Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 479-484  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Physical Properties and Stability of Plasmid  
DNA-Loaded Chitosan-TPP Nanoparticle  
S. R. Naeimi Torshizi 1, 2, H. Ofoghi *, A. Jangjou , S. Taghizadeh , M. Kianirad  
2
2
3
4
1Department of cellular and molecular, Nour Danesh Institute of Higher Education, Mymeh, Isfahan  
Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran  
2
3
Department of Emergency Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran:  
4
Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical  
Sciences, Shiraz, Iran:  
Received: 12/05/2019  
Accepted: 22/08/2019  
Published: 24/08/2019  
Abstract  
Chitosan (CS) is a biodegradable natural polymer that has shown potential for gene delivery. Although a number  
of in vitro studies showed that chitosan and its derivatives have emerged as promising vehicles for efficient non-viral  
gene and plasmid DNA (pDNA) vaccine delivery, the stability of chitosan/plasmid nanoparticle remain insufficient.  
In the present study, ionically crosslinked chitosan nanoparticles were formulated with plasmid DNA using the ionic  
gelation technique with sodium tripolyphospate (TPP) as a crosslinking agent. We investigate the stability of  
chitosan/pDNA nanoparticles which was synthesized by this method. Optimization study showed that chitosan to TPP  
ratios of 1:0.4(w/w) results in the reproducible formation of nanoparticles with good production yields. SEM and DLS  
analyses revealed a circular shape of the CS/TPP nanoparticles with an average size diameter of 173 nm. The zeta  
potential of the nanoparticles was + 10.8 mv. In vitro study of pDNA release from CS/TPP nanoparticles revealed no  
DNA release following incubation of chitosan/pDNA nanoparticles for up to 1 month, in mediums of PBS and acetic  
acid at pH 4 and pH 7.4. According to the results, ionically crosslinked CS/TPP nanoparticles have the potential to be  
used as a biocompatible non-viral gene delivery system with strong stability.  
Keywords: Chitosan, Gene delivery, Nanoparticles, Ionic gelation  
1
1
Introduction  
features such as non-toxicity, biodegradation, and  
biocompatibility as well as have a highly chemically  
reactive structure render it highly useful for the  
pharmaceutical application. A number of therapeutic  
effects of CS have been reported, including wound  
healing (17), anticancer (18), promotion of hemostasis  
and epidermal cell growth (19). These properties have  
attracted interest in the application of this substance in  
biomedical various fields, such as drug delivery and  
targeting (20), wound dressing (21), and tissue  
engineering (22).  
A number of in vitro studies showed that chitosan  
and its derivatives have emerged as promising vehicles  
for efficient non-viral gene and plasmid DNA (pDNA)  
vaccine delivery (23, 24). In addition to the fact that  
CS has a high positive charge and low toxicity, it also  
has a high mucus binding affinity, which makes it able  
Although macrobiomolecules have great potential  
as therapeutic agents, but the potential has yet to be  
completely exploited and have been addressed through  
the development of proper nanocarriers. As surface  
functionalization of nanoparticle are involved in  
medical applications, structural materials, catalysts, as  
well as in cleaning and purification systems. In this  
context, nanoparticles have emerged as one of the  
most exciting tools, due to the increased surface-to-  
volume ratio, which enable the encapsulated  
molecules to retain their biological activity, from the  
production steps to the final release.(1-16) Chitosan  
(
CS) is an interesting natural linear chain poly-amino  
saccharide composed of D-glucosamine residues  
linked by β (1→4) glycosidic bonds. Its desirable  
Corresponding author: H. Ofoghi, Department of Biotechnology, Iranian Research Organization for Science and Technology,  
Tehran, Iran. E-mail: e-mail: ofoghi@irost.ir.  
479  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 479-484  
to increase the penetration of large molecules across a  
mucosal surface. Today, it has been proven that  
chitosan-based delivery systems can be useful for  
nasal delivery of siRNA and gene interference in the  
lung mucosa (25). As a non-viral vector for gene  
delivery, chitosan nanoparticles (CNPs) have many  
advantages because viral systems may make it  
possible to make recombinant recombination and  
oncogenic effects and immunological reactions  
leading to potentially serious complications.  
CNPs are usually made up by ionic gelation  
method, which describes the crosslinking reaction of  
CS with sodium tripolyphosphate (TPP). This  
technique involves the addition of a crosslinking  
agent, i.e. TPP, into the aqueous phase containing  
chitosan, thus leading to the formation of chitosan  
nanogels (26, 27). This technique has been previously  
adapted for the encapsulation of peptides and proteins  
2.2 physicochemical  
characterization of CS/TPP nanoparticles  
After optimization, ionically crosslinked  
Preparation  
and  
nanoparticles based on medium molecular weight CS  
were formulated with plasmid DNA (pDNA). For this  
formulation, the ionic gelation technique was used.  
Chitosan solution is prepared at the concentration of  
0.05% (W/V) in acetate buffer solution (pH 4.5). The  
sample was stirred overnight and then filtered. The  
TPP is dissolved in double-distilled water at a  
concentration of 0.20 mg/mL. For formation of  
chitosan-TPP nanoparticles containing plasmid in  
their matrix, following procedure was performed: I)  
the solution of plasmid is added to the previously  
prepared solution TPP (0.20 mg/mL), II) nanoparticles  
were formed instantaneously upon the dropwise  
addition of a volume of plasmid/TPP solution to a  
volume of chitosan solution (1:0.4) under magnetic  
stirring at room temperature. Chitosan nanoparticles  
were recovered by ultracentrifugation (Hettich®,  
200R, Tuttlingen, Germany) 12,000 rpm, at 10 ºC for  
20 min. All these steps are shown in schematic Figure  
1. The particle size distribution and zeta potential were  
obtained by the DLS technique, using a Zetasizer  
Nano ZS 3600(Malvern Instruments). The  
morphology of the nanoparticles was examined via  
scanning electron microscope (KYKYEM3200) at an  
operating voltage of 25 kV.  
(
28). As compared to the other methods used for DNA  
association, the nanoparticle formation is not only  
determined by the electrostatic interactions between  
chitosan and DNA but simultaneously also by physical  
entrapment upon the ionic crosslinking induced by  
TPP. This process results in the controlled gelation of  
chitosan in the form of spherical, homogeneous and  
compact nanoparticles, characteristics that are  
expected to benefit the performance of the system both  
in vitro and in vivo (29-33). It has advantages of not  
necessitating sonication and organic solvents for its  
preparation, therefore minimizing possible damage to  
DNA  
during  
complexation.  
Although  
the  
1.1 Loading capacity of CS/TPP nanoparticles  
Encapsulation efficiencies of pDNA were  
calculated from the amount of non-encapsulated  
material recovered in the supernatant samples  
collected upon centrifugation of the nanoparticles  
(10000 RPM, 100C, 20 min). The amount of recovered  
DNA was determined by spectrophotometer  
(Biochrom®, U.K). Additionally, the association of  
DNA to the nanoparticles was also determined by gel  
electrophoresis assays (1% agarose containing safe  
nucleic acid stain, Safe-green®, 80 V, 40 min).  
experimental evidence suggests that in this strategy  
chitosan can easily bind or encapsulate DNA and  
protect it e ectively from DNases, but the stability of  
chitosan/plasmid nanoparticle still needs to be  
elucidated. The aim of this study was to investigate the  
stability of chitosan/pDNA nanoparticles which was  
synthesized by the method of ionic gelation. The  
physicalchemical  
properties  
of  
chitosan  
nanoparticles were optimized by studying the  
influence of several key parameters including CS  
concentration, CS molecular weight (i.e. 125 kDa vs.  
3
00 kDa), CS/TPP polymer ratio, and DNA loading.  
1.1 In vitro release of DNA  
In vitro release of pDNA was determined by  
incubating the nanoparticles in acetate buffer and  
phosphate buffered saline (PBS) (pH 4 and 7.4), (37  
ºC, horizontal shaking). At time intervals of 1 day and  
2
Materials and methods  
2
.1 Materials  
Chitosan with 75-85% deacetylation degree and  
1
, 2, 3, 4 weeks, individual samples were isolated by  
medium molecular weight was purchased from Sigma-  
Alderich. Plasmid DNA (pDNA) encoding green  
fluorescent protein (PKScGFP). tripolyphosphate  
centrifugation (10,000 RPM, 20 min). The supernatant  
of samples was analyzed by agarose gel  
electrophoresis using un-encapsulated PKScGFP  
plasmid as the positive control sample.  
(TPP) was obtained from SigmaAldrich (Madrid,  
Spain). One kBp DNA ladder was obtained from  
Merck Millipore Bioscience. All other solvents and  
chemicals were of the highest grade commercially  
available.  
480  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 479-484  
Figure 1: Schematic figure of chitosan/pDNA nanoparticle synthesis by ionic gelation method  
3
Results and discussion  
3
.1 Formation and physicochemical characterization  
of CS/pDNA nanoparticles  
Initial studies aiming at the optimization of the  
nanoparticle formation indicated that chitosan to TPP  
ratios of 1:0.4(w/w) results in the reproducible  
formation of nanoparticles with good production  
yields. The average size of the nanoparticles prepared  
of medium molecular weight chitosan (MMW  
CS/TPP) was 173 nm. Polydispersity Index (P.I.) of  
nanoparticles was 0/292 (Table1). Also, Zeta potential  
of chitosan/pDNA was +10.8 mV (Figure 2). The  
morphology and structure of CNPs are demonstrated  
by SEM. The results showed that the majority of CNPs  
were circular in shape with an only limited degree of  
aggregation (Figure 3).  
Table1: Physicalchemical characteristics of CS/TPP  
nanoparticles loaded with pDNA (i.e. pKScGFP).  
Figure 3: SEM micrograph of synthesized chitosan/pDNA  
nanoparticles  
481  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 479-484  
buffer pH 4 and pH 7.4 and phosphate buffered saline  
(PBS) pH 4 and 7.4 ), and assayed in agarose gel  
retardation assays. The results showed no DNA  
release following incubation of chitosan/pDNA  
nanoparticles for up to 1 month, in all of types  
incubation medium (Fig. 4a and b). These results  
indicate that pDNA is very firmly associated with  
CS/TPP nanoparticles. However, plasmid DNA could  
be released from the nanoparticles following  
incubation in lysozyme solution (Fig 5).  
Figure 2: Particle size distribution of the CS/pDNA nanoparticles  
3
.2 Entrapment of plasmid DNA  
According to research conducted by Carrillo et al  
(
34), for loading process, 14µg/ml of plasmid DNA  
was included in TPP solution prior to nanoparticle  
formation. In this study, chitosan showed high  
efficiency for the encapsulation of pDNA, reaching  
almost 100% (Table 1). Previous studies have shown  
that the entrapment of the pDNA within the CS/TPP  
nanoparticles has several advantages over absorbance  
of pDNA onto preformed CNPs, such as the more  
effective protection of pDNA from decomposition  
when administered In vivo, the easier surface  
modification of nanoparticles to improve their  
interaction with biological surfaces, and more  
controllable of the pDNA release process.  
3
.3 In vitro release of pDNA from CS/TPP  
nanoparticles  
In order to study the stability of chitosan/pDNA  
Figure 5: Agarose gel assays following incubation of CS/pDNA  
nanoparticles with lysozyme  
nanoparticle and the pDNA release properties of  
CS/TPP nanoparticles, they were incubated in 2 type  
of release media with 2 different pH values (acetate  
Figure 4: In vitro pDNA release studies from CS/pDNA nanoparticles incubated for (a) 1 day and (b) 1month. The studies were performed at pH 4  
and 7.4 acetate buffer and PBS at 37 ◦C.( Line 1: naked pDNA, Line 2: CNP treated with PBS pH 7.4, Line 2: CNP treated with acetate buffer pH  
4
, Line 4: CNP treated with acetate buffer pH 7.4, Line 5: CNP treated with distilled water)  
482  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 479-484  
montmorillonite K10 as catalyst. Monatshefte für Chemie-  
Chemical Monthly. 2009;140(5):547-52.  
1. Rostamizadeh S, Amani AM, Mahdavinia GH, Shadjou N.  
4
Conclusion  
In this investigation, we have successfully  
1
synthesized  
ionically  
crosslinked  
CS/TPP  
Silica  
supported ammonium dihydrogen phosphate  
nanoparticles as an interesting delivery system for  
nucleic acids such as plasmid DNA. Nanoparticles are  
spherical in shape with a mean particle size of 173 nm.  
Due to strong electrostatic interaction, the  
chitosan/pDNA nanoparticles are highly stable and no  
pDNA was released after one month in nanoparticles  
treated with a solution of PBS and acetate buffer in pH  
(NH4H2PO4/SiO2): A mild, reusable and highly efficient  
heterogeneous catalyst for the synthesis of 14-aryl-14-H-  
dibenzo [a, j] xanthenes. Chinese Chemical Letters.  
2
009;20(7):779-83.  
1
1
2. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. Aqueous  
NaHSO 4 catalyzed regioselective and versatile synthesis of 2-  
thiazolamines. Monatshefte für Chemie/Chemical Monthly.  
2
008;139(10):1241-5.  
3. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. An  
efficient onepot procedure for the preparation of 1, 3, 4‐  
thiadiazoles in ionic liquid [bmim] BF4 as dual solvent and  
catalyst. Heteroatom Chemistry: An International Journal of  
Main Group Elements. 2008;19(3):320-4.  
4
and 7.4. This study demonstrated that chitosan–  
pDNA nanoparticles had great potential in designing  
novel non-viral gene delivery systems.  
1
4. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. Solvent‐  
free chemoselective synthesis of some novel substituted 2‐  
arylbenzimidazoles using amino acidbased prolinium nitrate  
ionic liquid as catalyst. Journal of Heterocyclic Chemistry.  
Acknowledgements  
Special thanks to Mrs. Sanaz Jafari, Mr. Ali  
Sheykhinejad, and Mrs. Zohreh Amidi for his  
technical assistance  
2
009;46(1):74-8.  
15. Rostamizadeh S, Aryan R, Reza Ghaieni H, Mohammad Amani  
A. Efficient synthesis of 1, 3, 4thiadiazoles using hydrogen  
bond donor (thio) urea derivatives as organocatalysts. J  
Heterocycl Chem. 2010;47(3):616-23.  
6. Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, Beigi V, Mousavi  
SM, Hashemi SAR, et al. Polyethylenimine-based nanocarriers  
in co-delivery of drug and gene: a developing horizon. Nano  
reviews & experiments. 2018;9(1):1488497.  
References  
1
.
Amani A. Synthesis and biological activity of piperazine  
derivatives of phenothiazine. Drug Res. 2015;65(01):5-8.  
Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A, Amani  
AM, Taghizadeh S. Green synthesis of iron oxide nanoparticles  
by aqueous leaf extract of Daphne mezereum as a novel dye  
removing material. Appl Phys A. 2018;124(5):363.  
1
2
.
1
7. KOJIMA K, OKAMOTO Y, KOJIMA K, MIYATAKE K,  
FUJISE H, SHIGEMASA Y, et al. Effects of chitin and  
chitosan on collagen synthesis in wound healing.  
3
4
.
.
Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Sina S,  
Amani AM. Lead oxide-decorated graphene oxide/epoxy  
composite towards X-Ray radiation shielding. Radiation  
Physics and Chemistry. 2018;146:77-85.  
Kouhbanani MAJ, Beheshtkhoo N, Amani AM, Taghizadeh S,  
Beigi V, Bazmandeh AZ, et al. Green synthesis of iron oxide  
nanoparticles using Artemisia vulgaris leaf extract and their  
application as a heterogeneous Fenton-like catalyst for the  
degradation of methyl orange. Materials Research Express.  
2
004;66(12):1595-8.  
1
1
8. Shao-hua Z, Yan H, Guo-jian FJZZGYYLK. Preparation,  
characterization and anticancer effect of chitosan nanoparticles.  
2
007;11(48):9688.  
9. Howling GI, Dettmar PW, Goddard PA, Hampson FC, Dornish  
M, Wood EJJB. The effect of chitin and chitosan on the  
proliferation of human skin fibroblasts and keratinocytes in  
vitro. 2001;22(22):2959-66.  
2
018;5(11):115013.  
2
2
0. Shariatinia  
Z,  
Mazloom-Jalali  
AJJoML.  
Chitosan  
5
6
.
.
Kouhbanani MAJ, Beheshtkhoo N, Fotoohiardakani G,  
Hosseini-Nave H, Taghizadeh S, Amani AM. Green Synthesis  
and Characterization of Spherical Structure Silver  
Nanoparticles Using Wheatgrass Extract. Journal of  
Environmental Treatment Techniques. 2019;7(1):142-9.  
Kouhbanani MAJ, Beheshtkhoo N, Taghizadeh S, Amani AM,  
Alimardani V. One-step green synthesis and characterization of  
iron oxide nanoparticles using aqueous leaf extract of Teucrium  
polium and their catalytic application in dye degradation.  
Advances in Natural Sciences: Nanoscience and  
Nanotechnology. 2019;10(1):015007.  
nanocomposite drug delivery systems designed for the  
ifosfamide anticancer drug using molecular dynamics  
simulations. 2019;273:346-67.  
1. Hernández-Rangel A, Silva-Bermudez P, España-Sánchez B,  
Luna-Hernández E, Almaguer-Flores A, Ibarra C, et al.  
Fabrication and in vitro behavior of dual-function  
chitosan/silver nanocomposites for potential wound dressing  
applications. 2019;94:750-65.  
2. Saekhor K, Udomsinprasert W, Honsawek S, Tachaboonyakiat  
WJIjobm. Preparation of an injectable modified chitosan-based  
hydrogel approaching for bone tissue engineering.  
2
2
7
.
Lohrasbi S, Kouhbanani MAJ, Beheshtkhoo N, Ghasemi Y,  
Amani AM, Taghizadeh S. Green Synthesis of Iron  
Nanoparticles Using Plantago major Leaf Extract and Their  
Application as a Catalyst for the Decolorization of Azo Dye.  
BioNanoScience. 2019;9(2):317-22.  
2
019;123:167-73.  
3. Wan X, Chen J, Cheng C, Zhang H, Zhao S, Li J, et al.  
Improved expression of recombinant fusion defensin  
geneplasmids packed with chitosan-derived nanoparticlesand  
effect on antibacteria and mouse immunity. 2018;16(5):3965-  
8
9
1
.
.
Mahdavinia GH, Rostamizadeh S, Amani AM, Sepehrian H.  
Fast and efficient method for the synthesis of 2-  
arylbenzimidazoles using MCM-41-SO3H. Heterocycl  
Commun. 2012;18(1):33-7.  
Mousavi SM, Hashemi SA, Arjmand M, Amani AM, Sharif F,  
Jahandideh S. Octadecyl amine functionalized Graphene oxide  
7
2.  
4. Kashkouli KI, Torkzadeh-Mahani M, Mosaddegh EJIjobm.  
Synthesis and characterization of novel organosilane-  
2
2
2
a
functionalized chitosan nanocarrier as an efficient gene delivery  
system: Expression of green fluorescent protein. 2018.  
5. Luo Y, Zhai X, Ma C, Sun P, Fu Z, Liu W, et al. An inhalable  
β2-adrenoceptor ligand-directed guanidinylated chitosan  
carrier for targeted delivery of siRNA to lung. 2012;162(1):28-  
towards epoxy  
hydrophobic  
chemical  
resistant  
Nanocomposites. ChemistrySelect. 2018;3(25):7200-7.  
0. Rostamizadeh S, Amani AM, Aryan R, Ghaieni HR, Norouzi  
L. Very fast and efficient synthesis of some novel substituted 2-  
arylbenzimidazoles in water using ZrOCl 2· nH 2 O on  
3
6.  
6. Csaba N, Köping-Höggård M, Alonso MJJIJoP. Ionically  
crosslinked chitosan/tripolyphosphate nanoparticles for  
483  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 479-484  
oligonucleotide and plasmid DNA delivery. 2009;382(1-  
31. Handani WR, Sediawan WB, Tawfiequrrahman A, Wiratni,  
Kusumastuti Y, editors. The effect of temperature and chitosan  
concentration during storage on the growth of chitosan  
nanoparticle produced by ionic gelation method. AIP  
Conference Proceedings; 2017: AIP Publishing.  
32. Esquivel R, Juárez J, Almada M, Ibarra J, Valdez MAJIJoPS.  
Synthesis and characterization of new thiolated chitosan  
nanoparticles obtained by ionic gelation method. 2015;2015.  
33. de Pinho Neves AL, Milioli CC, Müller L, Riella HG, Kuhnen  
NC, Stulzer HKJC, et al. Factorial design as tool in chitosan  
nanoparticles development by ionic gelation technique.  
2014;445:34-9.  
2
):205-14.  
2
7. Nguyen TV, Nguyen TTH, Wang S-L, Vo TPK, Nguyen  
ADJRoCI. Preparation of chitosan nanoparticles by TPP ionic  
gelation combined with spray drying, and the antibacterial  
activity of chitosan nanoparticles and a chitosan nanoparticle–  
amoxicillin complex. 2017;43(6):3527-37.  
8. Chen K-Y, Zeng S-YJP. Fabrication of Quaternized Chitosan  
Nanoparticles Using Tripolyphosphate/Genipin Dual Cross-  
Linkers as a Protein Delivery System. 2018;10(11):1226.  
9. Xiao Z, Xu Z, Zhu GJFS, Technology. Production and  
characterization of nanocapsules encapsulated linalool by ionic  
gelation method using chitosan as wall material.  
2
2
34. Carrillo C, Suñé JM, Pérez-Lozano P, García-Montoya E,  
Sarrate R, Fabregas A, et al. Chitosan nanoparticles as non-viral  
gene delivery systems: determination of loading efficiency.  
2014;68(6):775-83.  
2
017;37(4):613-9.  
0. Iswandana R, Putri KSS, Dwiputra R, Yanuari T, Sari SP,  
Djajadisastra JJIJoAPb. Formulation of chitosan  
3
tripolyphosphate-tetrandrine beads using ionic gelation  
method: in vitro and in vivo evaluation. 2017;9(5):109-15.  
484