Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 324-333  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
Modeling of Adsorption in a Packed Bed Tower,  
the Case Study of Methane Removal and  
Parametric Calculation  
Abdollah Norouzi  
Department Of Chemical Engineering, Jami institute of Technology, Isfahan, Iran  
Received: 25/05/2019  
Accepted: 11/06/2019  
Published: 01/12/2019  
Abstract  
In this work, the modeling of methane adsorption in a tower with fixed bed has been studied. In order to present a mathematical  
model, the mass balance was written in the tower. The obtained equations with the assumption of no changes in the concentration,  
temperature, and pressure in the radial direction as well as the axial dispersion of the flow pattern were solved by using numerical  
methods. Among various numerical methods, an implicit finite difference method was used to solve the equations. Base on the  
obtained model, the effect of temperature, inlet flow rate, bed length, and pressure on the adsorption tower was investigated. It was  
observed that with the temperature decreases, the adsorption rate increases. At a specified time, the amount of adsorbate in the gas  
phase at the outlet of the bed from 306 to 295 decreased by changing the temperature from T=298K to T=308K. also, the effect of  
pressure, gas velocity, adsorbent size and bed length in separate diagrams was studied and it was determined that with increasing  
pressure, decreasing gas velocity, increasing bed length and decreasing adsorbent size and adsorption rate increase.  
Keywords: Adsorption, Modeling, Methane, Packed bed tower, fixed bed.  
1
improves environmental performance [2]. Adsorption based  
1
Introduction  
processes include swing adsorption (PSA), technologies that  
have the potential for recovery from methane from released.  
Flow and methane enrichment to concentrations that can be  
used in lean- gas turbines and fuel cells [3-7].  
Research on the prevention of air pollution and the  
environment has increased dramatically over the last few  
decades, due to increasing social and economic concerns  
about the environment. As  
a result environmental  
Several studies have been carried out on the separation  
of various materials by adsorption in a fixed bed. In most of  
these studies, laboratory work and simulations are carried  
out simultaneously. For modeling a process, it is necessary  
to simplify the equations and relations governing that  
process. Given the fact that these equations and simplified  
relationships can be used to predict the results of a process  
and thereby improve its performance, the importance of  
modeling becomes evident.  
The adsorption of methane on zeolite 13x has been  
studied by Alireza Eslami et al. In this study, the adsorption  
process was investigated at 298, 308, 323 K and at 1 to 5  
MPa pressures by Langmuir, Unilan, Sip and Toth isotherms  
using a genetic algorithm. The results show that the isotherm  
model of Toth adsorption at 308 K has a very good flexibility  
to fit experimental data [8]. Delgado et al, also investigated  
the adsorption of methane and nitrogen on a silica tablet in a  
fixed bed. The model was used to simulate nitrogen and  
methane adsorption curves and pressure cycling was  
proposed to increase methane content from a mixture of  
methane/nitrogen (85/15) [6].  
organizations have imposed restrictive laws to reduce the  
emission of pollutants into the atmosphere. Methane is a  
gaseous pollutant that causes global warming. The main  
sources of methane from oil and gas production facilities,  
agricultural activities, such as animal husbandry and meat  
production. The challenge of removing methane from  
industrial waste gases is because waste streams are produced  
at low pressures and have very low concentrations of  
methane. For example, the release of methane from a coal  
mine is typically less than 1.5% of methane [1]. The most  
expensive and commonly used current technique is to  
remove low concentration of methane from a low-pressure  
gas flow, return thermal oxidation processes, and catalytic  
thermal oxidation that converts methane into carbon dioxide  
and water. Although some oxidation processes have the  
potential to recover heat, generally these processes typically  
incur additional costs for production. Therefore, there is a  
clear incentive to create a methane recovery process that  
returns methane to the mainstream gas or recycled methane  
to generate power, which both reduces operational costs and  
Corresponding author: Abdollah Norouzi, Department Of Chemical Engineering, Jami institute of Technology, Isfahan, Iran.  
E-mail: keyvannoruzii@gmail.com.  
3
24  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 324-333  
Grand et al. examined the adsorption equilibrium of  
propane and propylene on a honeycomb rock that was  
blended with 4A zeolite crystals and inert materials in  
conditions of 423 and 473 K and in the range of 0 to 100 KPa  
Hence, in this section, adsorption fixed bed is modeled on  
the mechanism of diffusion.  
1.2 Modeling of adsorption in the fixed bed  
[
9]. Ali Akbar Farzaneh et al. reviewed the simulation of  
The purpose of this study is to find a suitable model for  
adsorption of methane in the tower. In order to provide the  
mathematical model of the adsorption tower, we must  
establish a mass balance for the tower and write the  
corresponding equations. The exact modeling is necessary  
for the proper understanding of the physics of the system as  
well as the phenomena in the process under study. To  
accomplish this, we consider the differential height of the  
filled column and write the mass equations for this  
differential component. The proposed differential equations  
should be solved to simulate a tower with a specific height  
and profile.  
In an adsorption fixed bed, the gas content of the  
adsorbate material enters the bed on one side and leaves it  
out. By passing on the adsorbent solid absorbed and thus the  
concentration of the absorbing material in the exhaust gases  
is reduced. With time and saturation of the primary portions  
of the substrate, the concentration of the absorbing material  
in the outlet increases and eventually reaches the  
concentration of the input.In order to mathematical modeling  
of the adsorption bed, appropriate element of the substrate  
has been selected. The following figure 1 shows an element  
of the fixed bed.  
absorption towers. In order to solve the model, the dynamic  
data provided by San and Monire was used and in the  
equilibrium, the results were compared with the results  
obtained from the leading approximation method in a non-  
equilibrium mode with the results obtained from the QUDS  
method obtained by San and Munire [10]. Khalid  
Opportunity and colleagues explored the modeling of the  
torpedo tower used in the sulfiran process. At first, the  
required experimental data were collected in a laboratory  
system under different conditions of H2S concentration and  
gas flow. After performing the desired mass balance, the  
developed equations were solved using numerical methods,  
and the results of the modeling were compared with the  
experimental results. Comparison of modeling and  
experimental results indicated a sufficient accuracy of the  
model to predict the behavior of the tower that was used in  
the sulfiran process [11]. Studies by Shafiyan and his  
colleagues on absorption modeling in a tower filled up [12-  
2
2]. Due to the complexity of the models that have been  
proposed for surface uptake so far, it seems necessary to  
provide another model that is compatible with the previous  
models. Therefore, by studying the different models  
presented for such systems, considering the conditions of the  
system under study, suitable model assumptions such as no  
changes in concentration, temperature and pressure in the  
radial direction, as well as the axial dispersion of the  
constant temperature flow pattern have been selected. And  
the simulation in the MATLAB program is based on it.  
Finally, the effect of different parameters on the absorption  
rate and the conformance of this model with the  
experimental data presented earlier will be investigated.  
2
Modeling  
The mathematical models used to dynamically simulate  
the behavior of an adsorption system based on equations.  
The most important issue in simulating these processes is  
that during the recovery stage, usually the adsorbent is not  
completely recovered, and therefore the initial concentration  
of the absorbed phase will not be zero. In practical systems,  
there is usually a region at the entrance of the bed in both the  
adsorption and disintegration stages, where the unpublished  
material is present. This complexity causes problems in  
mathematical simulation because the initial distribution of  
absorbed concentration is not known in advance. In this case,  
the concentrations remain constant at all points and all times  
in the cycle and in all parts of the cycle. The number of  
cycles required to achieve a uniform cyclic state depends on  
the various parameters of the system, and it may take up to  
Fig. 1: The element is considered in balance  
2.2 Mass balance for each component  
The assumptions used in the mass balance are as follows:  
(a) The thermodynamic behavior of gas is an equation of  
ideal gas. (b) Changes in Concentrations, temperatures, and  
pressures in radial and angular directions are not neglected.  
(c) The mass transfer between the gas phase and the solid  
phase follows the LDF linear propulsion model. (d) The  
axial dispersion is assumed to be the flow pattern. (e) It is  
assumed that the plug flow is negligible with variations in  
velocity along the bed. With these assumptions, the mass  
balance equation for component I is written as follows:  
Write equations 1:  
30 cycles, such calculations are possible only by numerical  
simulations, and analytical solutions cannot be used to  
calculate precisely Specifications of operational systems  
[23, 24]. The performance of a good absorbent is measured  
휕푐푖  
휕푐푖  
in real operating conditions. This can be done  
experimentally in industrial or semi-industrial conditions,  
but since this is very costly and time-consuming, using a  
suitable model can be a good alternative to reducing costs.  
(
c
i
uAε  
b
)І  
z
-( c  
i
uA z+Δz+( -Dax,i Aε  
b
)І  
z
- (-Dax,i 푧  
휕푧  
휕푞푖  
) AΔz 휕푡  
∂ci  
Aε  
b
)Іz+Δz=ε  
b
AΔz  
+ ( 1-ε  
b
(Eq. 1)  
∂z  
3
25  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 324-333  
where εb is substrate porosity, ρp is density of particles  
important issue in using this model is to calculate the mass  
transfer coefficient (K_LDF). The mass transfer coefficient  
of the film around the adsorbent is obtained according to the  
following equation 3 [23]:  
3
3
(
kg/m ), C  
i
is concentration of i in the fluid phase (mol/m ),  
qi is concentration of i in phosgate (mol/kg), A is cross  
2
section of tower (m ), u is fluid velocity (m/s) and Dax, i is  
2
dispersion coefficient (m /s). By dividing the sides by the  
3
ꢊ ]  
size of the element (AΔz) we have (equation 2):  
0.6  
푀  
ꢇ푢푅푝  
퐹  
=
+ [ꢇ + 1.1ꢉ  
(퐸ꢄ. ꢌ)  
2
ꢇ푅푝  
푀  
 (1 − ε) ꢀꢄꢂ  
ꢀ(푢ꢁ)  
ꢀꢅ  
ꢀ ꢁ  
+
ρ푝  
= −  
+ Dax, ꢆ  
ꢀꢅ2  
(Eq. ꢇ)  
푏  
ꢀꢃ  
2.6 Boundary and initial conditions and model  
calculations  
2.3 Pressure drop  
The input boundary condition of the adsorption step is,  
in fact, the input feed condition. Given that the differential  
equations are two-dimensional relative to the place variable,  
there is a need for another boundary condition. This  
condition is provided by assuming zero flux in the output.  
For an initial condition, it requires a basic assumption. This  
assumption is assumed to be taken into account when the qi  
adsorption value is considered to be zero, and the initial  
concentration of the gas in the bed is also considered to be  
free from the adsorbate material (the concentration of the  
adsorbate components is equal to Zero; t = ꢍ: |adsorbent  
free.  
Due to the diameter/longitudinal ratio of the substrate  
studied in this modeling, the pressure variations in the bed  
are neglected and constant total pressure is considered.  
2
.4 Equilibrium relationship between two phase  
concentrations  
Due to the type of adsorbent used, which is zeolite and  
adsorption in zeolites, which is usually single-layered, the  
Langmuir model is a suitable model for use in simulating  
this process.  
2
.5 Mass transfer coefficient between phases  
The mass transfer velocity between the solid phase and  
In Table 1, the boundary and initial conditions are  
required. The boundary and initial conditions of the general  
mass balance are also similar to the partial balance.  
the gas can be expressed by the approximate linear driving  
force model. According to the available literature, this model  
is suitable for long-term adsorption cycles. The most  
Table 1. Boundary and initial conditions  
ꢐ = ꢍ  
= ∁,f  
ꢑꢒꢎ  
Boundary conditions  
=
ꢐ = L  
t = ꢍ  
Adsorption step  
ꢑꢐ  
= ꢍ  
Initial condition  
2
.6.1The numerical form of the equations  
Solving the equations of the model involves  
2
j
j
m
(∆ꢐ)2  
j
ꢑ X  
ꢑꢐ2  
X
− ꢇX + X  
mꢔꢋ  
mꢓꢋ  
(퐸ꢄ. ꢕ)  
simultaneous solving NC of the differential equation with  
partial derivatives of mass balance, NC is the ordinary  
differential equation of mass transfer between the gas phase  
and the fluid phase. It is very difficult and even impossible  
to solve these equations by an analytical method. For this  
reason, numerical methods are used to solve these equations.  
Of the various numerical methods, the explicit finite  
difference method, given the long time of the cycle stages,  
and the limitation in this method for the length of the time  
interval, do not seem to be a suitable method for the solution.  
But in the implicit finite difference method, this limitation  
does not exist and can be used to solve equations. Based on  
this method, the numerical form of the terms of the  
differential equations is as follows:  
2
.7 The numerical form of the equations in the interior of  
the substrate  
By establishing the partial mass survival law for the  
detachable component, the following equation is obtained to  
express the variation in the concentration of the desired  
component in relative to time and place (equation 4).  
2
ꢑꢒ (1 − εb) ꢑqꢎ  
ρp  
ꢑ(uꢒ)  
ꢑꢐ  
ꢑ ꢒ  
+
= −  
+ D,  
ꢑꢐ2  
(퐸ꢄ. 7)  
ꢑt  
εb  
ꢑt  
By applying these alternatives we have the following in mass  
balance equation 5:  
j
m
jꢓꢋ  
Cm  
j
m
jꢓꢋ  
qm  
j
m
j
j
m
jꢓꢋ  
C
1 − ε  
ε
q
C
− C  
ꢑX  
ꢑt  
X
X
− Xm  
mꢓꢋ  
+ ꢉ  
ꢊ ꢘ  
ꢙ + ρ  
(퐸ꢄ. 4)  
(퐸ꢄ. 5)  
t
∆t  
∆ꢐ  
∆t  
j
j
m
j
C
− ꢇC + C  
j
m
j
mꢔꢋ  
mꢓꢋ  
=
Dꢖꢗ  
(퐸ꢄ. 8)  
ꢑX  
ꢑꢐ  
− X  
∆ꢐ  
mꢓꢋ  
(
)2  
3
26  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 324-333  
The above equation is solved by the method x = g (x).  
So we have (equation 6):  
the tower. (3) Investigating the impact of the tower's  
operational parameters.  
∆ꢐ  
t
j
∆t  
∆ꢐ  
∆t  
+ u )C  
∆ꢐ  
j
jꢓꢋ  
ε  1  
2.8.2 Input and output of the program  
. Fixed parameters, including tower and adsorbent  
specification  
2. Operating parameters such as tower's function time  
3. Input feed conditions (temperature, pressure, flow  
intensity and composition percent)  
(
D
2)C  
+ (D  
+ Cm  ( )  
mꢔꢋ  
2
mꢓꢋ  
j
m
ε푏  
1
C
=
j
t
2
∆t  
∆ꢐ  
ε − 1 q  
m
j
ꢇD  
+ u + 1 − ꢚ  
ε푏  
C
m
(
퐸ꢄ. 9)  
2.7.1 The process of solving equations in the isothermal  
4. Adsorption equilibrium data  
state  
In isothermal conditions, the temperature is assumed to  
5. The concentration of adsorbate component in the gas  
phase at the outlet of the substrate  
be constant at different stages, and various parameters are  
determined at this constant temperature. Therefore, only the  
mass balance equations and mass transfer velocity equations  
will remain. In this case, there is a partial mass balance  
equation and a mass transfer velocity equation for adsorbate  
mass and a general mass balance. If we consider the number  
of divisions over the length of NL, the equations must be  
solved simultaneously, taking into account the boundary  
condition NL-1. In the isothermal mode, the form of all  
relationships related to temperature and energy balance is  
eliminated, so the convergence time is reduced.  
6. The concentration of adsorbate component in the solid  
phase at the outlet of the substrate  
7. partial pressure of adsorbate in the gas phase at the outlet  
of the substrate  
2.8.3 Problem-solving  
Since the equation is based on time and space, it should  
start from zero time and solve for the whole region, and after  
solving it at time zero, it was time one and so on for the  
whole time. That's mean, at time n, the data is obtained for  
all points and by that the data is calculated at time n + 1.  
Therefore, there is a 'for' external loop that actually changes  
from one step to the next. Inside the 'for' outer loop which  
time is there, there is a 'for' inner loop for, which indicates  
location changes from the beginning to the end of the  
substrate. The inner loop is about the 'while' loop that is  
solved within this equation loop at a constant time and place.  
In fact, in the two previous 'for' loops, one time and another  
determined the location, and in the last loop (while) at this  
time and place, the amount of adsorbate concentration in the  
solid phase (q) and the adsorbate concentration in the gas  
phase (c) comes.  
2
.8 Describe the computer program  
To solve the equations and calculate the values of  
different variables, the computer program is written in the  
Matlab 7software environment.  
2.8.1 Program capabilities  
The provided program has the following capabilities: (1)  
Calculate and plot the concentration profile of various  
components along the tower. (2) Calculate the time variation  
of the concentration of different components at each point of  
Table 2: Incoming applications  
Parameter  
temperature  
symbol  
T
unit  
K
Pressure  
P
Pa  
number of intervals  
number of spatial distance  
m
n
No  
No  
Length of bed  
L
m
length ratio to the number of spatial distances  
time of passage of gas from the whole bed  
Adsorbate mole fraction at the moment of entering the bed  
speed  
Adsorbent density  
substrate porosity  
dz  
dt  
m
s
No  
m/s  
kg/m3  
No  
Y
u
in  
ρp  
ε푏  
Maximum adsorption capacity in dual-Langmuir isotherm  
Maximum adsorption capacity in dual-Langmuir isotherm  
Coagulation coefficient of adsorption in the Langmuir isotherm  
Coagulation coefficient of adsorption in the Langmuir isotherm  
linear force propulsion coefficient  
axial dispersion coefficient  
q
q
b
b
k
s1  
s2  
1
mol/kg  
mol/kg  
1/Pa  
1/Pa  
1/s  
2
LDF  
D
ax  
No  
performance in the towers. First of all, you need to ensure  
the performance of the model. To evaluate the proposed  
model, experimental data of Habib Mohammadinezhad have  
been used [25]. In this study, the adsorption curve for carbon  
dioxide adsorption by zeolite 5A at temperature and pressure  
3
Results and discussion  
Based on the model derived from this study, the effective  
parameters on adsorption will be analyzed individually in  
order to provide optimum conditions for adsorption  
3
27  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 324-333  
of the experiment has been investigated. Comparison of the  
results of the model and experimental data is shown in Fig.  
the superconducting forces (superficial potential) will be  
deflected against the temperature (kinetic) forces, although  
the pressure is too high. As the temperature rises, the  
adsorption rates are rapidly degraded, so it is best to perform  
adsorption at lower temperatures if possible [26].  
1. The results of this comparison show that the proposed  
model can predict the experimental data. As shown in Fig. 1,  
the model developed by the laboratory data for carbon  
dioxide adsorption is well-suited to zeolite. Therefore, this  
model can be used to predict the effect of operating  
conditions on adsorption and to achieve optimal conditions  
to improve the performance of an adsorption tower.  
Table 3: Construction characteristics of the filled tower  
L =0.254 m  
D=0.0472 m  
Length of the tower  
Tower diameter  
ε
b
=0.464  
Substrate porosity  
7
6
5
4
Table 4: Adsorption Operating Conditions  
T=298 K  
Temperature  
P= 108109 pa  
U=0.523362 m/s  
LDF=0.00101 s  
Pressure  
Speed  
Linear force  
-1  
K
D
د  
Experimental data  
Model  
ax=0.0003  
= 2220 kg/m  
Axial dispersion coefficient  
The apparent density  
Input mole fraction of  
adsorbate  
3
3
2
1
0
Y
in=0.0073  
Table 5: Convergence of the two-site Langmuir isotherm  
= 2.2 3446*10-5 pa-1  
s1= 1.599 mol/kg  
= 0.048905 s2=0.049 mol/kg  
pa-1  
b
1
q
0
50  
100  
t(min)  
150  
200  
b
2
q
Fig. 2: Comparison of experimental and model adsorption data  
As shown in Fig. 4.1, at 65min the adsorbate amount in  
the outlet gas phase from the bed at T = 298, T = 308, and T  
= 318, respectively, is 306.0, 295.0, and 285.0. Since the  
adsorption step is relatively long and it is considered to avoid  
temperature changes due to heat exchange with a feed  
temperature near the ambient temperature.  
3
.1 Performance conditions for adsorption  
Adsorption of carbon dioxide on zeolite 5A in laboratory  
conditions. Specifications and test conditions are presented  
in Tables 3 and 4 [25]. The least squares error method has  
been used in order to obtain the dual-Langmuir isotherm  
quantities. Equilibrium quantities of this isotherm are  
presented in Table 5.  
3.2.2 Effect of feed flow intensity  
The flow Intensity in this process is affected by gas  
velocity in the equations. Increasing gas velocity increases  
the speed of movement of the activated region, and as the  
region approaches the outlet, the concentration of the  
adsorbate material in the product increases. In the lower flow  
rate due to more contact time, the pollutant has more chance  
of bonding with the adsorbent particles. Therefore, the  
adsorption efficiency increases. The amount of air inflow  
strongly affects adsorption capacity. As the flow rate  
increases, the adsorption and trapping of methane molecules  
decrease. The reason for this is that methane remains in the  
adsorption bed, and some of it leaves the bed before reaching  
the balance point. Similar results are presented by other  
researchers [27-31]. As shown in Fig. 4, the adsorbate  
concentration in the outlet gas phase reaches a value of 0.15,  
with a velocity of = 0.4, u = 0.52and u = 0.6respectively of  
30, 23 and 20 minutes is required.  
3
.2 The effect of changing the input feed conditions of the  
unit  
Feed conditions are one of the main determinants of any  
chemical process. Therefore, the effect of these conditions  
on process performance improvement is very effective. In  
general, adsorption processes have a good flexibility versus  
changing various feed conditions. In this section, the effect  
of temperature, flow, and methane concentration of the input  
has been investigated by using this simulation.  
3.2.1 Effect of feed temperature  
Since the study is carried out at the same temperature,  
the temperature of the feed determines the temperature of the  
adsorption step. In order to investigate the effects of  
temperature on adsorption, the simulation was carried out at  
several temperatures and it was found that with increasing  
temperature, the amount of adsorption decreased. Because  
3
29  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 324-333  
0
0
0
0
.35  
.3  
.25  
.2  
.15  
.1  
1200  
000  
0
1
800  
600  
400  
200  
0
0
0
.05  
0
t (min)  
t (min)  
T=298 K  
T=308 K  
T=318 K  
T=298 K  
T=308 K  
T=318 K  
Fig. 3: Effect of feed temperature on output concentration  
1
200  
0
.35  
.3  
.25  
.2  
.15  
.1  
0
1000  
0
0
0
8
6
4
2
00  
00  
00  
00  
0
0
0
.05  
0
t (min)  
u=0.6 (m/s)  
t (min)  
u=0.523362 (m/s)  
u=0.4 (m/s)  
u=0.6 (m/s)  
u=0.523362 (m/s)  
u=0.4 (m/s)  
Fig. 4: Effect of speed on output concentration  
3
.2.3 The effect of pressure  
In order to investigate the effect of pressure on the  
3.2.4 Effect of bed length  
By increasing the height of the adsorption bed in the  
column, the contact time of the pollutant is increased with  
the absorbent and the slope of the deflection curve decreases,  
which indicates a massive mass transfer region at higher  
altitudes. These results indicate that adsorbent optimum  
efficiency is achieved with higher heights. As shown in Fig.  
6 the adsorbate concentration in the outlet solid phase from  
the bed reaches a value of 200, with a bed length of L =  
0.254, L = 0.3and L = 0.35, respectively of 13, 20 and 25  
minutes are needed.  
performance of the absorption tower, the crevice curve has  
been plotted for several different pressures. According to the  
diagram, with increasing the pressure in the bed, the slope of  
the curve increases and the time of saturation of the bed  
specified length decreases. The reason for this is that with  
increasing pressure the length of the mass transfer region  
increases. With increasing pressure, adsorbents absorb more  
pollutant gas. As shown in Fig. 5, at a specified time of 50  
minutes, the adsorbate amount in the outlet gas phase from  
the bed was P = 15.68, P = 18and P = 20= 0.28, 0.33, and  
0.37.  
3.2.5 Effect of adsorbent particle size  
The amount of adsorbent in the absorption column  
determines the number of available and active adsorption  
sites. According to Equation 3, the mass transfer coefficient  
3
30  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 324-333  
with the absorbent diameter has a reverse relation and, with  
increasing mass transfer coefficient, the absorbent diameter  
decreases. As shown in Fig. 7, the time to reach the breaking  
point in the diagram increases with decreasing mass transfer  
coefficient. By increasing the number of adsorbent particles,  
the time remaining in the column and the time to reach the  
breaking point increases, and the saturation of the substrate  
occurs later, which leads to an increase in adsorption  
capacity. This is due to an increase in the absorbent special  
level and absorption sites.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1400  
1
1
200  
000  
8
6
4
2
00  
00  
00  
00  
0
t (min)  
P=20 psi  
t (min)  
p=20 psi  
P=15.68 psi  
P=18 psi  
p=15.68 psi  
p=18 psi  
Fig. 5: Effect of pressure on the output concentration  
0
.35  
.3  
.25  
.2  
.15  
.1  
1200  
0
1
000  
0
800  
600  
400  
200  
0
0
0
0
0
.05  
0
t(min)  
L=0.3 m  
t (min)  
L=0.3 m  
L=0.254 m  
L=0.35 m  
L=0.254 m  
L=0.35 m  
Fig. 6: Effect of bed length on output concentration  
3
31  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 324-333  
0
0
0
0
.35  
.3  
.25  
.2  
.15  
.1  
1200  
000  
0
1
8
6
4
2
00  
00  
00  
00  
0
0
0
.05  
0
t(min)  
k=0.0015 (1/S)  
t(min)  
k=0.00101 (1/S)  
k=0.002 (1/S)  
k=0.00101 (1/S)  
k=0.002 (1/S)  
k=0.0015 (1/S)  
Fig 7: Effect of bed length on output concentration  
1
3X, National Conference on Modern Technology in  
4
Conclusion  
The results of this study indicate that bed length, tower  
Chemical Engineering, 2014  
9
1
. Grande, C.A., et al., Adsorption of propane and propylene  
in zeolite 4A honeycomb monolith. Chemical  
Engineering Science, 2006. 61(10): p. 3053-3067.  
0. Ali Akbar Farzaneh, Jamshid Zarkesh and Hassan Mehdi  
Zadeh, Preparation of a software package for simulation  
of absorption towers, Research Institute for  
Development Engineering, Research Institute of  
Petroleum Industry.  
1. Khaled Abad, Maryam Saadi, Jafar Sadeghzadeh Ahi  
and Masih Hosseini Janab, Experimental Investigation  
and Modeling of the Sulfide Hydrogen Absorption  
Tower in the Sulfiran Process, Petroleum Research  
Journal, Vol. 20, No. 62, 1389.  
2. Cen, P. and R.T. Yang, Separation of a five-component  
gas mixture by pressure swing adsorption. Separation  
Science and Technology, 1985. 20(9-10): p. 725-747.  
3. Doong, S.J. and R. Yang, Bulk separation of  
multicomponent gas mixtures by pressure swing  
adsorption: pore/surface diffusion and equilibrium  
models. AIChE journal, 1986. 32(3): p. 397-410.  
4. Kapoor, A. and R. Yang, Kinetic separation of  
methanecarbon dioxide mixture by adsorption on  
molecular sieve carbon. Chemical Engineering Science,  
pressure and gas flow rate have a significant effect on the  
methane separation efficiency. Also, in this study, the  
parameters of gas velocity and tower temperatures were  
studied and their effect on the adsorption process was  
investigated.  
References  
1
. I. Karakurt, G. Aydin, K. Aydiner, Mine ventilation air  
methane as a sustainable energy source, Renew. Sustain.  
Energy Rev. 15 (2011) 10421049.  
1
2
. T. L. Saleman, G. (K.) Li, T. E. Rufford, P. L. Stanwix,  
K. I. Chan, S. H. Huang, E. F. May, Capture of low grade  
methane from nitrogen gas using dual-reflux pressure  
swing adsorption, Chemical Engineering Journal 281  
1
1
(
2015) 739748.  
3
4
5
6
7
8
. A.I. Fatehi, K.F. Loughlin, M.M. Hassan, Separation of  
methane-nitrogen mixtures by pressure swing  
adsorption using a carbon molecular-sieve, GasSep.  
Purif. 9 (1995) 199204.  
. A. Olajossy, A. Gawdzik, Z. Budner, J. Dula, Methane  
separation from coal mine methane gas by vacuum  
pressure swing adsorption, Chem. Eng. Res. Des. 81  
1
1
1
(
2003) 474482.  
1989. 44(8): p. 1723-1733.  
. K. Warmuzinski, L. Buzek, W. Sodzawiczny, M.  
Tanczyk, S. Smigasiewicz, Methane/nitrogen separation  
by pressure swing adsorption on a carbon molecular  
sieve, Inz. Chem. Procesowa 19 (1998) 915929.  
. J.A. Delgado, M.A. Uguina, J.L. Sotelo, B. Ruiz,  
Modelling of the fixed-bed adsorption of  
methane/nitrogen mixtures on silicalite pellets, Sep.  
Purif. Technol. 50 (2006) 192203.  
. J.A. Delgado, M.A. Uguina, J.L. Sotelo, V.I. Agueda, P.  
Gomez, Numerical simulation of a three-bed PSA cycle  
for the methane/nitrogen separation with silicalite, Sep.  
Purif. Technol. 77 (2011) 717.  
5. Kumar, R., Adsorption column blowdown: adiabatic  
equilibrium model for bulk binary gas mixtures.  
Industrial & engineering chemistry research, 1989.  
28(11): p. 1677-1683.  
6. Lee, C.H., J. Yang, and H. Ahn, Effects of carbonto‐  
zeolite ratio on layered bed H2 PSA for coke oven gas.  
AIChE journal, 1999. 45(3): p. 535-545.  
7. Grande, C.A., Biogas upgrading by pressure swing  
adsorption. 2011: INTECH Open Access Publisher.  
8. Kim, M.-B., et al., Kinetic separation of landfill gas by a  
two-bed pressure swing adsorption process packed with  
carbon molecular sieve: nonisothermal operation.  
1
1
. Alireza Eslami, Farshid Basiri, Mohammad Ali Dehnavi,  
Maziar Sharifzadeh, Surface gas modeling of zeolite  
3
32  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 324-333  
Industrial & engineering chemistry research, 2006.  
45(14): p. 5050-5058.  
1
9. Delgado, J.A., et al., Fixed-bed adsorption of carbon  
dioxidehelium, nitrogenhelium and carbon dioxide–  
nitrogen mixtures onto silicalite pellets. Separation and  
purification technology, 2006. 49(1): p. 91-100.  
0. Delgado, J.A., et al., Fixed-bed adsorption of carbon  
dioxide/methane mixtures on silicalite pellets.  
Adsorption, 2006. 12(1): p. 5-18.  
2
2
2
2
1. Delgado, J.A., et al., Carbon dioxide/methane separation  
by adsorption on sepiolite. Journal of Natural Gas  
Chemistry, 2007. 16(3): p. 235-243.  
2. Delgado, J.A., et al., Separation of carbon  
dioxide/methane mixtures by adsorption on a basic resin.  
Adsorption, 2007. 13(3-4): p. 373-383.  
3. Ruthven, D.M., Adsorption (Chemical Engineering), in  
Encyclopedia of Physical Science and Technology  
(
Third Edition), R.A. Meyers, Editor. 2003, Academic  
Press: New York. p. 251  
2
2
2
2
2
4. Kluge, G., et al., Experimental investigation and  
mathematical modelling of the purge step in pressure  
swing adsorption. Gas separation & purification, 1991.  
5
(4): p. 235-241.  
2 2  
5. Mohamadinejad, H. The adsorption of CO /H O/N on  
a zeolite and silica gel in a packed column in one and  
2
5
two-dimensional flows. Ph.D Thesis; University of  
Alabama in Huntsville, 1999  
6. Choi, B.-U., et al., Adsorption equilibria of methane,  
ethane, ethylene, nitrogen, and hydrogen onto activated  
carbon. Journal of Chemical & Engineering Data, 2003.  
48(3): p. 603-607.  
7. Agrawal, P. and A. Bajpai, Dynamic column adsorption  
studies of toxic Cr (VI) ions onto iron oxide loaded  
gelatin nanoparticles. Journal of dispersion science and  
technology, 2011. 32(9): p. 1353-1362.  
8. Leyva-Ramos, R., et al., Adsorption of chromium (VI)  
from an aqueous solution on a surfactant-modified  
zeolite. Colloids and Surfaces A: Physicochemical and  
Engineering Aspects, 2008. 330(1): p. 35-41.  
2
3
3
9. Maji, S.K., et al., Modeling and fixed bed column  
adsorption of As (III) on laterite soil. Separation and  
purification technology, 2007. 56(3): p. 284-290.  
0. Yan, G. and T. Viraraghavan, Heavy metal removal in a  
biosorption column by immobilized M. rouxii biomass.  
Bioresource technology, 2001. 78(3): p. 243-249.  
1. Tirgar, A., et al., Removal of airborne hexavalent  
chromium using alginate as a biosorbent. International  
Journal of Environmental Science & Technology, 2011.  
8(2): p. 237-244.  
3
33