver (C. nigritana) and Asian  
Vetiver (C. zizanioides) to treat slaughterhouse effluent. The  
root lengths of these two species did not differ significantly.  
Concentrations of zinc and iron pollutants were reduced to  
below detectable limits within 6 days of treatment. Cyanide,  
with high pretreatment concentrations (>0.6 mg/L), was  
reduced in 6 days to below the World Health Organization  
with normal growth. The efficiency in chromium removal by  
two species of Vetiver grasses, C. zizanioides (Surat Thani  
ecotype) and C. nemoralis (Prajoub Kirikhan ecotype), in  
constructed wetlands was investigated for tretamnet tannery  
wastewater (62). To study the efficiency of Chromium removal  
1
2 constructed wetlands were built, nine were for the test and  
other three units were used to observe plant growth. The depths  
of wastewater were 0.10m, 0.15m and 0.20m in all wetland  
units. Results showed that C. zizanioides (Surat Thani) at water  
level 0.10m were the best performance for Cr removal at  
efficiency of 89.29%. While the Cr removal efficiency of C.  
nemoralis (Prajoub Kirikhan) at water level 0.15m was  
(
WHO) acceptable limits for irrigation water (0.07 mg/L). In  
the same time frame, the concentration of BOD by 84%, and  
COD by 86%, and concentrations of N, P and Mn were reduced  
by 52%, 70% and 88%, respectively, using C. nigritana. In  
addition, the concentation of BOD by 84%, COD by 88%, N  
by 71%, P by 77%, and Mn by 90% were reduced using C.  
zizanioides. As a result, C. zizanioides showed significantly  
higher N and P removal rates, whereas C. nigritana showed a  
higher Fe removal rate. However, removal rates of other  
contaminants did not differ significantly between the two  
species. It can be concluded that the efficacy of pollutant  
removal by Asian and African Vetiver is comparable. Thus,  
African Vetiver, which is readily available in many parts the  
8
6.30%. The lowest efficiency (80.72%) was found in control  
unit at 0.10m depth. The overall efficiency of Cr removal at the  
same depth of wastewater, C. zizanioides was better than C.  
nemoralis.  
4
.2 Vetiver grass and African Vetiver grass (C. nigritana)  
As South Asian Vetiver species (C. zizanioides) has been  
widely used successfully globally, Oku, Asubonteng (31)  
investigated the potentials of African Vetiver species  
(
C.nigritana), which is native and widely grown in West  
4
93  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
Africanb continent, could serve as a cheap and effective green  
solution to water pollution in Africa.  
phytodepurative treatment of wastewater in vertical artificial  
wetlands that were planted with Cyperus alternifolius and  
Chrysopogon zizanioides. The wetlands were located in the  
pilot water treatment plant at the National Agrarian University  
La Molina, Peru from January to November 2016. Both plants  
had a good adaptation during the whole research period. A  
maintenance cut was made to evaluate the biomass in dry  
weight of both plants. For Cyperus alternifolius 31.3  
Tn/ha/year of dry Biomass was obtained and 31.1 Tn/ha/year  
for Chrysopogon zizanioides. There were no bad oders in both  
wetlands, waterlogging, and the presence of pests on the  
surface. There were no statistically significant differences in  
the removal of organic matter and solids between both plants.  
5
Comparison with other plant species  
5
.1 Vetiver grass, Cyperus alternifolius and Cyperus exaltatus  
China is the biggest pig raising country in the world, China  
accounts for 57.4% of the total in the world (34). In the recent  
years pig-raising has concentrated production on larger farms,  
each produces over 10,000 commercial pigs, resulted in 100-  
1
50 tons of generation of wastewater daily, which has high  
contents of nutrients N and P. As a result, the pig farm  
wastewater needs treatments by anaerobic then aerobic  
methods. Since 1970’s some hydrophilic plants such as water  
hyacinth was introduced to oxygenate effluent ponds in the  
anaerobic phase. However, this method needs large area for  
ponds, the treatment sites are prone to deterioration, water  
hyacinth did not work satisfactorily through the whole year.  
Liao (67) found that from among twelve species, the two  
wetland plants, Cyperus alternifolius (Umbrella plant) and  
Chrysopogon zizanioides, were most suitable as vegetation in  
constructed wetlands for treatment of pig farm effluent in South  
China. Both plants were better in terms of pollution resistance,  
biomass accumulation, root growth, landscape beauty and  
management costs. This showed that C. alternifolius and C.  
zizanioides could grow in pig farm wastewater with a COD of  
5.4 Vetiver grass, Cyperus alternifolius and water hyacinth  
(
Eichhornia crassipes)  
Roongtanakiat, Nirunrach (20) compared the effectiveness  
of Vetiver grass (C. zizanioides), a Cyperus (Cyperus  
alternifolius) and Water Hyacinth (Eichhornia crassipes) in  
treating ammonia and phosphate in wastewater discharged  
from Catfish (Clarias gariepinus) aquaculture. Wastewater  
from aquaculture is highly contaminated with nutrients from  
feed and animal wastes, if untreated these pollutants seriously  
contaminated the environment. The constructed wetland  
system is cheap to build and maintain, and effective in  
controlling pollution caused by aquaculture wastewater, as it  
combines plant and microbe’s activity in the treatment process.  
In this study, the Surface Flow Water system with plants on  
floating platforms were used in four treatments: control (bioball  
without plant), Vetiver grass, Cyperus plant and Water  
Hyacinth.  
8
2
4
25 mg/L, BOD of 500 mg/L, NH -N of 130 mg/L and TP of  
3 mg/L which reduced to 64%, 68%, 20%, and 18%,  
respectively, in HRT of 4 days. Another plant Cyperus  
exaltatus came third but wilted and dry during autumn did not  
grow until next spring. Therefore, this species cannot grow the  
whole year to treat the polluted water.  
The results showed that each species has a different ability  
to eliminate ammonia and phosphate.  
5
.2 Vetiver grass, Typha angustifolia and Cyperus papyrus  
Vetiver removal rate of NH  
from 0 to 75.4%  
Cyperus removal rate of NH  
from 42.4 to 71.2%  
3
was from 2 to 66.7% and PO  
4
In a study to select suitable plant species for the treatment  
of landfill leachate at Lorong Halus landfill site in Singapore,  
Vetiver grass, Typha angustifolia and Cyperus papyrus were  
used. The leachate composition is relatively high in nutrient,  
salt and heavy metal concentrations. The followings are  
summary of the results:  
3
was from 0 to 66.7% and PO  
4
3
Water Hyacinth removal rate of NH was from 0 to 15.8%  
and PO from 33.1 to 89.7%  
4
The nutrient removal efficiencies of all three species are  
quite comparable  
These results show that Vetiver and Cyperus were more  
effective in treating ammonia and Water Hyacinth in  
removing phosphate.  
Vetiver had the highest removal on total N  
Typha and Papyrus performed better in nitrate removal  
Vetiver and Papyrus are better in total P removal  
Papyrus is associated with better COD, BOD and TSS  
removal  
5
.5 Vetiver grass and Common Reed (Phragmites karka)  
Ghimire (69) compared the effectiveness of Phragmites  
karka (Common reed) and Vetiver grass in treating wastewater  
a mixture of toilet, kitchen and chemistry laboratory effluents).  
(
Papyrus growth was severely affected by high salinity level  
The trial was made in four constructed wetlands: Vetiver grass  
alone, common reed alone, mixture of both and no plant-  
control. In term of soil organic matter, organic carbon, available  
phosphorus and total nitrogen, Vetiver grass pond showed the  
highest value followed by mixed species pond, Common reed  
pond and lastly control pond (Table 5). Based on the  
experimental results, Vetiver was found to be more efficient in  
wastewater treatment compared to Phragmites karka (Common  
reed) and a mixture of both was found to be intermediately  
efficient. In the subtropical highland climate of Addis Ababa,  
Ethiopia (33) Horizontal Subsurface Flow Constructed  
Wetlands were used to compare the performance of two  
macrophytes: Chrysopogon zizanioides and Phragmite karka in  
treating municipal wastewater.  
Vetiver was selected as the preferred species for the wetlands  
as Vetiver was better than Typha and Papyrus in pollutant  
removal efficiency in 4 out of the 10 important selected criteria  
(
Table 4). It should be noted that Vetiver had the highest  
removal rate of total N and best performance in total N and total  
P among the three species.  
In addition, the following information on Vetiver and Papyrus  
performance was considered in the final selection:  
1
.
During this study, it was noted that Papyrus was heavily  
attacked by an insect pest (Figure 7).  
2
.
Papyrus growth was significantly affected by high salinity  
level of the leachate, resulting in very poor regrowth after  
harvesting (Figure 8).  
3
.
Vetiver grass produced the highest biomass, which was  
crucial in the disposal of the volume of leachate (68).  
5
.3 Vetiver grass and Cyperus alternifolius  
GÓMEZ (30) studied several parameters of  
4
94  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
Table 4: Effectiveness of Vetiver as compared with Typha angustifolia and Cyperus papyrus in treating various contaminants  
Comparative Removal Efficiency between Vetiver; Typha and Papyrus  
Removal Efficiency (%)  
Contaminants  
BOD  
Vetiver  
Typha  
58  
22  
2
Papyrus  
Better Performance  
Typha  
53  
24  
5
54  
21  
1
TOC  
Vetiver  
TDS  
Vetiver  
NH  
3
6
4
4
Vetiver  
Total N  
COD  
9
7
7
Vetiver  
13  
7
15  
38  
69  
47  
23  
15  
38  
73  
68  
39  
Typha+Papyrus  
Typha+Papyrus  
Papyrus  
NO  
TSS  
PO  
3
72  
67  
33  
4
Papyrus  
Total P  
Papyrus  
Figure 7: Cyperus papyrus attacked by Insects  
3
The loading rate of the wastewater was 0.025 m /d and that  
many species are still poorly understood. Reed, cattail, and  
Vetiver were used in this greenhouse study to identify changes  
in plant biomass and B accumulation. All three species survived  
at up to 750 mg/L of B. Biomass of all three decreased  
significantly when B concentrations increased from control 0  
to 1, 50 and 500 mg/L. At B concentrations lower than 250  
mg/L, B accumulations were significantly different among the  
species in the order of Reed > Cattail > Vetiver grass. Cattail  
had a higher ability to uptake and transport B from the roots to  
the shoots than reed and Vetiver at B concentrations higher than  
250 mg/L. Results of this study suggested that Vetiver grass  
could be a promising species in B phytoremediation in high B-  
contaminated environments. As Vetiver showed the highest  
tolerance to external B supply, followed by cattail and reed. It  
is most likely that the differences in B tolerance among the  
three species is due to their ability to restrict B uptake rather  
than restricting B translocation from root to shoot or tolerating  
high B accumulation.  
3
of BOD was at maximum of 6.16g/m d, with a hydraulic  
retention time of 6 days. C. zizanioides had better removal  
efficiencies of TSS (92.3%); BOD (92.0%) and PO  
than P. karka TSS (91.3%); BOD (90.5%) and PO  
3
P. karka performed better with NH (86%), NO (81.8%) and  
SO (91.7%) than C. zizanioides which had removal  
efficiencies for NH (83.4%), NO (81.3%) and SO (90.5%).  
Removal rates in unplanted wetlands were lower for all  
parameters: TSS (78%), BOD (73%), NH (61.0%), NO  
55.5%), PO (67.6%), SO (78.1%).  
High levels of faecal Coliform and Escherichia coli are  
major concerns in the disposal of municipal sewage effluent.  
Very high removal rates of these two pathogens were obtained  
in wetland trials planted with Vetiver and P. karka compared to  
control (1.9 units of total Coliform and 1.2 units of E. coli).  
These are well below the concentrations of the pollutants limits  
for sewage effluent discharge set by World Health Organisation  
for directly disposed into surface water bodies or used for  
irrigation. Therefore, both Vetiver and P. karka are good  
candidates for remediation of sewage effluent using a  
constructed wetland system.  
4
(86.7%)  
4
(85.6%).  
4
4
4
3
4
5
4
3
(
4
4
5.7 Vetiver grass, Phragmites australis, Typha latifolia, and  
Lepironia articutala  
To compare the efficiencies in treating wastewater from an oil  
refinery in China which had very high concentrations of  
organic and inorganic pollutants, Xia, Ke (71) planted  
Chrysopogon zizanioides, Phragmites australis, Typha  
latifolia, and Lepironia articutala in a constructed Vertical Flow  
Wetland system.  
5
(
.6 Vetiver grass, reed (Phragmites australis) and cattail  
Typha latifolia.)  
Xin and Huang (70) conducted a study to identify  
differences in boron (B) accumulation and tolerance as  
differences in B tolerance and accumulation mechanisms in  
4
95  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
Figure 8: From left to right: Vetiver (C. zizanioides), Typha augustifolia and Cyperus papyrus at the start and the end of the treatment period  
Table 5: Effectiveness of Vetiver grass compared with Phragmites karka (Common Reed) in treating various contaminants  
Treatments and Reduction (%)  
Contaminants  
BOD5  
Vetiver  
92.3  
Phragmites karka  
Control  
53.8  
28.1  
30  
76.9  
35.3  
81.1  
55  
COD  
92.3  
Nitrate N  
Total P  
80.7  
90.9  
32.5  
26.4  
Chloride  
81.1  
52.8  
In the wastewater with high concentration of pollutants,  
results after two-month treatment showed that all species had a  
oil- contaminated water.  
very high with removal of NH  
91.4%) and 95.3% of oil. In the wastewater with low  
concentration of pollutants, the removal rates for NH (97.1%),  
3
(97.7%), COD (78.2%), BOD  
5.8 Vetiver grass, Phragmites australis and Cyperus  
alternifolius  
Using a constructed wetland designed to test the  
(
3
COD (71.5%), BOD (73.7%) and 89.8% of oil were recorded.  
However, the performance of the wetlands decreased and  
remained stable and the removal efficiencies of all four species are  
similar in longer term. It was also noted that the tillering rate of C.  
zizanioides was much higherin comparison with that of the other  
three species. Therefore C. zizanioides might have a stronger  
adaptation to the polluted environment than other species in the  
purification capacity of several wetland species to Acid Mine  
Drainage (AMD): Chrysopogon zizanioides, Phragmites  
australis, Cyperus alternifolius, Panicum repens, Gynura  
crepidiodes, Alocasia macrorrhiza and Chrysopogon  
aciculatus. Shu (72) found that an extremely acidic AMD  
collected from the Lechang lead/zinc mine tailings contained  
very high levels of Zn, Mn, Pb, Cd, Cu and Sulfate. Results  
4
96  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
after 75-day treatment indicated C. alternifolius had the highest  
and G. crepidiodes had the lowest index of tolerance to AMD  
among the six plants tested and C. zizanioides also had a high  
index of tolerance to the AMD.  
5.11 Vetiver grass, Bulrush (Scirpus spp.) and Cattail  
(Typha angustifolia L.)  
The effectiveness of three grass species: Vetiver, Bulrush  
(Scirpus spp.), and Cattail (Typha angustifolia L.) in treating  
piggery wastewater was investigated by Pongthornpruek (29),  
using the surface flow constructed wetland system, with flow  
5
.9 Vetiver grass and Phragmites mauritianus  
3
Njau and Mlay (73) used Horizontal Subsurface Flow  
volume at 0.18 m /day and 5-day hydraulic retention time  
Constructed Wetlands to treat wastewater with Vetiver grass  
and common reeds (Phragmites mauritianus) in removing  
Total P and Ortho P, and Total Kjeldahl N (NH -N + organic-  
3
(HRT). The results showed that Cattail improved BOD, COD  
and total Kjeldahl nitrogen (TKN) with efficiencies of 80.59%,  
84.11% and 88.08%, respectively. Vetiver grass was most  
effective in treating total phosphorus (TP). The efficiency of  
Bulrush and Cattail treatment for TP was not significantly  
different. Although this treatment with a 5-day HRT was able  
to reduce the level of pollutants in the piggery wastewater, it  
could not meet the wastewater quality standard. Therefore, the  
periods for hydraulic retention time should be increased to  
reach the standard required.  
N). The effluent ponds wastewater originated mainly from  
domestic duischarge from the main campus of Dar es Salaam  
University, Tanzania. Results showed that overall Vetiver  
performed much better than P. mauritianus in removing  
pollutants in this order: Organic nitrogen, Vetiver (83.8%) and  
reeds (55.3%); TSS, Vetiver (81.42%) and reeds (79.4%);  
COD, Vetiver (46.2%) and reeds (37.9%); Cu, Vetiver (73.6%)  
and reeds (64.6%). Effluent colour improvement, Vetiver  
(
78.2%) and reeds (50.87%). Over the period of one-month,  
6
Productivity, Utilization Options and  
while all Vetiver plant growth were not affected, two out of six  
P. mauritianus plants died. Generally, it can be concluded that  
Vetiver grass performed better than P. mauritianus in removing  
of pollutants. These findings strongly support the use of  
macrophytes as an environmentally friendly and low-cost  
method for removal of pollutants from contaminated  
wastewater.  
Economic Potential of Vetiver Grass  
Vetiver is a highly productive plant species (34). Truong  
(
75) recommended that Vetiver planted for phytoremediation  
should be harvested two or three times a year for biomass  
utilization purposes or to export nutrients. Chomchalow (76)  
and Raman, Alves (77) reported that harvested leaves, stems  
and roots of the Vetiver plant in the form of dried, partly dried,  
or even fresh material have some other uses either with no  
processing, or with some degree of processing.  
5
.10 Vetiver grass, Water hyacinth (Eichhornia crassipes),  
Alligator weed (Alternanthera philoxeroides) and Bahia  
grass (Paspalum notatum)  
Non-processed products  
Construction and building material (thatching), compost,  
agricultural (mulch), mushroom medium, animal fodder (for  
dairy cows, cattle, sheep, horses or rabbits) and biofuel.  
Hanping, Huixiu (74) compared the capacity of four plants:  
C. zizanioides, Eichhornia crassipes (Water hyacinth),  
Alternanthera philoxeroides (Alligator weed) and Paspalum  
notatum (Bahia grass) in treating polluted water. A study was  
conducted to determine the effectiveness of four plants in  
treating leachate from the Likeng Domestic Landfill in  
Guangzhou, Guangdong Province, China. To test the tolerance  
to highly polluted environment four macrophytes (Eichhornia  
crassipes, Paspalum notatum, A. philoxeroides and  
Chrysopogon zizanioides) were selected for their  
characteristics of rapid growth producing large biomass. The  
levels of COD, total N, ammonia N, total P and Chloride in the  
leachate were several dozen times higher than the levels  
permitted to be discharged for industrial use or irrigation water  
for farmland. Results of this study showed that:  
Semi processed products  
Raw material for handicrafts (weaving of hats, mats, baskets  
etc.), an energy source such as ethanol production, botanical  
pesticides, pressed-fiber pots, furniture.  
Fully processed products  
Essential oil and its derived products, herbal medicine,  
industrial products (raw material for pulp and paper),  
fiberboard.  
7
Conclusion  
Vetiver System Technology has been used successfully as  
a phytoremediation tool to counteract polluted waters, due to  
its extraordinary and unique morphological and physiological  
attributes. The reduction of contaminants is strongly affected  
by plant growth rate and hydraulic retention time. Hence the  
integration of available knowledge and techniques for removal  
of water contaminants and advances in waste water treatment  
is important in assessing and controlling water pollution. These  
reported results show that Vetiver grass is either equally and  
often more effective in treating these contaminated wastewaters  
than other Vetiver genotypes and other commonly used  
macrophytes including several Cyperus species, Phragmites  
species, Typha species and another 14 plant species. Studies  
showed that Vetiver grass is most effective species among the  
top three, including Phragmites australis and Cyperus  
alternifolius. The following is the summary of the conclusions:  
E. crassipes died in both low (LCL) and high  
concentrations (HCL) of leachate.  
P. notatum could not survive in the HCL and was severely  
damaged in the low concentrations (LCL).  
Philoxeroides was impaired in the HCL but formed a  
considerably large biomass in the LCL.  
Zizanioides was also affected by the leachates but was the  
least affected of the 4 species.  
The order of tolerance of the four species was C.  
zizanioides > A. philoxeroides > P. notatum > E. crassipes.  
Overall A. philoxeroides was superior to C. zizanioides in  
regard to total N and nitrate N in LCL. In addition, C.  
zizanioides was able to purify seven kinds of “pollutants” in the  
HCL better than A. philoxeroides.  
Among the seven parameters measured in this study C.  
zizanioides showed the best results in Ammonia purification at  
the rate between 77% - 91%. It also showed a high purification  
rate for P (>74%). Based on the above findings, C. zizanioides  
showed a greater potential in treating the leachate discharge  
from this landfill.  
The high efficiency of Vetiver grass in treating both organic  
and inorganic chemicals suggests that the grass could be  
used to develop a cost effective and environment friendly  
remediation for wastewater. Vetiver tolerates a wide range  
of pH (3.5-11.5), salinity and heavy metals such arsenic,  
Cadmium, Copper, Chromium, Lead, Mercury, Nickel,  
Selenium and Zinc. It could also absorb large amount of  
Nitrogen, Phosphorous and Potassium. Its extensive and  
4
97  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
deep root system could reduce or eliminate deep nitrate  
leaching to groundwater.  
14. Darajeh N, Idris A, Masoumi HRF, Nourani A, Truong P, Sairi  
NA. Modeling BOD and COD removal from Palm Oil Mill  
Secondary Effluent in floating wetland by Chrysopogon  
zizanioides (L.) using response surface methodology. Journal of  
environmental management. 2016;181:343-52.  
Vetiver has fine purple flowers that can be well  
incorporated in landscape design. It also has a large  
biomass and a dense root system extending up to 5 m depth.  
Under wet conditions or high-water supply, it has a very  
high-water use rate, up to 7.5 times more than other  
common wetland plants such as Typha latifolias,  
Phragmites australis and Schoenoplectus validus.  
It is highly resistant to pests and diseases.  
It is sterile so no potential for becoming an aquatic weed.  
Vetiver can tolerate extreme temperatures from -14  to  
1
5. Farraji H, Zaman N, Tajuddin R, Faraji H. Advantages and  
disadvantages of phytoremediation: A concise review. Int J Env  
Tech Sci. 2016;2:69-75.  
16. Zhang DQ, Jinadasa K, Gersberg RM, Liu Y, Ng WJ, Tan SK.  
Application of constructed wetlands for wastewater treatment in  
developing countriesa review of recent developments (2000–  
2
013). Journal of environmental management. 2014;141:116-31.  
1
7. Ash R, Truong P, editors. The use of vetiver grass for sewerage  
treatment. Sewage Management QEPA Conference; 2004.  
55.  
18. Boonsong K, Chansiri M. Domestic wastewater treatment using  
vetiver grass cultivated with floating platform technique. AU  
Journal of Technology. 2008;12(2):73-80.  
It is recommended that further research to be undertaken in  
the following areas, as more information on Vetiver  
phytoremediation is needed to obtain more scientifically  
proven with an ever-increasing degree of accuracy. These  
include:  
Implement a study at larger scales and in continuous flow  
conditions;  
Study the use of Vetiver plant by-product as biomass used  
for biofuel production;  
Assess the effect of Vetiver on the removal of methane  
produced in anaerobic treatment processes.  
1
9. Yang Z, Zheng S, Chen J, Sun M. Purification of nitrate-rich  
agricultural runoff by hydroponic system. Bioresource  
a
technology. 2008;99(17):8049-53.  
2
0. Roongtanakiat N, Nirunrach T, Chanyotha S, Hengchaovanich D.  
Uptake of heavy metals in landfill leachate by vetiver grass.  
Kasetsart J(Nat Sci). 2003;37(2):168-75.  
21. Kiiskila JD, Sarkar D, Feuerstein KA, Datta R. A preliminary  
study to design a floating treatment wetland for remediating acid  
mine drainage-impacted water using vetiver grass (Chrysopogon  
zizanioides). Environmental Science and Pollution Research.  
2
017;24(36):27985-93.  
2
2
2. Gnansounou E, Alves CM, Raman JK. Multiple applications of  
vetiver grassa review. Int J Environ Sci. 2017;2:125-41.  
3. SUELEE AL. Phytoremediation potential of vetiver grass  
References  
1
.
Tanner CC. Growth and nutrition of Schoenoplectus validus in  
agricultural wastewaters. Aquatic botany. 1994;47(2):131-53.  
Rezania S, Park J, Rupani PF, Darajeh N, Xu X, Shahrokhishahraki  
R. Phytoremediation potential and control of Phragmites australis  
as a green phytomass: an overview. Environmental Science and  
Pollution Research. 2019;26(8):7428-41.  
(Vetiveria zizanioides) for water contaminated with selected heavy  
metal: UNIVERSITI PUTRA MALAYSIA; 2016.  
2
.
2
2
2
2
2
4. Gautam M, Agrawal M. Phytoremediation of metals using vetiver  
(Chrysopogon zizanioides (L.) Roberty) grown under different  
levels of red mud in sludge amended soil. Journal of Geochemical  
Exploration. 2017;182:218-27.  
3
4
.
.
Ruiz-Rueda O, Hallin S, Bañeras L. Structure and function of  
denitrifying and nitrifying bacterial communities in relation to the  
plant species in a constructed wetland. FEMS Microbiology  
Ecology. 2009;67(2):308-19.  
Talaiekhozani A, Rezania S. Application of photosynthetic  
bacteria for removal of heavy metals, macro-pollutants and dye  
from wastewater: A review. Journal of Water Process Engineering.  
5. Kiiskila JD, Sarkar D, Panja S, Sahi SV, Datta R. Remediation of  
acid mine drainage-impacted water by vetiver grass (Chrysopogon  
zizanioides):  
A
multiscale long-term study. Ecological  
Engineering. 2019;129:97-108.  
6. Suelee AL, Hasan SNMS, Kusin FM, Yusuff FM, Ibrahim ZZ.  
Phytoremediation potential of vetiver grass (Vetiveria zizanioides)  
for treatment of metal-contaminated water. Water, Air, & Soil  
Pollution. 2017;228(4):158.  
7. Hasan SNMS, Kusin FM, Lee ALS, Ukang TA, Yusuff FM,  
Ibrahim ZZ, editors. Performance of vetiver grass (Vetiveria  
zizanioides) for phytoremediation of contaminated water. MATEC  
web of conferences; 2017: EDP Sciences.  
8. Raharjo S, Irmawati EF, Manaf M, editors. Constructed Wetland  
With Flow Water Surface Type For Elimination Of Aquaculture  
Wastewater From Catfish (Clarias gariepinus, Var). IOP  
Conference Series: Earth and Environmental Science; 2018: IOP  
Publishing.  
9. Pongthornpruek S. Treatment of Piggery Wastewater by Three  
Grass Species Growing in a Constructed Wetland. Applied  
Environmental Research. 2017;39(1):75-83.  
2
017;19:312-21.  
5
6
.
.
Truong P. The Global Impact of Vetiver Grass Technology on the  
Environment. Proceedings of the Second International Conference  
on Vetiver Bangkok: Citeseer; 2000. p. 48-61.  
Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, et  
al. Mechanistic understanding and holistic approach of  
phytoremediation: a review on application and future prospects.  
Ecological engineering. 2018;120:274-98.  
7
8
9
.
.
.
Truong P, Van TT, Pinners E. Vetiver system applications  
technical reference manual. The Vetiver Network International.  
2
008.  
2
3
Truong P, editor Research and development of the Vetiver system  
for treatment of polluted water and contaminated land. TVN India  
1
st Workshop Proceedings; 2008.  
0. GÓMEZ Y. Evaluación De La Eficiencia De Humedales  
Adams RP, Dafforn M. DNA fingerprints (RAPDs) of the  
Artificiales Verticales Empleando Cyperus Alternifolius  
Y
pantropical grass vetiver, Vetiveria zizanioides (L.) Nash  
Chrysopogon Zizanioides Para El Tratamiento De Aguas Servidas:  
Tesis (Título en Ingeniería Agrícola). Universidad Nacional  
Agraria La Molina; 2017.  
(Gramineae), reveal a single clone,“Sunshine”, is widely utilized  
for erosion control. Vetiver Newsletter. 1997;18:27-33.  
1
1
0. Veldkamp J. A revision of Chrysopogon Trin. including Vetiveria  
Bory (Poaceae) in Thailand and Malesia with notes on some other  
species from Africa and Australia. Austrobaileya. 1999:503-33.  
1. Adams R, Turuspekov MZY, Dafforn M, Veldkamp J. DNA  
fingerprinting reveals clonal nature of Vetiveria zizanioides (L.)  
Nash, Gramineae and sources of potential new germplasm.  
Molecular Ecology. 1998;7(7):813-8.  
3
1. Oku E, Asubonteng K, Nnamani C, Michael I, Truong P, editors.  
Using Native African Species To Solve African Wastewater  
Challenges: An In-Depth Study Of Two Vetiver Grass Species.  
Sixth International Conference on Vetiver; 2015; Danang,  
Vietnam.  
2. Yeboah SA, Allotey ANM, Biney E. Purification of industrial  
wastewater with vetiver grasses (Vetiveria zizanioides): the case  
of food and beverages wastewater in Ghana. Asian Journal of Basic  
and Applied Sciences Vol. 2015;2(2).  
3
3
1
1
2. Purseglove JW. Tropical Crops. Monocotyledons. London1972.  
3. Darajeh N, Idris A, Fard Masoumi HR, Nourani A, Truong P,  
Rezania S. Phytoremediation of palm oil mill secondary effluent  
3. Angassa K, Leta S, Mulat W, Kloos H, Meers E. Organic matter  
and nutrient removal performance of horizontal subsurface flow  
constructed wetlands planted with Phragmite karka and Vetiveria  
(
POMSE) by Chrysopogon zizanioides (L.) using artificial neural  
networks. International journal of phytoremediation.  
017;19(5):413-24.  
2
4
98  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
zizanioide for treating municipal wastewater. Environmental  
Processes. 2018;5(1):115-30.  
4. Liao X, Luo S, Wu Y, Wang Z, editors. Studies on the abilities of  
Vetiveria zizanioides and Cyperus alternifolius for pig farm  
wastewater treatment. International conference on vetiver and  
exhibition; 2003.  
5. Zheng C, Tu C, Chen H, editors. Preliminary study on purification  
of eutrophic water with vetiver. Proc International Vetiver  
Workshop, Fuzhou, China October; 1997.  
54. Kaseva M. Performance of a sub-surface flow constructed wetland  
in polishing pre-treated wastewatera tropical case study. Water  
research. 2004;38(3):681-7.  
55. Tang X, Huang S, Scholz M, Li J. Nutrient removal in pilot-scale  
constructed wetlands treating eutrophic river water: assessment of  
plants, intermittent artificial aeration and polyhedron hollow  
polypropylene balls. Water, air, and soil pollution. 2009;197(1-  
4):61.  
3
3
3
3
56. Chang N-B, Wanielista MP, Xuan Z, Marimon ZA. Floating  
6. Oku E, Nnamani CV, Otam MO. Wastewater Management: An  
African Vetiver Technology: United Nations University Institute  
for Natural Resources in Africa; 2016.  
7. Njau K, Mlay H, editors. Wastewater treatment and other research  
initiatives with vetiver grass. Tercera conferencia internacional y  
exibición Vetiver y agua Guangzhou, República Popular China;  
treatment wetlands for nutrient removal in a subtropical  
stormwater wet detention pond with a fountain. Developments in  
Environmental Modelling. 26: Elsevier; 2014. p. 437-67.  
57. Rivas A, Barceló-Quintal I, Moeller G. Pollutant removal in a  
multi-stage municipal wastewater treatment system comprised of  
constructed wetlands and a maturation pond, in a temperate  
climate. Water Science and Technology. 2011;64(4):980-7.  
58. Weragoda S, Jinadasa K, Zhang DQ, Gersberg RM, Tan SK,  
Tanaka N, et al. Tropical application of floating treatment  
wetlands. Wetlands. 2012;32(5):955-61.  
59. Bojcevska H, Tonderski K. Impact of loads, season, and plant  
species on the performance of a tropical constructed wetland  
polishing effluent from sugar factory stabilization ponds.  
Ecological engineering. 2007;29(1):66-76.  
2
003.  
3
3
4
4
8. Rezania S, Din MFM, Ponraj M, Sairan FM, Binti Kamaruddin SF.  
Nutrient uptake and wastewater purification with Water Hyacinth  
and its effect on plant growth in batch system. J Environ Treat  
Tech. 2013;1(2):81-5.  
9. Hadiyanto MC, Soetrisnanto D. Phytoremediations of palm oil mill  
effluent (POME) by using aquatic plants and microalgae for  
biomass production. Journal of Environmental Science and  
Technology. 2013;6(2):79-90.  
60. Mburu N, Tebitendwa SM, Rousseau DP, Van Bruggen J, Lens  
PN. Performance evaluation of horizontal subsurface flow–  
constructed wetlands for the treatment of domestic wastewater in  
0. Hussain G, Al-Zarah AI, Alquwaizany AS. Role of Typha (Cattail)  
and Phragmites austrailes (Reed Plant) in domestic wastewater  
treatment. Research Journal of Environmental Toxicology.  
the tropics.  
Journal  
of Environmental  
Engineering.  
2
014;8(1):25-36.  
2012;139(3):358-67.  
1. Gottschall N, Boutin C, Crolla A, Kinsley C, Champagne P. The  
role of plants in the removal of nutrients at a constructed wetland  
treating agricultural (dairy) wastewater, Ontario, Canada.  
Ecological engineering. 2007;29(2):154-63.  
61. Kyambadde J, Kansiime F, Gumaelius L, Dalhammar G. A  
comparative study of Cyperus papyrus and Miscanthidium  
violaceum-based constructed wetlands for wastewater treatment in  
a tropical climate. Water research. 2004;38(2):475-85.  
4
4
2. Abou-Elela SI, Golinielli G, Abou-Taleb EM, Hellal MS.  
Municipal wastewater treatment in horizontal and vertical flows  
constructed wetlands. Ecological Engineering. 2013;61:460-8.  
3. Li M, Wu Y-J, Yu Z-L, Sheng G-P, Yu H-Q. Enhanced nitrogen  
and phosphorus removal from eutrophic lake water by Ipomoea  
aquatica with low-energy ion implantation. Water research.  
62. Chan YJ, Chong MF, Law CL, Hassell D. A review on anaerobic–  
aerobic treatment of industrial and municipal wastewater.  
Chemical Engineering Journal. 2009;155(1-2):1-18.  
63. Zhai J, Xiao H, Kujawa-Roeleveld K, He Q, Kerstens S.  
Experimental study of a novel hybrid constructed wetland for  
water reuse and its application in Southern China. Water Science  
and Technology. 2011;64(11):2177-84.  
64. Darajeh N. Phytoremediation of Palm Oil Mill Secondary Effluent  
Using Vetiver System: University Putra Malaysia; 2016.  
65. Hart B, Cody R, Truong P, editors. Hydroponic vetiver treatment  
of post septic tank effluent2003.  
66. Truong P, Hart B, Chomchalow N, Sombatpanit S, Network PRV.  
Vetiver system for wastewater treatment: Office of the Royal  
Development Projects Board; 2001.  
2
009;43(5):1247-56.  
4. Ji G, Sun T, Ni J. Surface flow constructed wetland for heavy oil-  
produced water treatment. Bioresource Technology.  
007;98(2):436-41.  
4
4
2
5. Abdel-Shafy HI, El-Khateeb M, Regelsberger M, El-Sheikh R,  
Shehata M. Integrated system for the treatment of blackwater and  
greywater via UASB and constructed wetland in Egypt.  
Desalination and Water Treatment. 2009;8(1-3):272-8.  
4
6. Ahmed S, Popov V, Trevedi RC, editors. Constructed wetland as  
tertiary treatment for municipal wastewater. proceedings of the  
institution of civil engineers-waste and resource management;  
67. Liao X. Studies on plant ecology and system mechanisms of  
constructed wetland for pig farm in South China: Ph. D. Thesis,  
South China Agricultural University, Guangzhou, China; 2000.  
68. Truong P, Truong N, editors. Recent Advancements in Research,  
Development and Application of Vetiver System Technology in  
Environmental Protection. Fifth Intern Conf on Vetiver, Lucknow,  
India; 2013.  
69. Ghimire NP. Wastewater Treatment by Phytoremediation In  
Constructed Wetland: Department of Environmental Science,  
Khwopa College (Affiliated to Tribhuvan University); 2015.  
70. Xin J, Huang B. Comparison of boron uptake, translocation, and  
accumulation in reed, cattail, and vetiver: an extremely boron-  
tolerant plant, vetiver. Plant and Soil. 2017;416(1-2):17-25.  
71. Xia H, Ke H, Deng Z, Tan P, Liu S, editors. Ecological  
effectiveness of vetiver constructed wetlands in treating oil-refined  
wastewater. Proceedings of the Third International Conference on  
Vetiver and Exhibition, Guangzhou, China; 2003.  
2
008: Thomas Telford Ltd.  
4
4
4
5
7. Saeed T, Afrin R, Al Muyeed A, Sun G. Treatment of tannery  
wastewater in a pilot-scale hybrid constructed wetland system in  
Bangladesh. Chemosphere. 2012;88(9):1065-73.  
8. Katsenovich YP, Hummel-Batista A, Ravinet AJ, Miller JF.  
Performance evaluation of constructed wetlands in a tropical  
region. Ecological Engineering. 2009;35(10):1529-37.  
9. Song H-L, Li X-N, Lu X-W, Inamori Y. Investigation of  
microcystin removal from eutrophic surface water by aquatic  
vegetable bed. Ecological engineering. 2009;35(11):1589-98.  
0. Chen Z, Chen B, Zhou J, Li Z, Zhou Y, Xi X, et al. A vertical  
subsurface-flow constructed wetland in Beijing. Communications  
in Nonlinear Science and Numerical Simulation. 2008;13(9):1986-  
9
7.  
5
5
1. Tunçsiper B. Nitrogen removal in a combined vertical and  
horizontal subsurface-flow constructed wetland system.  
Desalination. 2009;247(1-3):466-75.  
2. Jinadasa K, Tanaka N, Mowjood M, Werellagama D.  
Effectiveness of Scirpus grossus in treatment of domestic wastes  
72. Shu W, editor Exploring the potential utilization of vetiver in  
treating acid mine drainage (AMD). Proc Third International  
Vetiver Conference, Guangzhou, China; 2003.  
73. Njau K, Mlay H, editors. Wastewater treatment and other research  
initiatives with vetiver grass. Proc of the Intl Conf on Vetiver grass  
Mexico; 2003.  
74. Hanping X, Huixiu A, Shizhong L, Daoquan H. A preliminary  
Study on Vetiver′ s Purification for Garbage Leachate. The Vetiver  
Newsletter. 1997;18:22-6.  
75. Truong P, editor Vetiver system for water quality improvement.  
Proceeding of 3rd international vetiver conference; 2003: Citeseer.  
in a constructed wetland. Journal of Freshwater Ecology.  
006;21(4):603-12.  
2
5
3. Li L, Li Y, Biswas DK, Nian Y, Jiang G. Potential of constructed  
wetlands in treating the eutrophic water: evidence from Taihu Lake  
of China. Bioresource technology. 2008;99(6):1656-63.  
4
99  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 485-500  
7
7
6. Chomchalow N. Other uses, and utilization of vetiver. Third  
International conference on Vetiver China2003. p. 81-91.  
7. Raman JK, Alves CM, Gnansounou E. A review on moringa tree  
and vetiver grassPotential biorefinery feedstocks. Bioresource  
technology. 2018;249:1044-51.  
5
00