Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 461-466  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Green Synthesis of Spherical Silver  
Nanoparticles Using Ducrosia Anethifolia  
Aqueous Extract and Its Antibacterial Activity  
a
a  
Mohammad Amin Jadidi Kouhbanani , Nasrin Beheshtkhoo , Pourya  
b
c
c
d
Nasirmoghadas , Samira Yazdanpanah , Kamiar Zomorodian , Saeed Taghizadeh ,  
a,e  
Ali Mohammad Amani *  
aDepartment of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of  
Medical Sciences, Shiraz, Iran  
b
Department of Microbiology, Faculty of Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran  
c
Department of Medical Mycology and Parasitology, School of Medicine and Center of Basic Researches in Infectious  
Diseases, Shiraz University of Medical Sciences  
Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of  
d
Medical Sciences, Shiraz, Iran  
Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran  
e
Received: 30/03/2019  
Accepted: 11/06/2019  
Published: 30/09/2019  
Abstract  
The present study introduces a simple, cost-efficient, and eco-friendly method for the synthesis of silver nanoparticles  
(
AgNP) using aqueous extract Ducrosia anethifolia and its antibacterial activity. Ducrosia anethifolia aqueous extract was  
used both as a reducing and capping agent. Synthesized silver nanoparticles were characterized using several techniques  
including UV-Vis spectroscopy, powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), dynamic light  
scattering method (DLS), and FT-IR analysis. The results demonstrated that the size range of the synthesized nanoparticles  
was 4 to 42.13 nm, with the average size of 11.4 nm and in a spherical shape. Moreover, X-ray diffraction analysis indicated  
that the silver nanoparticles were highly crystalline in nature. Examination of antibacterial activity of synthesized on Gram-  
positive and Gram-negative bacterial revealed that they had a substantial antibacterial effect.  
Keywords: Ducrosia Anethifolia; silver nanoparticle; Green synthesis; antimicrobial performance  
1
hydrothermal synthesis (17), and vacuum deposition or  
vaporization (18), and Sol-Gel technique (19).  
However, it should be noted that chemical methods  
have a poorer performance and that chemical methods are  
toxic due to the use of toxic reducing chemicals like  
citrate, borohydride, and other organic, toxic compounds  
1
Introduction  
Given their unique properties, metal nanoparticles  
have a broad array of applications, each of which is  
associated with a certain characteristic. (1.4) Moreover, of  
such nanoparticles, silver nanoparticles are utilized in a  
vast variety of fields such as catalyst in chemical reactions,  
solar cells, photography, electronics, food industry,  
dentistry, and most importantly, antibacterial effects on  
Gram-positive and Gram-negative bacteria (5). This  
bioactivity is due to the particle and nanometer size (1-  
(
20). In addition, other disadvantages of these techniques  
include costliness, high energy consumption, and eco-  
toxic nature. Thus, the need for a biocompatible and cost-  
efficient method, devoid of the abovementioned  
drawbacks, is strongly felt. Biosynthesis methods can  
benefit from microorganism cells or plant extracts to  
produce nanoparticles. Recently, green synthesis  
techniques have turned into an important branch of  
nanotechnology (21-29).  
This is the reason for the wide application of medical  
plants in the synthesis of silver nanoparticles (30-33). In  
fact, medical plants have bioactive molecules which make  
possible the green synthesis of silver nanoparticles. Such  
1
00) of silver nanoparticles, giving them special physical,  
chemical, magnetic, and optical properties which are  
different from their bulk structure (8-6). Therefore, silver  
nanoparticles are considered as a potent antibacterial  
material, comparable to, and even in some cases, stronger  
than common antibiotics (9). Currently, there are various  
physical and chemical methods of producing metal  
nanoparticles (10, 13) which include chemical reduction  
(
14), electrochemistry (15), mold-based synthesis (16),  
Corresponding author: Dr. Ali Mohammad Amani, Department of Medical Nanotechnology, School of Advanced Medical  
Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. E-mail: Amani_a@sums.ac.ir. Tel: +98  
9171324701.  
These authors contributed equally to this work.  
461  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 461-466  
active molecules work as reducing and capping agents for  
nanoparticle synthesis, making nanoparticles useable for  
biomedical applications (34-35). Synthesis of  
nanoparticles, an indicator of the relationship between  
biotechnology and nanotechnology, has increased due to  
the rising demands for eco-friendly technologies (36).  
Various studies have shown that different plant  
compositions abound in high levels of strong antioxidants  
such as polyphenols, sugar, nitrogen reserves, and amino  
acids (37). These compounds function as reducing (38)  
and coating agents for NPS-synthesis (39-40). The plant  
extract used to synthesize NPS can be useful due to their  
lack of need for processes such surface coating, and lower  
reaction time (41). Additionally, they do not produce any  
detrimental waste (42).  
dried plant was grinded so as to yield powders with mesh  
20. In the next step, 5g powder was added to 50 ml  
distillated water while being completely stirred for 2h. The  
solution was cooled at room temperature and filtered  
through Grade1 Whatman filter paper. The obtained fresh  
extract was used to prepare AgNPs.  
In this research, severalconcentration ranges from 20  
ml of 5% to 20% of plant extract was used to synthesis Ag  
NPs.Typically, 20 ml fresh filtered extract was interacted  
3
with 5 ml aqueous 0.01 mM AgNO under reflux by  
magnetic stirred. After interaction for 30 min, color of  
suspensionchanged from light-yellow to brown which this  
change indicates formation of Ag NPs. The brown Ag  
suspension was cooled at room temperature and kept for  
characterization by several techniques.  
An aromatic and medicinal plant belonging to the  
Apiaceae family, Ducrosia anethifolia grows wild in areas  
of Iran-Turan as well as the Gulf of Oman. In Persian  
language, this plant is called Moshgak, Roshgak, and  
Moshkbu (literally meaning Musk-smelling) and has anti-  
inflammatory and pain-relieving effects (43). The main  
chemical compositions of this herb include: n-decanal, n-  
dodecanal, chrysanthenyl acetate, myrcene-limonene, and  
α-pinene. Also, the aliphatic compounds of this plant are  
believed to act as an antibacterial agent against Gram-  
positive and Gram-negative bacteria (44). The present  
study introduced a quick way of producing  
3 Result and discussion  
3.1 UV-Vis Assessment  
After silver nitrate (AgNO3) was added to extracts of  
Ducrosia anethifolia, the color of the suspension changed  
within some minutes. The extract was yellow by itself, but  
it turned brown during the process of silver nanoparticles  
synthesis which was due to the surface plasmon resonance  
(SPR) of silver nanocrystals as they are dependent on the  
size and shape of nanoparticles. As shown by Fig. 1, there  
is a sharp peak almost 465 nm which supports silver  
nanoparticles synthesis.According to the previous  
literature, the observed bond corresponds to absorption by  
colloidal silver nanospheres in 450-500 nm(33, 45-47).  
silver nanoparticles using Ducrosia anethifolia plant  
extracts and examined their properties and inhibitory  
effects on Gram-positive and Gram-negative bacteria.  
2
Materials and method  
2
.1 Instruments  
The powder X-ray diffraction (XRD) pattern  
measurements of the samples were recorded on a Holland-  
Philips X-  
radiation  
-
80◦, operating at 40 kV and a cathode current of 20 mA.  
Additionally, some specimens of synthesized silver  
nanoparticles AgNPs for TEM studies were prepared by  
ultrasonic dispersion of the NPs in ethanol, and the  
suspensions were dropped onto a carbon-coated copper  
grid. TEM was carried out using a (CM30 3000Kv). FT-  
IR spectra were recorded to investigate the functional  
group on samples which carried out on a Bruker VERTEX  
8
0 v model using the KBr disk method. The size  
distribution of Ag NPs was characterized by the DLS  
approach, using computerized inspection system  
MALVERN Zen3600) with DTS® (nano) software. UV-  
Figure1: UV-vis spectroscopy of Ag NPs.  
a
(
3.2 TEM and DLS investigation  
Vis spectroscopy (UV-Vis) analyses were taken using a  
Varian Cary 50 UVvis spectrophotometer. Spectra were  
recorded in a range of 350-800 nm.  
Morphology and size distribution of synthesized  
nanoparticles was investigated by TEM images (Fig. 2).  
Fig. 2 shows high-quality crystalline structure and  
spherical morphology of AgNPs which is matched with  
observed peak for nanospheres in UV-Vis spectroscopy.  
The size distribution of synthesized silver  
nanoparticles was in the ranges from 4 to 42.13 nm with  
average size of 11.4 nm. Fig. 3 depicts the particle size  
distribution histogram for nanoparticles obtained from  
DLS technique. According to the analyses, the silver  
nanoparticles had an average size of 117 nm. These  
findings are not in agreement with those achieved from  
TEM technique. The reason for this difference is that DLS  
measures hydrodynamic diameter of nanoparticles as well  
as their surrounding cover. Moreover, in an aqueous  
environment, it is likely that some nanoparticles connect  
to each other and create an aggregation of nanoparticles.  
Subsequently, DLS measures the overall diameter of the  
2
.2 Materials and methods  
Silver nitrate (AgNO ) was purchased from Merck  
3
Company for this study and was used without any renewed  
purification. Fresh samples of Ducrosia anethifolia parts  
consisting of leaves and stems were identified and  
collected. To remove pollution, all of glassware were  
cleaned with dilute HNO and rinsed with distilled water  
3
as well as dried in an oven under air atmosphere.  
Fresh Ducrosia anethifolia extract was preferably used  
to reduce aqueous Ag+ solution to Ag NPs. So, the  
collected Ducrosia anethifolia was washed with distillated  
water to remove any previous contamination, and then  
dried in the shade at the room temperature. Afterwards, the  
462  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 461-466  
set of nanoparticles. Depending the size of nanoparticles  
as well as the magnitude of biological components  
connected to various plant extract nanoparticles, the  
particle size distribution of nanoparticles accounts for a  
highly narrow to a highly broad range in DLS. Similar  
findings were reported by G. Singhaj et al who showed  
that silver nanoparticles formed from extracts of Ocimum  
sanctum differed on average in terms of their particle size  
nanoparticles in DLS and TEM techniques, suggesting  
that the latter showed the average particle size of 14.3 nm,  
while the former the average particle size of 22.3 nm(48).  
capable of overlapping with carboxylic acid and amine  
groups. Also, the weak peak seen at 2918 cm-1 accounted  
for the alkane CH stretching vibrations of methyl,  
methylene, and methoxy groups. Two strong peaks at  
1622 and 1616 cm-1 represented the C=O stretching  
vibrations due to carbonyl stretching groups in carboxylic  
acid, and moreover, the peaks at 1383, 1100 and 616 cm-  
1 were assigned to CH bending, COH bond stretching  
and aromatic ring, respectively (49). All of the mentioned  
bands were considered as principal functional groups in  
molecular structures in Ducrosia anethifolia extract which  
play a major role in formation of silver nanoparticles  
Figure 4: FTIR spectroscopy of prepared silver nanoparticles by  
green synthesis  
3
.4 XRD spectroscopy  
The peaks caused by X-ray diffraction at 2θ=3.2°,  
44.2°, 64.5°, and 77.8°, all shown by Fig. 5. These angles  
can be indexed to the 111, 200, 220 and 311 planes of  
reflections of silver, respectively. This diffraction pattern  
is indicative of natural crystalline structure of silver  
nanoparticles and those produced with a face-centered  
cubic structure (FCC). These findings are in line with  
those obtained from silver nanoparticles produced from  
plant extracts. Likewise, there was a series of peaks  
witnessed at ranges 10 to 20 which corresponded to the  
bioorganic crystalline phase of plant extracts. For  
instance, in the previous study conducted on silver  
nanoparticles synthesis using Wheat grass extracts, we  
showed that peaks caused by X-ray diffraction at  
Figure 2: TEM image of synthesized AgNPs using Ducrosia  
Anethifolia extract  
3
.3 FTIR analysis  
To investigate the functional groups of extracts on the  
surface of AgNPs, FTIR analysis was carried out. Several  
peaks were observed in FTIR plot (Figure 4) that were  
indicate of various functional groups on the surface of  
AgNPs. According to Fig. 4, the peaks witnessed at 3500  
cm-1 range was associated with the amide group N-H  
stretching, whereas the band seen at 3232 cm-1 accounted  
for the O-H stretching of the carboxylic acid group.  
Furthermore, the peak witnessed at 3500-3200 cm-1 was  
corresponded to alcohol/phenol O-H stretching which is  
2θ=38.22°, 44.37°, 64.54°, and 77.47°, suggesting that the  
results of the present study are supported (43, 49-53).  
Figure 3: DLS of green synthesized Ag NPs by Ducrosia Anethifolia extract  
463  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 461-466  
stress), and iv) AgNPs disrupted the respiration functions  
of the cell and permeability through attaching and  
penetrating into the cell membrane of bacterial. By  
addressing this reasons, the green synthesized AgNPs  
demonstrated the best antibacterial activity(54-55-56).  
4
Antibacterial activity of green Ag NPs  
The MICs and MBCs obtained from synthetic  
nanostructures against various strains of bacteria are  
shown in Table 1.  
5
Conclusion  
Given the wide application of metal nanoparticles in  
Figure 5: XRD pattern of biosynthesized Ag NPs using Ducrosia  
Anethifolia extract  
industry as well as the desperate need for a low-risk and  
safe treatment without any adverse effects on both humans  
and environment, it is believed that green synthesis  
methods are less costly, highly safer and eco-friendly. In  
this study, Ducrosia anethifolia aqueous extracts were  
used as the reducing agent for reduction of Ag+ cation to  
the AgNO3 to Ag0. Therefore, AgNO3 reaction at the  
presence of Ducrosia anethifolia aqueous extracts resulted  
in the synthesis silver nanoparticles (AgNPs). Various  
methods of identifying the characterization of  
nanoparticles such as XRD, TEM, FTIR, DLS, and UV-  
Vis have supported successful synthesis of AgNPs.  
Likewise, the synthesized nanoparticles were shown to  
have substantial anti-bacterial properties, especially  
against Gram-positive and Gram-negative bacteria.  
Nonoparticles were effective against all strains of  
tested Gram-positive and Gram-negative bacteria at  
ranges 32-128 μg/ml. Both Enterococcus faecalis and  
Pseudomonas aeruginosa showed similar values for MICs  
and MBCs.Nanoparticles had no bactericidal activity in  
concentration up to 128μg/ml.Mechanism of AgNPs  
bacterial inhibition was performed in four ways as  
follows: i) Ag+ could form a stable complex with thiols  
and phosphate in amino acids and nucleic acids, ii) AgNPs  
led to the disruption ATP formation and DNA replication  
by producing Ag+, iii) AgNPs was capable of generating  
reactive oxygen species (ROS) or oxygen radical species  
(
they could damage the DNA by means of oxidative  
Table 1: The MICs and MBCs obtained from green Ag NPs  
photothermal nanodiagnostics and nanotherapy. Nanomedicine:  
Nanotechnology, Biology and Medicine. 2005;1(4):326-45.  
Dobrovolskaia MA, McNeil SE. Immunological properties of  
References  
1
2
3
4
5
.
.
.
.
.
Nadaroğlu H, Güngör AA, Ince S. Synthesis of nanoparticles by  
green synthesis method. International Journal of Innovative  
Research and Reviews. 2017;1(1):6-9.  
8
9
.
.
engineered  
007;2(8):469.  
nanomaterials.  
Nature  
nanotechnology.  
2
Siraj KT, Rao PP. Review on current world water resources  
scenario and water treatment technologies and techniques. IJAR.  
Roy R, Hoover MR, Bhalla A, Slawecki T, Dey S, Cao W, et al.  
Ultradilute Ag-aquasols with extraordinary bactericidal  
properties: role of the system AgOH2O. Materials Research  
Innovations. 2007;11(1):3-18.  
2
016;2(4):262-6.  
Leontowich AF, Calver CF, Dasog M, Scott RW. Surface  
properties of water-soluble glycine-cysteamine-protected gold  
clusters. Langmuir. 2009;26(2):1285-90.  
Wong TS, Schwaneberg U. Protein engineering in  
bioelectrocatalysis. Current Opinion in Biotechnology.  
1
1
0. Fendler JH. Nanoparticles and nanostructured films: preparation,  
characterization, and applications: John Wiley & Sons; 2008.  
1. Makarov V, Love A, Sinitsyna O, Makarova S, Yaminsky I,  
Taliansky M, et al. “Green nanotechnologies: synthesis of metal  
nanoparticles using plants. Acta Naturae (англоязычная версия).  
2
003;14(6):590-6.  
Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh  
P, Abdollahi Y, et al. Green biosynthesis of silver nanoparticles  
using Curcuma longa tuber powder. International journal of  
nanomedicine. 2012;7:5603.  
Bogunia-Kubik K, Sugisaka M. From molecular biology to  
nanotechnology and nanomedicine. Biosystems. 2002;65(2-  
2
014;6(1 (20)).  
1
1
2. Kundu S, Maheshwari V, Niu S, Saraf RF. Polyelectrolyte  
mediated scalable synthesis of highly stable silver nanocubes in  
less than a minute using microwave irradiation. Nanotechnology.  
6
7
.
.
2
008;19(6):065604.  
3. Okitsu K, Mizukoshi Y, Yamamoto TA, Maeda Y, Nagata Y.  
Sonochemical synthesis of gold nanoparticles on chitosan.  
Materials Letters. 2007;61(16):3429-31.  
3
):123-38.  
Zharov VP, Kim J-W, Curiel DT, Everts M. Self-assembling  
nanoclusters in living systems: application for integrated  
464  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 461-466  
1
1
4. Zhu Y-C, Zhao J-Z, Zhou B, Zhao X, Wang Z-C. Preparation of  
metallic iron nanoparticles with liquid phase chemical reduction  
method. Chemical Journal of Chinese Universities. 2008;10:024.  
5. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. Aqueous  
NaHSO 4 catalyzed regioselective and versatile synthesis of 2-  
thiazolamines. Monatshefte für Chemie/Chemical Monthly.  
33. Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated  
greener synthesis of silver and gold nanoparticles. Process  
Biochemistry. 2010;45(7):1065-71.  
34. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S,  
Saravanan M. Green synthesis of silver nanoparticles from leaf  
extract of Mimusops elengi, Linn. for enhanced antibacterial  
activity against multi drug resistant clinical isolates. Colloids and  
Surfaces B: Biointerfaces. 2013;108:255-9.  
35. Sathishkumar M, Sneha K, Won S, Cho C-W, Kim S, Yun Y-S.  
Cinnamon zeylanicum bark extract and powder mediated green  
synthesis of nano-crystalline silver particles and its bactericidal  
activity. Colloids and Surfaces B: Biointerfaces. 2009;73(2):332-  
8.  
36. Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO,  
Yaminsky IV, et al. Biosynthesis of stable iron oxide  
nanoparticles in aqueous extracts of Hordeum vulgare and Rumex  
acetosa plants. Langmuir. 2014;30(20):5982-8.  
2
008;139(10):1241-5.  
1
6. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. An efficient  
onepot procedure for the preparation of 1, 3, 4thiadiazoles in  
ionic liquid [bmim] BF4 as dual solvent and catalyst. Heteroatom  
Chemistry: An International Journal of Main Group Elements.  
2
008;19(3):320-4.  
1
1
7. Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A, Amani AM,  
Taghizadeh S. Green synthesis of iron oxide nanoparticles by  
aqueous leaf extract of Daphne mezereum as a novel dye  
removing material. Applied Physics A. 2018;124(5):363.  
8. Rostamizadeh S, Abdollahi F, Shadjou N, Amani AM. MCM-41-  
SO 3 H: a novel reusable nanocatalyst for synthesis of amidoalkyl  
naphthols under solvent-free conditions. Monatshefte für  
Chemie-Chemical Monthly. 2013;144(8):1191-6.  
37. Harshiny M, Iswarya CN, Matheswaran M. Biogenic synthesis of  
iron nanoparticles using Amaranthus dubius leaf extract as a  
reducing agent. Powder technology. 2015;286:744-9.  
1
2
9. Amani A. Synthesis and biological activity of piperazine  
derivatives of phenothiazine. Drug research. 2015;65(01):5-8.  
0. Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Sina S,  
Amani AM. Lead oxide-decorated graphene oxide/epoxy  
composite towards X-Ray radiation shielding. Radiation Physics  
and Chemistry. 2018;146:77-85.  
38. Raveendran P, Fu J, Wallen SL. Completely “green” synthesis  
and stabilization of metal nanoparticles. Journal of the American  
Chemical Society. 2003;125(46):13940-1.  
39. Rostamizadeh S, Amani AM, Aryan R, Ghaieni HR, Norouzi L.  
Very fast and efficient synthesis of some novel substituted 2-  
arylbenzimidazoles in water using ZrOCl 2· nH 2  
O on  
2
2
1. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M.  
Biogenic synthesis of metal nanoparticles from actinomycetes:  
biomedical applications and cytotoxicity. Applied microbiology  
and biotechnology. 2014;98(19):8083-97.  
2. Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN.  
Biosynthesis of silver nanoparticles using Coriandrum sativum  
leaf extract and their application in nonlinear optics. Advanced  
science letters. 2010;3(2):138-43.  
montmorillonite K10 as catalyst. Monatshefte für Chemie-  
Chemical Monthly. 2009;140(5):547-52.  
40. Kouhbanani MAJ, Beheshtkhoo N, Amani AM, Taghizadeh S,  
Beigi V, Bazmandeh AZ, et al. Green synthesis of iron oxide  
nanoparticles using Artemisia vulgaris leaf extract and their  
application as a heterogeneous Fenton-like catalyst for the  
degradation of methyl orange. Materials Research Express.  
2018;5(11):115013.  
2
2
3. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green  
synthesis and their antimicrobial activities. Advances in colloid  
and interface science. 2009;145(1-2):83-96.  
4. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG,  
Troiani H, Jose-Yacaman M. Alfalfa sprouts: a natural source for  
the synthesis of silver nanoparticles. Langmuir. 2003;19(4):1357-  
41. Asgari Neamatian M, Yaghmaei P, Mohammadi S. Assessment  
of the antinociceptive, antiinflammatory and acute toxicity effects  
of Ducrosia anethifolia essential oil in mice. Scientific Journal of  
Kurdistan University of Medical Sciences. 2017;22(3):74-84.  
42. Sefidkon F, Javidtash I. Essential oil composition of Ducrosia  
anethifolia (DC.) Boiss. from Iran. Journal of Essential Oil  
Research. 2002;14(4):278-9.  
6
1.  
2
2
5. Umashankari J, Inbakandan D, Ajithkumar TT, Balasubramanian  
T. Mangrove plant, Rhizophora mucronata (Lamk, 1804)  
mediated one pot green synthesis of silver nanoparticles and its  
antibacterial activity against aquatic pathogens. Aquatic  
biosystems. 2012;8(1):11.  
6. Shankar SS, Rai A, Ahmad A, Sastry M. Controlling the optical  
properties of lemongrass extract synthesized gold nanotriangles  
and potential application in infrared-absorbing optical coatings.  
Chemistry of Materials. 2005;17(3):566-72.  
7. Richardson A, Chan B, Crouch R, Janiec A, Chan B, Crouch R.  
Synthesis of silver nanoparticles: an undergraduate laboratory  
using green approach. Chem Educ. 2006;11:331-3.  
8. Vaidyanathan R, Kalishwaralal K, Gopalram S, Gurunathan S.  
RETRACTED: NanosilverThe burgeoning therapeutic  
molecule and its green synthesis. Elsevier; 2009.  
43. Kouhbanani MAJ, Beheshtkhoo N, Fotoohiardakani G, Hosseini-  
Nave H, Taghizadeh S, Amani AM. Green Synthesis and  
Characterization of Spherical Structure Silver Nanoparticles  
Using Wheatgrass Extract. Journal of Environmental Treatment  
Techniques. 2019;7(1):142-9.  
44. Dubey SP, Lahtinen M, Sillanpää M. Green synthesis and  
characterizations of silver and gold nanoparticles using leaf  
extract of Rosa rugosa. Colloids and Surfaces A:  
Physicochemical and Engineering Aspects. 2010;364(1-3):34-41.  
45. Jagtap UB, Bapat VA. Green synthesis of silver nanoparticles  
using Artocarpus heterophyllus Lam. seed extract and its  
antibacterial activity. Industrial crops and products. 2013;46:132-  
7.  
2
2
2
46. Kouhbanani MAJ, Beheshtkhoo N, Taghizadeh S, Amani AM,  
Alimardani V. One-step green synthesis and characterization of  
iron oxide nanoparticles using aqueous leaf extract of Teucrium  
polium and their catalytic application in dye degradation.  
9. Zhan G, Huang J, Du M, Abdul-Rauf I, Ma Y, Li Q. Green  
synthesis of AuPd bimetallic nanoparticles: single-step  
bioreduction method with plant extract. Materials Letters.  
Advances  
in  
Natural  
Sciences:  
Nanoscience  
and  
2
011;65(19-20):2989-91.  
Nanotechnology. 2019;10(1):015007.  
3
3
3
0. Kumar VG, Gokavarapu SD, Rajeswari A, Dhas TS, Karthick V,  
Kapadia Z, et al. Facile green synthesis of gold nanoparticles  
using leaf extract of antidiabetic potent Cassia auriculata.  
Colloids and Surfaces B: Biointerfaces. 2011;87(1):159-63.  
1. Smitha S, Philip D, Gopchandran K. Green synthesis of gold  
nanoparticles using Cinnamomum zeylanicum leaf broth.  
Spectrochimica Acta Part A: Molecular and Biomolecular  
Spectroscopy. 2009;74(3):735-9.  
2. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, et al.  
Synthesis of silver nanoparticles using Dioscorea bulbifera tuber  
extract and evaluation of its synergistic potential in combination  
with antimicrobial agents. International journal of nanomedicine.  
47. Lohrasbi S, Kouhbanani MAJ, Beheshtkhoo N, Ghasemi Y,  
Amani AM, Taghizadeh S. Green Synthesis of Iron Nanoparticles  
Using Plantago major Leaf Extract and Their Application as a  
Catalyst for the Decolorization of Azo Dye. BioNanoScience.  
2019;9(2):317-22.  
48. Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP.  
Biosynthesis of silver nanoparticles using Ocimum sanctum  
(Tulsi) leaf extract and screening its antimicrobial activity.  
Journal of Nanoparticle Research. 2011;13(7):2981-8.  
49. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Green  
synthesis of silver nanoparticles using latex of Jatropha curcas.  
Colloids and surfaces A: Physicochemical and engineering  
aspects. 2009;339(1-3):134-9.  
2
012;7:483.  
5
0. Singh A, Jain D, Upadhyay M, Khandelwal N, Verma H. Green  
synthesis of silver nanoparticles using Argemone mexicana leaf  
465  
 
 
 
 
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 461-466  
extract and evaluation of their antimicrobial activities. Dig J  
Nanomater Bios. 2010;5(2):483-9.  
5
5
1. Choi Y, Ryu GH, Min SH, Lee BR, Song MH, Lee Z, et al.  
Interface-controlled synthesis of heterodimeric silvercarbon  
nanoparticles derived from polysaccharides. ACS nano.  
2
014;8(11):11377-85.  
2. Rao NH, Lakshmidevi N, Pammi S, Kollu P, Ganapaty S,  
Lakshmi P. Green synthesis of silver nanoparticles using  
methanolic root extracts of Diospyros paniculata and their  
antimicrobial activities. Materials Science and Engineering: C.  
2
016;62:553-7.  
5
5
3. Allafchian A, Mirahmadi-Zare S, Jalali S, Hashemi S, Vahabi M.  
Green synthesis of silver nanoparticles using phlomis leaf extract  
and investigation of their antibacterial activity. Journal of  
Nanostructure in Chemistry. 2016;6(2):129-35.  
4. Seyedi-Marghaki F, Kalantar-Neyestanaki D, Saffari F, Hosseini-  
Nave H, Moradi M. Distribution of Aminoglycoside-Modifying  
Enzymes and Molecular Analysis of the Coagulase Gene in  
Clinical Isolates of Methicillin-Resistant and Methicillin-  
Susceptible Staphylococcus aureus. Microbial Drug Resistance.  
2
019;25(1):47-53.  
5
5
5. Nave HH, Mansouri S, Sadeghi A, Moradi M. Molecular  
diagnosis and anti-microbial resistance patterns among Shigella  
spp. isolated from patients with diarrhea. Gastroenterology and  
hepatology from bed to bench. 2016;9(3):205.  
6. Kittler S, Greulich C, Diendorf J, Koller M, Epple M. Toxicity of  
silver nanoparticles increases during storage because of slow  
dissolution under release of silver ions. Chemistry of Materials.  
2
010;22(16):4548-54.  
466