Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 349-356  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
In-silico Molecular Docking Study of Coumarin  
Derivatives in order to Investigate the  
Inhibitory Effects of Human Monoamine  
Oxidase Enzyme and DFT Studies  
1
2
2
2
Marzieh Asadi , Moslem Sedaghat , Zahra Sasani Pour , Ali Mohammad Amani ,  
1
,3  
4
4
5
Ahmad Movahedpour , Sina Vakili , Marzieh Shefaghat , Mahsa Maleknia , Saam  
6
Noroozi *  
1Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University  
of Medical Sciences, Shiraz, Iran  
2
Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of  
Medical Sciences, Shiraz, Iran  
3
Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran.  
4
Department of Biochemistry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran  
5
Student of Fasa University of Medical Sciences, Fasa, Iran  
6
Department of Biochemistry, Fasa University of Medical Sciences, Fasa, Iran  
Received: 11/05/2019  
Accepted: 02/08/2019  
Published: 01/12/2019  
Abstract  
In the present study, DFT calculations of four coumarin derivatives and also their molecular docking with human  
monoamine oxidase enzyme (HMAO) were performed in order to study the inhibitory effect of these compounds. The  
optimized molecular geometries and vibrational frequencies were calculated at the B3LYP/6-31+G(d) level of theory  
without any imaginary frequency. The total energy, dipole moment and energies of the frontier molecular orbitals were  
calculated for all the compounds. All quantum calculations were performed using the Gaussian 03 software. The molecular  
docking of coumarin derivatives and phenelzine with HMAO enzyme were calculated and inhibitory effect of coumarins  
were compared with phenelzine. Also the binding free energy, amino acid residue and hydrogen bond interactions between  
all the compounds and HMAO enzyme were calculated. The binding energies for coumarins and Phenelzine are in the range  
of 7.04  -6.15 Kcal/mol. The binding energy potency follows the order of: 4>2>3>1> Phenelzine. The binding energy of all  
the compounds with HMAO enzyme was stronger than Phenelzine.  
Keywords: Coumarin, antidepressant, Monoamine oxidase, DFT study, molecular docking  
1
various coumarin derivatives are able to block  
1
Introduction  
inflammation by inhibiting different targets but none of  
them has found a way to the clinics so far.(7)  
Fylaktakidou et al (2004) reviewed the capability of  
different natural and synthetic coumarins as anti-  
inflammatory and antioxidant molecules (8). Curini et  
al (2006) reported an array for the biological  
Coumarins (also known as 1, 2-benzopyrone or  
hydroxycinnamic acid-8-lactone) are categorized as an  
important class of natural compounds, mainly found in  
Rutaceae and Umbelliferae families. These compounds  
are divided into several classes such as simple  
coumarins,  
furanocoumarins,  
pyranocoumarins,  
applications  
of  
prenyloxycoumarins  
and  
biscoumarins, triscoumarins, and coumarinolignans.  
Coumarins have too many biological applications  
including antidepressant (1), antimicrobial (2), antiviral  
prenyloxyfuranocoumarins (9). In addition to anti-  
inflammatory properties, coumarins have also been  
considered as potential anticancers (10, 11) and also  
amonoamine oxidase inhibitors (12).  
Monoamine oxidase (MAO) is a avoenzyme with  
iron that exists within cells, being connected to the  
surface membrane of mitochondria and involved in the  
degradation of biogenic amines. Two MAO isoenzymes  
i.e. MAO-A and MAO-B, are closely linked in opposite  
orientations to the X chromosome and expressed in the  
external part of mitochondrial membrane. MAO-A and  
MAO-B are able to oxidize neuro-transmitters and  
3), anticancer (4), anti-inflammatory, antioxidant, and  
anticoagulant (5, 6). Coumarins like esculetin, fraxetin,  
daphnetin and other related coumarin derivatives are  
known as inhibitors, not only LOX and COX  
enzymes, but also the neutrophil-dependent superoxide  
anion generation. Many investigators reported that  
Corresponding author: Saam Noroozi, Department of  
Biochemistry, Fasa University of Medical Sciences,  
Fasa, Iran. E-mail: saam.noroozi@gmail.com.  
349  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 349-356  
xenobiotic amines using the oxidative deamination  
process (13). MAO is abundantly found in noradrenergic  
nerve terminals but it is also present in many other  
places, like liver or intestinal epithelium. MAO-A, the  
primary type in fibroblasts, preferentially degrades  
serotonin, norepinephrine and dopamine. Meanwhile,  
MAO-B, found in platelets, human brain and other  
primates, preferentially degrades the phenyl ethylamine  
and benzylamine (12).  
The activity of MAO helps maintaining the neuron  
firing rates throughout the body within homeostatic  
limits. Part of the biochemical activity of MAO produces  
hydroxyl radicals, very toxic members of the oxygen free  
to the protein and the structure was optimized and  
applied for molecular docking.  
II. Molecular docking  
The optimized geometries for all the ligands  
calculated by DFT calculations were applied as input  
files for the conformational search by systematic search  
method. The conformer with lowest energy was  
employed for the docking calculations. AutoDock 4.2  
software, using the Lamarckian genetic algorithm  
together with the AutoDock tools, was used to set up and  
perform docking calculations of all compounds binding  
to the receptors.(21) In order to perform docking, the  
protein structure having pdb format is prepared as shown  
in part I and applied in the present study. Polar  
hydrogens are added for saturation while the non-polar  
hydrogens are merged and Gasteiger charges are  
computed. A grid box with grid spacing of 0.375 Å and  
dimension of 60 × 95 × 80 grid points along x, y and z  
axes are made around the active sites. In this regard, the  
grid center was set at 2, 16, and 38 Å. The grid box  
contains the complete active site of the protein receptor  
and offers enough space for the ligand translational and  
rotational walk.  
AutoGrid was employed to make the grid map for  
different atoms in the ligands and receptor. After the  
completion of the grid map, Autodock was used for 50  
runs with the following: maximum of the numbers for  
the energy evaluations are set to 2500000 and a  
maximum number of 27000 GA operations are produced  
by an initial population for 150 individuals. For each of  
the docking cases, the lowest energy value for the docked  
conformations was chosen as the binding mode on the  
basis of the AutoDock scoring function. Visualization of  
the docked pose has been performed by Discovery Studio  
and Chimera molecular graphics software.  
radical group that  
might be involved in  
neurodegenerative disorders such as Parkinson’s disease.  
As mentioned above, MAO plays a determining role in  
the metabolism of many neurotransmitters and can be  
utile in the treatment with several psychiatric and  
neurological diseases. These characteristics determine  
the pharmacological interests for the MAO inhibitors. In  
fact, human MAO-B inhibitors e.g. selegiline (R-()-  
deprenyl) and rasagiline are advantageous compounds  
for the treatment with Parkinson (14) and Alzheimer’s  
diseases (15, 16). Besides, the selective MAO-A  
inhibitors, like clorgyline (irreversible) and moclobemide  
(
reversible), are useful for the treatment with  
neurological disorders like depression and anxiety (17,  
8). In this project, we have investigated the DFT  
calculations of some coumarin derivatives and their  
molecular docking with human monoamine oxidase  
enzyme in order to investigate the inhibitory effect of  
these compounds.  
2
Materials and Methods  
2
.1 DFT study  
One of the most important tasks for the  
computational works is to determine the optimized  
geometries of the compounds. In this study, the  
molecular structures of the all the compounds were  
optimized and the electronic properties were calculated.  
Besides, the optimized geometries of the molecules were  
visualized with ChemCraft program. All the calculations  
were performed applying the Becke’s three parameters  
hybrid exchange functional with the Lee-Yang-Parr  
gradient corrected correlation functional (B3LYP hybrid  
functional). All the atoms were described with a split  
valence Pople basis set plus polarization and diffuse  
functions, 6-31+G(d) (19). Frequency calculations were  
performed for all the optimized geometries to ensure that  
the obtained structures represent local minima. All the  
calculations were established employing the Gaussian 03  
program suite.  
3 Results and discussion  
3.1 Computational study  
The geometries of all the structures were completely  
optimized using the B3LYP/6-31+G(d) level of theory.  
The optimized structures are depicted in figure1. For all  
the structures, total energy, dipole moment, energy levels  
of HOMO (highest occupied molecular orbital) and  
LUMO (lowest unoccupied molecular orbital) and  
HOMO-LUMO energy gap (∆E) were calculated and are  
summarized in Table 1.  
As a matter of fact, frontier molecular orbitals  
(FMOs) are the most important orbitals in a molecule.  
FMOs play determining roles in the interaction between  
the molecules and also in the electronic spectrum of a  
molecule. For all the compounds, the calculations  
indicated that the charge density distribution for the  
HOMO level is predominantly localized on the π-  
conjugated system of aromatic carbons together with the  
lone pairs on oxygen atoms of hydroxyl and methoxy  
groups. Meanwhile, the charge density of the LUMO is  
localized on the anti-bonding aromatic system. FMOs in  
all the optimized structures were visualized using the  
gauss view 5. The density plots of HOMO and LUMO  
orbitals are revealed in Figure 2. Vibrational frequency  
calculations were performed for all the compounds using  
the similar levels for which the imaginary frequencies  
were not observed. The detailed vibrational assignments  
for the main frequencies in all the compounds are listed  
in Table 2.  
2.2 Molecular docking study  
I. Protein preparation  
PDB database was applied to retrieve the raw X-ray  
crystal structures of HMAO (PDB: 1GOS)(20), but this  
structure cannot be used directly for the molecular  
docking investigations. Since this structure involving the  
heavy atoms, cofactors, waters, metal ions and ligand  
and it fails to provide information on topologies, bond  
orders and formal atomic charges. Therefore, this PDB  
structure has been changed employing the protein  
preparation wizard available in chimera software. At the  
initial step, all the components, excluding the chain A of  
protein, were removed. All hydrogen atoms were added  
350  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 349-356  
Table 1: The computed electronic properties for all compounds at B3LYP/6-31+G(d) level of theory.  
Properties  
Compound  
HOMO-LUMO  
gap (eV)  
4.450  
E
B3LYP (a.u.)  
µ (Debye)  
E
HOMO (a.u.)  
E
LUMO (a.u.)  
1
2
3
4
-572.2417  
-647.4505  
-686.7536  
-726.0606  
3.926  
4.017  
6.504  
6.814  
-0.2260  
-0.2134  
-0.2186  
-0.2160  
-0.0624  
-0.0620  
-0.0652  
-0.0630  
4.119  
4.174  
4.163  
Figure 1: The optimized structure of the all compounds.  
351  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 349-356  
Figure 2: Density plot of HOMO and LUMO orbitals for all compounds  
352  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 349-356  
3
.2 Molecular docking study  
The molecular docking operations for the coumarin  
with the examination of the known structure of HMAO  
in a non-covalent complex with four dierent ligands.  
Only complexes containing non-covalent ligands were  
selected which is due to that the bond length of a  
covalent bond is less than that of non-covalent bond.  
Thus, during the docking process for a covalent inhibitor,  
a ligand docked in a correct location will poorly be  
scored even its position may be correct, experimentally.  
At first, the crystal structure of HMAO (PDB: 1GOS)  
was optimized (See Figure 3 for the 3D structure). The  
derivatives and phenelzine with HMAO enzyme were  
performed. Phenelzine, having the molecular formula of  
β-phenylethylhydrazine, is  
inhibiting antidepressant which is effective in the  
treatment with panic disorder and social anxiety disorder.  
Due to the mentioned reason, Phenelzine, as  
a
monoamine oxidase  
a
commercial drug, was chosen to be compared with  
present the compounds in this study. Our studies started  
353  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 349-356  
docking calculations were performed and the best  
conformation based on the binding energy value for each  
ligand was chosen for the analysis. The best  
conformation docked to the HMAO is shown in Figure 4  
for all the compounds.  
In all the cases, binding energy values, amino acid  
residue and amino acids involved in hydrogen  
bonding interactions for the best conformation are listed  
in table 3 and visualized in figure 5. The calculated  
binding free energies for the Phenelzine and compounds  
Compound 3 and 4 also exhibit two and three classical  
hydrogen bondings, respectively. Compound 4, despite  
of the lower number of hydrogen bondings rather than  
compound 2 and also the absence of π–π interactions,  
possesses the highest amount of energy, which is due to  
the orientation of the molecule. In this regard, Phenelzine  
also forms six hydrogen bondings with val10, leu33 and  
arg233 amino acids. Based on the docking results, the  
interactions in the compounds 1-4 with HMAO enzyme  
are stronger than Phenelzine.  
1
4 are in the range between -7.04 and -6.15 Kcal/mol.  
The binding energy strength for the compounds obeys  
the order  
4
Conclusion  
According the molecular docking studies, all the  
of: 4>2>3>1> Phenelzine. Compound 1 forms classical  
and non-classical hydrogen bondings with respectively  
ARG233 and VAL235 via oxygen head of its hydroxyl  
group. In this context, π–π interaction is established  
between THR 393 and aromatic system.  
compounds have higher binding affinities compared to  
that of phenelzine. Consequently, they can be applied as  
appropriate choices as an antidepressant drug. Also, this  
study showed that the orientation of the molecule has an  
important role in receptor-ligand interactions.  
Compound 2 has four classical hydrogen bondings with  
HMAO (VAL10, LEU33, ALA35 and ARG233) and  
also one non-classical bond with VAL235 which are due  
to the presence of two hydroxyl groups located in  
different orientations. Moreover, π–π interactions are  
formed between THR 393 and aromatic system.  
Acknowledgments  
The authors appreciate Fasa University of Medical  
Sciences for financial supports of this work.  
Figure 3: The optimize structure of HMAO, visualize with chimera  
Figure 4: Docked of all the compounds in active site of HMAO  
354  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 349-356  
Figure 5: Hydrogen bond interaction and amino acid residue (3D and 2D)  
355  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 349-356  
Table 3: The results of molecular docking for all the compounds and HMAO enzyme  
Binding Energy  
Compounds  
Amino acid residue  
Hydrogen bond  
(Kcal/mol)  
VAL10, LEU33, GLU34, ALA35  
ARG233, PRO234, VAL235, ILE264  
LEU268, LYS271, TYR393  
VAL10, LEU33, ALA35, ARG233  
VAL235, ILE264, LEU268, LYS271  
TYR393  
VAL10, LEU33, ALA35, ARG233  
PRO234, VAL235, ALA263, ILE264  
PRO265, LEU268, TYR393  
val10,gly11, gly13, leu33, glu34, ala35  
arg233, pro234, val235, ile264, lys271  
tyr393  
Compound 1  
-6.66  
ARG233, VAL235  
VAL10, LEU33  
ALA35, ARG233  
VAL235  
Compound 2  
Compound 3  
Compound 4  
phenelzine  
-6.91  
-6.67  
-7.04  
-6.15  
VAL235  
gly13  
val10, leu33, glu34, ala35, arg233  
pro234, val235, ile264, tyr393, pro265  
leu268  
val10, leu33  
arg233  
1
2. Patil PO, Bari SB, Firke SD, Deshmukh PK, Donda  
ST, Patil DA. A comprehensive review on synthesis  
and designing aspects of coumarin derivatives as  
monoamine oxidase inhibitors for depression and  
References  
1
2
3
.
.
.
Sashidhara KV, Kumar A, Chatterjee M, Rao KB,  
Singh S, Verma AK, et al. Discovery and synthesis  
of novel 3-phenylcoumarin derivatives as  
antidepressant agents. Bioorg Med Chem Lett.  
Alzheimer’s  
disease.  
Bioorg Med  
Chem.  
2013;21(9):2434-50.  
2011;21(7):1937-41.  
1
3. Chen K, Holschneider DP, Wu W, Rebrin I, Shih JC.  
A spontaneous point mutation produces monoamine  
oxidase A/B knock-out mice with greatly elevated  
monoamines and anxiety-like behavior. J Biol Chem.  
Ostrov DA, Prada JAH, Corsino PE, Finton KA, Le  
N, Rowe TC. Discovery of novel DNA gyrase  
inhibitors by high-throughput virtual screening.  
Antimicrob Agents Chemother. 2007;51(10):3688-  
2004;279(38):39645-52.  
98.  
1
1
4. Guay DR. Rasagiline (TVP-1012): a new selective  
monoamine oxidase inhibitor for Parkinson's disease.  
Am J Geriatr Pharmacother. 2006;4(4):330-46.  
5. Youdim M, Fridkin M, Zheng H. Novel bifunctional  
drugs targeting monoamine oxidase inhibition and  
iron chelation as an approach to neuroprotection in  
Parkinson’s disease and other neurodegenerative  
diseases. J Neural Transm. 2004;111(10-11):1455-  
Vasconcelos JF, Teixeira MM, Barbosa-Filho JM,  
Agra MF, Nunes XP, Giulietti AM, et al. Effects of  
umbelliferone in a murine model of allergic airway  
inflammation. Eur J Pharmacol. 2009;609(1-3):126-  
31.  
4
5
.
.
Huang XY, Shan ZJ, Zhai HL, Su L, Zhang XY.  
Study on the anticancer activity of coumarin  
derivatives by molecular modeling. Chem Biol Drug  
Des. 2011;78(4):651-8.  
Borges F, Roleira F, Milhazes N, Santana L, Uriarte  
E. Simple coumarins and analogues in medicinal  
chemistry: occurrence, synthesis and biological  
activity. Curr Med Chem. 2005;12(8):887-916.  
Grover J, Jachak SM. Coumarins as privileged  
scaffold for anti-inflammatory drug development.  
RSC Adv. 2015;5(49):38892-905.  
71.  
1
1
6. Carreiras M, Marco J. Recent approaches to novel  
anti-Alzheimer therapy. Curr Pharm Des.  
2004;10(25):3167.  
7. Pålhagen S, Heinonen E, Hägglund J, Kaugesaar T,  
Mäki-Ikola O, Palm R, et al. Selegiline slows the  
progression of the symptoms of Parkinson disease.  
Neurology. 2006;66(8):1200-6.  
6
7
.
.
1
1
8. Pacher P, Kecskemeti V. Trends in the development  
of new antidepressants. Is there a light at the end of  
the tunnel? Curr Med Chem. 2004;11(7):925-43.  
9. Faundez-Gutierrez R, Macleod-Carey D, Zarate X,  
Bustos C, Molins E, Schott E. Synthesis,  
characterization and DFT study of a new family of  
pyrazole derivatives. Polyhedron. 2014;81:414-20.  
0. Son S-Y, Ma J, Kondou Y, Yoshimura M, Yamashita  
E, Tsukihara T. Structure of human monoamine  
oxidase A at 2.2-Å resolution: the control of opening  
the entry for substrates/inhibitors. Proc Natl Acad Sci  
USA. 2008;105(15):5739-44.  
Wu L, Wang X, Xu W, Farzaneh F, Xu R. The  
structure and pharmacological functions of  
coumarins and their derivatives. Curr Med Chem.  
2009;16(32):4236-60.  
8
9
.
.
Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas  
KE, Nicolaides DN. Natural and synthetic coumarin  
derivatives  
activities. Curr Pharm Des. 2004;10(30):3813-33.  
Curini M, Cravotto G, Epifano F, Giannone G.  
Chemistry and biological activity of natural and  
synthetic prenyloxycoumarins. Curr Med Chem.  
with  
anti-inflammatory/antioxidant  
2
2
2006;13(2):199-222.  
1. Jana S, Dalapati S, Ghosh S, Guchhait N. Binding  
interaction between plasma protein bovine serum  
albumin and flexible charge transfer fluorophore: a  
spectroscopic study in combination with molecular  
1
1
0. Musa MA, Cooperwood JS, Khan MOF. A review of  
coumarin derivatives in pharmacotherapy of breast  
cancer. Curr Med Chem. 2008;15(26):2664-79.  
1. Kontogiorgis C, Detsi A, Hadjipavlou-Litina D.  
Coumarin-based drugs: a patent review (2008–  
present). Expert Opin Ther Patents. 2012;22(4):437-  
docking and molecular dynamics simulation.  
Photochem Photobiol A. 2012;231(1):19-27.  
J
54.  
356