Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Prevalence and Antibiotic Resistance Profiles of  
Serotypes of Shigella Species isolated from  
Community Children in Odeda Local  
Government, Ogun State.  
1
1
2
1
1
Ajayi, O.I. *, Ojo, D.A. , Akinduti, P.A. , Akintokun, A.K. , Akinrotoye, K.P. .  
1
- Department of Microbiology, College of Biosciences, Federal University of Agriculture, P.M.B 2240, 110001, Abeokuta,  
Ogun State, Nigeria  
2
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria  
Received: 16/02/2019 Accepted: 05/06/2019 Published: 30/09/2019  
Abstract  
Shigellosis (bacillary dysentery) has been a menace that has eaten so deep into the bone marrow of children’s health majorly  
in developing countries worldwide. The symptom ranges from mild diarrhoea to severe dysentery. The infection is of general  
health concern which is common in communities with inadequate and proper hygiene, lacking portable water. This study  
therefore addressed the preponderance and antibiotic resistance profiles of different serotypes of Shigella species gotten from  
stool samples of 248 school children among selected communities in Odeda Local Government Area of Ogun State, Nigeria. The  
stool samples were cultured in Glucose nutrient broth and later sub-cultured for Shigella species using MacConkey,  
Desoxycholate citrate agar, Salmonella-Shigella agar. The obtained bacterial isolates were phenotypically characterized using  
morphological and biochemical methods. Antibiotic susceptibleness of isolates was performed by Kirby-Bauer’s disc diffusion  
method while their Multiple Antibiotic Resistance index (MARI) was determined in addition to their hemolytic pattern on blood  
agar. Data obtained were methodically examined and analyzed using One-way Analysis of Variance (ANOVA). From the 248  
stool samples cultured, 275 bacteria of different categories were isolated of which Shigella spp was isolated in 10 samples  
representing 4.03 % prevalence. The Shigella isolates revealed susceptibleness of 80 % to Pefloxacin, Ciprofloxacin, Ofloxacin  
and 100 % resistance to Augmentin, Nitrofurantoin and Amoxycillin. High Multiple Antibiotic Revealed was High Multiple  
Antibiotics Resistance index greater than 0.2 in all the Shigella isolates while 4 out of ten isolates showed partial α-hemolytic  
reaction representing 40 % and the remaining 6 representing 60 % showed γ- hemolytic reaction. The low prevalence of Shigella  
isolates was not significant with sex, age group, social stratification, religion and educational level of the primary school learners  
(
P>0.05). The need for urgent preventive measures, regulation of antibiotic usage and enforcement of safety hygiene is  
advocated.  
Keywords: Antimicrobial Resistance, Shigella spp, Prevalence, Community Children, Public Health  
1
of diarrhoea [1], although local drinks such as fermented  
palm wine has shown antibacterial activity against  
diarrhoeagenic bacteria e.g. Shigella dysenteriae, therefore  
it can be seen as an alternative measure for the control of  
the diarrhoea produced by these organisms in the absence  
of antibiotics [3]. Shigellosis caused by different species of  
Shigella spp (S. flexneri, S. dysenteriae, S. boydii and S.  
sonnei) all belong to the Enterobacteriaceae family which  
is a crucial cause of worldwide mortality and morbidity in  
humans.  
1
Introduction  
Diarrhoea can be defined as having loose or watery  
stools, at least 3 times a day or more frequently than normal  
for an individual [1, 2]. Most importantly, much cases of  
childhood diarrhoea are mild, less chronic cases can lead to  
a great fluid loss and dehydration which may unfortunately  
result in death or some other severe negative outcomes if  
the fluids are not replaced and replenished at the first sign  
Bastos and Loureiro, [4] reported it to be a disease of  
general health importance in developing countries causing  
self-limited diarrhoea to severe dysentery and it is majorly  
a disease of impoverished, crowded and in-conducive  
communities that do not have access to good sanitation or  
Corresponding author: Ajayi, O.I., Department of  
Microbiology, College of Biosciences, Federal University  
of Agriculture, P.M.B 2240, 110001, Abeokuta, Ogun  
State, Nigeria. E-mail: funkeajayi13@gmail.com  
2
70  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
portable drinking water [5]. Clinical intestinal  
manifestations such as extra-intestinal signs which include  
bacteremia or neurologic manifestations are always  
produced [6]. Barman et al., [7] and Vinh et al., [8]  
indicated also, that among the virulent Shigella serotypes,  
S. sonnei is frequently implicated for epidemic enteritis in  
developed countries while S. boydii is the most dominant  
strain in Low-middle income countries (LMIC) [9].  
Although shigellosis is one of the severe gastroenteritis  
throughout the world, it is has been found to co-infect  
human beings with other gastrointestinal pathogens such as  
Entamoeba histolytica, Campylobacter spp, Salmonella,  
Enteropathogenic Escherichia coli (EPEC), Aeromonas  
hydrophyla and Bacillus cereus.  
Diarrhoea is a menace in Sub-Sahara Africa and the  
prevalence rate of diarrhoea in Nigeria stood at 18.8 %;  
resulting to 150,000 deaths annually amongst young  
children under the age of five as a result of poor sanitation  
and unhygienic practices. Diarrhoea ranked the second  
leading cause of children mortality under five, which is  
rampant due to poor sanitary practices [2]. Shigella species  
are highly infective, particularly S. dysenteriae known as  
the most virulent and have the ability to produce a potent  
cytotoxin known as “Shiga toxin” [10, 11]. S. dysenteriae  
type 1 cause severe and sometimes fatal disease, Shigella  
species recently have been reported to be the most  
identified agent of laboratory-acquired infections because  
of their high virulence and low infectious dose [12]. An  
enormous number of laboratory acquired infections have  
been reported. Infection may be acquired through intake or  
accidental peritoneal inoculation or contact with  
contaminated fomites within community school [13-15].  
A report about the progressive increase in antibiotic  
resistance among enteric pathogens in Low Middle Income  
Countries has been well documented [16], which might be  
as a result of geographical differences, different patterns of  
antibiotic usage and environmental factors [17]. In Nigeria,  
though cases of bacillary dysentery due to Shigella species  
have been presented, it is not comprehensive and  
significant enough; hence it is therefore imperative to  
investigate the prevalence rate and antibiotic  
susceptibleness of Shigella spp in school children within  
Odeda L.G.A of Ogun state and also determine the  
Multiple Antibiotic Resistance index (MARI) of the  
Shigella isolates.  
2
2
Methodology  
.1 Study Area/Site  
This study was performed and carried out in selected  
public primary schools within Odeda L.G.A of Ogun state.  
The primary schools include  
I. Odeda L.G.A school, Bode Olude with coordinates  
II. Odeda L.G.A school, Ilupeju Agbaakin with  
coordinates  
III. Odeda L.G.A school I&II, Obantoko with coordinates  
IV. Methodist Primary school, Odeda with coordinates  
STUDY  
AREA  
Figure 1: Map of Local Governments in Ogun state  
2
71  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
2
.2 Study Population  
2.10 Antibiotics Susceptibility Test  
This included children, attending and schooling at  
different government owned primary schools in selected  
communities within Odeda L.G.A of Ogun State.  
Antibiotic sensitivity tests were carried out on all the  
Shigella isolates using disc diffusion technique [19, 20].  
Mueller Hinton’s agar prepared plates were inoculated with  
the standardized inoculums of the overnight pure bacteria  
culture. After inoculation, appropriate Gram negative  
antibiotic sensitivity discs were placed aseptically and  
incubated at 37°C for 24 h; the diameter of the zone of  
inhibition were measured after incubation and compared  
with zone diameter interpretative chart by Clinical and  
Laboratory Standard Institute [19].  
2
.3 Inclusion criteria  
Children currently registered and attending government  
owned primary schools within Odeda L.G.A.  
2
.4 Exclusion criteria  
Children currently not registered and not attending  
government owned primary schools within Odeda L.G.A.  
Ten various antibiotics with different disc  
concentration such as Ceftriaxone (CRO) 30µg/disc,  
Cotrimoxazole (COT) 25µg/disc, Gentamycin (GEN)  
10µg/disc, Tetracycline (TET) 30µg/disc, Ciprofloxacin  
(CPX) 10µg/disc, Augmentin (AUG) 30µg/disc,  
Amoxicillin (AMX) 25µg/disc, Ofloxacin (OFL) 5µg/disc,  
Pefloxacin (PFX) 5µg/disc, Nitrofurantoin (NIT) 20µg/disc  
were used for this study.  
2
.5 Ethical and Consent approval  
Ethical approval was obtained from the Ethics  
Committee of the Ogun State Ministries of Health and  
Education, Science and Technology (Ref No:  
PL19/VOLIV/18). The Head teachers gave their consent  
after giving them the information about the study. Consent  
forms were signed by stakeholders, Parents and Guardians  
of pupils and the Head Teachers of the selected schools.  
2.11 Multiple Antibiotic Resistance (MAR) Index  
Determination  
2
.6 Sample size  
Sample size was determined based on the population of  
The Multiple Antibiotic Resistances (MAR) Index was  
calculated for each isolate as shown in the equation below.  
MAR index is the number of antibiotic(s) to which the  
organism is resistant divided by the total number of  
antibiotics tested [21].  
pupils within selected communities The following number  
of stool samples was collected from school children in the  
selected communities:  
Bode olude- 33 samples  
Ilupeju Agbaakin- 38 samples  
Alabata- 33 samples  
MARI = Number of Antibiotic (s) to which isolate was resistant  
Total number of antibiotics tested  
Obantoko- 82 samples  
Odeda- 62 samples  
2
.13 Data Analysis  
Data was analyzed using Statistical Package for Social  
Sciences (SPSS) version 17.0 for windows (SPSS, Chicago  
IL and USA) into simple percentiles and test for  
significance. The level of significance was considered as P  
2
.7 Sample Collection  
Sample collection entails the collection of 248 samples  
of stool which were collected from the pupils. The samples  
were gathered into transparent, big-mouthed and sterile  
bottles (Universal bottles). The biodata of the pupils such  
as name, age and sex of the pupils were properly labeled on  
the universal bottles. After collection, the stool samples  
were transported to the laboratory using a transport medium  
and processing was done within 2 hours of collection. The  
pupils’ other biodata information was obtained by  
administering a semi-structured questionnaire.  
<
0.05.  
3 Results and Discussion  
3.1 Percentage distribution of sample collection and other  
bacteria species  
Table 1 revealed Stool samples collected from Primary  
school children in the three zones (Opeji, Ilugun and  
Obantoko) of Odeda L.G.A; Ogun State. Table 2 shows the  
Religion of primary pupils with Christian scoring the  
highest percentage of 53.2 %, Muslim having a percentage  
of 46 % and other religion having a percentage of 0.8 %. Of  
the 248 faecal samples cultured, 10 (4.03 %) Shigella  
species was isolated alongside other bacteria species. Other  
bacteria of medical importance isolated include Escherichia  
coli 126 (45.8 %), Salmonella species 41 (14.9 %),  
Pseudomonas aeruginosa 37 (13.5 %), Enterobacter cloaca  
26 (9.5 %), Proteus vulgaris 19 (6.9 %) and Citrobacter  
freundii 16 (5.8 %) as displayed in Table 3.  
2
.8 Sterilization of materials  
Proper sterilization of the Materials/Glass-wares to be  
used was done by washing, air-drying and sterilizing in a  
hot-air oven at 150C for one hour. The media used were  
sterilized in an autoclave at 121C for 15 minutes. The  
bench work areas were swabbed with alcohol before  
microbiological analysis was carried out in order to avoid  
contamination.  
2
.9 Characterization of the bacterial isolates  
Bacterial isolates were identified and depicted  
3.2 Percentage distribution of gender of the pupils  
morphologically using the cultural characteristics (size,  
shape, and edge, texture, elevation, degree of opacity, and  
color) of each colony and biochemically examined for  
further identification [18].  
Figure 1 revealed the distribution of pupils according to  
Gender,  
with  
female  
having  
the  
higher  
occurrence/percentage at 51% and Male at 49%.  
2
72  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
Table 1: Locations of sample collection in Odeda Local  
Government  
5
5
5
5
4
4
4
4
6
4
2
0
8
6
4
2
Locations  
Number  
Percentage  
Opeji  
104  
41.9  
Obantoko  
Ilugun  
82  
33.1  
62  
25  
Total  
248  
100  
Table 2: Religion of the pupils  
Number  
Religion  
Christian  
Islam  
Percentage  
53.2  
132  
114  
2
46  
Others  
Total  
0.8  
Male Female  
248  
100.0  
Figure 1: Distribution of pupils according to their gender.  
Table 3: Percentage distribution of other bacteria species  
isolated from the pupils  
4
3
3
2
2
1
0
5
0
5
0
5
Number  
126  
41  
Percentage  
45.8  
14.9  
3.6  
Escherichia coli  
Salmonella species  
Shigella species  
Pseudomonas  
10  
37  
13.5  
9.5  
aeruginosa  
10  
5
Enterobacter cloaca  
26  
Proteus vulgaris  
Citrobacter freundii  
Total  
19  
6.9  
0
16  
5.8  
275  
100.0  
3
.3 Percentage distribution of age group of the pupils  
Figure 2 revealed the Age group distribution of the  
pupils with Age group 5-7 having the maximum percentage  
of 33%, followed by Age group 8-10 having a percentage  
of 32.2%, Age group above 10 having 21.8%, and Age  
group 2-4 having the least or minimum percentage of  
Figure 2: Age group distribution of the pupils  
1
2.9%.  
9
0
3
.4 Percentage distribution of educational level of the  
80  
pupils  
Figure  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
3
shows the percentage analysis of the  
educational level of the pupils with Primary pupils having  
the maximum percentage of 73.4 %, followed by  
Kindergarten (KG) pupils having a percentage of 22.2 %,  
while Nursery pupils had the least percentage of 4.4 %.  
3
.5 Biochemical delineation of Shigella species  
Table 4 shows the biochemical characterization and  
delineation of Shigella species isolated from stool samples  
collected from the pupils. Five (5) isolates were confirmed  
to be S. flexneri, three (3) were given to be S. boydii and  
two (2) were S. sonnei. Plate 1 reveals the biochemical  
reaction of Shigella isolates on Triple Sugar Iron (TSI) agar  
having a Red slant (Alkaline) and Yellow butt (Acidic). No  
single isolates had black coloration which indicated that  
KG  
Nursery Primary  
Figure 3: Percentage distribution of educational level of the  
pupils  
Hydrogen sulphide (H S) was not produced.  
2
2
73  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
3
.6 Percentage occurrence of Shigella serotypes among  
the pupils  
Table 5 reveals the distribution percentage of Shigella  
percentage of 50%. Table 6 shows the percentage  
occurrence of Shigella serotypes amongst the pupils with  
Shigella boydii accounting for 50 %, followed by Shigella  
boydii having 30 % and Shigella sonnei having 20 %. S.  
dysenteriae was not isolated.  
isolates applicable and obtained from the three zones of  
Odeda L.G.A with Opeji zone having the maximum  
Control  
Plate 1: Shigella isolates on Triple Sugar Iron (TSI) Agar  
2
74  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
Table 4: Biochemical characterization of other bacteria species  
PROBABLE  
ISOLATE  
GNB  
GNB  
GNB  
GNB  
GNB  
GNB  
GNB  
GNB  
GNB  
GNB  
GNB  
GNB  
GNB  
GNB  
GNB  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
-
+
-
-
+
-
-
-
-
-
-
-
+
+
+
-
+
-
-
-
-
-
-
-
-
-
- -  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Citrobacter freundii  
Enterobacter cloaca  
Proteus vulgaris  
-
-
-
-
- -  
+
+
+
+
+
-
-
- -  
- -  
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
+
-
+
+
-
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
Escherichia coli  
-
-
-
-
Escherichia coli  
- -  
- -  
-
+
+
-
+
-
Proteus mirabilis  
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
Citrobacter freundii  
Escherichia coli  
+
-
-
-
+
+
+
+
+
+
+
-
+
+
+
+
-
-
-
Citrobacter freundii  
Pseudomonas aeruginosa  
Pseudomonas aeruginosa  
Citrobacter freundii  
Enterobacter cloaca  
Salmonella arizonae  
Escherichia coli  
-
-
- -  
- -  
-
-
-
-
-
+
+
-
-
-
+
+
+
-
+
-
+
+
-
+
-
-
-
-
-
-
-
-
-
+
+
-
-
-
-
+
-
-
-
-
- -  
-
+
+
-
-
- -  
- -  
+
+
+
-
-
-
-
+
+
+
+
-
-
- -  
-
KEY: + = Positive; -= Negative; GNB=Gram negative bacilli  
2
75  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
Table 5: Percentage distribution of Shigella isolates  
according to the 3 zones of Odeda local government  
3.7 Resistance pattern of Shigella spp to different  
antibiotics  
Locations  
Number  
n
Number of  
Shigella  
obtained  
Percentage  
%
Table 7 shows the resistance pattern of Shigella spp to  
different antibiotics. Table 8 shows the Multiple Antibiotic  
Resistance (MAR) index of somatic antigenic positive  
Shigella strains in which second isolate has the maximum  
MAR index of 1.0, followed by the fifth, sixth and ninth  
isolates with MAR index of 0.7. The fourth and seventh  
isolates have the lowest MAR index of 0.5.  
Opeji  
Obantoko  
Ilugun  
104  
82  
5
2
50  
20  
62  
3
30  
Table 9 shows the prevalence rate of Shigella isolates  
according to gender distribution. The highest percentage  
prevalence rate was observed among Male pupils (60 %)  
while female pupils had a percentage of 40 %.  
Table 10 shows the prevalence rate of Shigella among the  
pupil according to their educational level. The highest  
percentage prevalence rate was observed among pupils at  
the Primary level (50 %). Plate 2 shows the antibiotic  
resistance pattern of the Shigella isolates on Mueller-  
Hinton agar while Plate 3 reveals α-hemolysis by the  
Shigella isolates on when cultured on Blood agar.  
Total  
248  
10  
100  
Table 6: Percentage occurrence of Shigella serotypes  
among the pupils  
Shigella serotypes  
Shigella boydii  
Shigella dysenteriae  
Shigella boydii  
Shigella sonnei  
Total  
Number  
Percentage  
30.0  
3
0
0.0  
5
50.0  
2
20.0  
10  
100.0  
Table 7: Resistance pattern of Multi-drug resistant Shigella spp to different antibiotics (CLSI, 2014)  
1
2
3
4
5
6
7
8
9
R
R
R
R
R
R
R
R
R
R
S
R
S
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
I
R
R
R
I
S
R
I
R
R
R
R
R
R
R
R
R
R
S
R
S
S
S
S
S
I
R
R
R
R
R
R
S
S
R
S
S
S
S
S
I
S
S
S
S
S
S
S
S
R
R
R
R
R
R
R
R
R
R
R
R
I
R
R
R
R
I
S
S
S
S
1
0
Table 8: MAR Index of Shigella isolates  
Isolate  
Resistance pattern  
MAR Index  
1
2
AUG, NIT, GEN, COT, AMX, TET  
AUG, CRO, NIT,GEN,COT,OFL, AMX, CPX,  
OFL, TET, PFX  
0.6  
1.0  
3
4
5
6
7
8
9
AUG, NIT, GEN, COT, AMX, TET  
AUG, NIT, GEN, AMX, TET  
AUG, CRO, NIT,GEN, COT, AMX, TET  
AUG, CRO, NIT, GEN, COT, AMX, TET  
AUG, CRO, NIT, COT, AMX  
AUG, CRO, NIT, COT, AMX, TET  
AUG, CRO, NIT, GEN, COT, AMX, TET  
AUG, CRO, NIT, COT, AMX, TET  
0.6  
0.5  
0.7  
0.7  
0.5  
0.6  
0.7  
0.6  
1
0
KEY: AUG= AUGMENTIN, CRO= CEFTRIAXONE, NIT= NITROFURANTOIN, GEN= GENTAMYCIN, COT= COTRIMOXAZOLE,  
OFL= OFLOXACIN, AMX= AMOXYCILLIN, CPX= CIPROFLOXACIN, TET= TETRACYCLINE, PFX= PEFLOXACIN,  
MAR=MULTIPLE ANTIBIOTIC RESISTANCE  
2
76  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
Table 9: Prevalence rate of Shigella isolates according to gender distribution  
Somatic antigenic positive Shigella Somatic antigenic negative Shigella  
Gender  
Number  
Percentage  
Number  
115  
Percentage  
48.3  
Male  
Female  
Total  
6
4
60  
40  
123  
51.7  
10  
100  
238  
100  
P>0.05  
Table 10: Prevalence rate of Shigella among the pupil according to their educational level  
Educational level  
Somatic antigenic positive Shigella  
Somatic antigenic negative Shigella  
Number  
Percentage  
Number  
Percentage  
KG  
2
3
20.0  
30.0  
50.0  
100  
53  
8
22.2  
3.4  
Nursery  
Primary  
Total  
5
177  
238  
74.4  
100  
10  
P>0.05  
The isolation of Shigella species in this study indicates  
that the bacterium is one of the etiological agents  
implicated in diarrhoea in the area of study under focus.  
This corroborates studies by Moezardalan et al. [22],  
DeLappe et al. [23] and Fulla et al. [24] who reported and  
presented the growth of Shigella spp from stool samples of  
humans with diarrhoea on culture media; from the 248  
stool samples examined, only ten (4.03 %) were confirmed  
to be positive for Shigella species. Which is lower than 4.5  
%
in Ethiopia as reported by Mengistu et al., [25], similar  
to 4.04 % prevalence rate reported by Opintan et al., [26] in  
Ghana and higher than 2.57 % reported by Gaurav et al.,  
[
27] in India.  
Investigation showed that the Shigella spp occurred at a  
lower degree in children above 10 years of age (1 among  
0 cases) but with a much higher degree of occurrence  
Plate 2: Antibiotic resistance pattern of the Shigella isolates  
1
between ages 5-7 years (4 among 10 cases). Sex  
distribution of infected persons harboring Shigella species  
in their stool samples revealed higher infection level in  
males accounting for 60 % than females having 40 %. This  
could be attributed to the enhanced activities of males that  
increases their environmental exposure than their female  
counterparts and it commensurate with the outcome  
obtained from the work done by Beyene and Tasew, [28]  
where they demonstrated the prevalence of the serious  
intestinal parasite, Shigella and Salmonella species  
amongst children with diarrhoea in Jimma Health Centre,  
Jimma; West Ethiopia, a cross sectional study in which  
male infants were more prone to the Shigella infection than  
their female counterparts.  
Alpha  
Hemolysis  
Investigations has revealed that Shigella dysenteriae  
type 1 is the major cause of an enormous outbreaks of  
dysentery and that children less than 5 years of age are the  
most susceptible [6, 29]. According to this investigation,  
none of the strain of Shigella dysenteriae was isolated; this  
is in line with the study conducted at Jimma and Addis  
Ababa in 2006 [30]. A decreased frequency of occurrence  
Plate 3: α-haemolysis shown by the Shigella isolates on  
Blood agar  
2
77  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
has been reported for this species in earlier studies in  
Nigeria [31, 32]. However earlier report had concluded that  
S. dysenteriae and S. sonnei are the predominant species in  
the tropics whereas S. sonnei is reported to be more  
predominant in the developed countries [33].  
However the prevalence of S. sonnei in this particular  
study carried out was minimal (2 isolates), in contrast with  
some earlier reports [23, 34]. Dutta et al., [35] revealed a  
modification in serotypes and antimicrobial resistance in  
Shigella spp in Kolkata between 1995 and 2000. S. boydii  
was reported to take the place S. dysenteriae and becoming  
the most prevalent serotype, followed by S. sonnei and S.  
flexneri in that position.  
from Awassa (56.0 %) [49]. This alarming increment in the  
resistance from those reports showed the exasperating  
menace of drug resistance by these microbes over time.  
This may be due to inappropriate and unintended use of  
drugs [50, 51]. Iwalokun et al., [32] also presented a high  
degree of resistance of Shigella isolates from diarrheic  
patients in Lagos, Nigeria to amoxicillin. Isenberger et al.,  
[52] had also reported that the resistance of Shigella spp to  
tetracycline was common. In India, investigations  
conducted by Pazhani et al. [53] between 2001 and 2004  
showed all the Shigella isolates to be resistant to  
Tetracycline, a figure of 95 % was cited in the USA [54],  
88 % in Brazil [55], and 80 % in Bangladesh [56].  
Tetracycline and amoxicillin are widely used to treat  
shigellosis, but in this study, 90 % of the Shigella isolates  
were resistance to tetracycline and 100 % to amoxicillin  
and in such cases, Ciprofloxacin and Ofloxacin should  
serve as suitable alternative.  
In contradiction to the outcome obtained in this study,  
high level of resistance to Ciprofloxacin have been  
recorded among Shigella strains in areas where this  
antibiotics is used in concentration [57-62] suggesting that  
Shigella spp in this study area are likely to develop  
resistance to ciprofloxacin since its use is not controlled to  
any significant extent. In other studies, overall resistance to  
Tetracycline, Amoxicillin and Pefloxacin was quite low  
In the present study, there was a recovery of S. boydii  
(3 isolates), an outcome, which is in consonance with  
previous reports in Nigeria where there was minimal  
incidence of the serotypes [16]. The use and administration  
of antibiotics in the treatment of shigellosis is significant  
because there is evidence that antibiotics have the  
capability of bringing about  
a reasonable level of  
improvement in exhibited symptoms and also to reduce the  
course of the illness and by so doing, also reduce  
transmission rate of infection. A high degree of antibiotic  
resistance to Shigella will therefore make it very  
cumbersome to put the infection under control. Previously,  
various antimicrobial agents have shown their effectiveness  
in treating shigellosis, but treatment options available for  
this disease are becoming limited in an alarming way due to  
the continued rise of multidrug-resistant strains of Shigella  
as shown by Replogle et al. [36], Mclver et al. [37], Oh et  
al. [38], Lee et al. [39] and CDC [40].  
[46]. The outcome of the recent study opined  
a
reconsideration of the judicious utilization of some  
frequently antibiotics prescribed for the effective treatment  
of Shigellosis. The speedy management of shigellosis is  
therefore a significant economic and health challenge that  
should be combated due to global emergence of antibiotic  
resistant strains of Shigella [36, 37, and 39]. The high  
susceptibility of Shigella isolates to Ofloxacin and  
Pefloxacin as revealed in this study is a merit for  
practitioners in the management and treatment of  
shigellosis in the study area.  
About 80 % of the isolates were multiple antibiotic  
resistant types, which is in consonance with the detection of  
multiple-resistant Shigella strains in developing world i.e.  
Africa [16], England and Wales [63], Asia [39]. There was  
an alarming widespread occurrence of drug resistance and  
Multiple Antibiotic Resistance indices (0.2 - 0.9) in the  
samples used for this study. MAR indexing is indicated as a  
good tool for risk assessment. It gives an idea of the  
number of bacteria displaying antibiotic resistance and the  
concomitant risk zone in a mundane susceptibility testing  
[64]. High MAR index values have been revealed to be  
indicative of environments with high endemic disease  
potential and risk sources where drugs are frequently used  
[65]. A MAR index value of ≥ 0.2 was reported in the drug  
resistant strains of Shigella used in this study, suggesting it  
to be in consonance with previous studies.  
This investigation showed high susceptible rate of the  
Shigella isolates to Ofloxacin (80 %) and Pefloxacin (80  
%). This conclusion is in consonance with the result of the  
study done by [39] who revealed similar antibiotic  
susceptibility trend in Korea during the last two decades.  
Earlier reports have revealed that drug resistance in  
Shigella spp is an emerging global phenomenal challenge  
especially in developing countries where there is an  
increased level of drugs abuse in animals and humans [41-  
4
3], as shown by the antimicrobial resistance patterns  
acquired in this study, many of the antibiotics which were  
once the backbone of the treatment of shigellosis can no  
longer be depended on to give effective treatment as they  
have been found to be resistant to broad spectrum of  
antimicrobial agents against which they were tested. The  
high degree of resistance to amoxicillin, Nitrofurantoin,  
and Augmentin is suggestive of misuse of these antibiotics.  
A high rate of resistance was also seen in ceftriaxone  
which is not in agreement to a study carried out in Gonder  
[44] where none of the isolates was resistant to ceftriaxone.  
The level of resistance to the most widely used antibiotics,  
tetracycline and amoxicillin was in consonance to studies  
conducted everywhere else in the world [45, 46].  
Gentamicin resistant Shigella isolates were not found in  
previous studies from Addis Ababa [41, 47] in  
contradiction to this study as backed by the study done in  
Gonder [44]. This shows the emergence of gentamicin drug  
resistance Shigella isolates over a period of time. High  
level of resistance was also observed to Co-trimoxazole  
4
Conclusion  
From this study, Shigella spp was isolated from pupils  
in all the age group, gender that was studied from the three  
zones of Odeda L.G.A. Majority of the Shigella isolated  
was reported to show resistance to Augmentin,  
Amoxicillin, Tetracycline, Gentamycin and other  
frequently utilized antibiotics in the three zones of Odeda  
L.G.A.  
(
(
76.5 %), which is in tune with the report from Gonder  
73.4 %), [48] and 84.6 % [44] in contradiction to a study  
2
78  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
9
.
Bangtrakulnonth, A., Vieira, A. R., Lo Fo Wong, D.  
5
Recommendations  
M.,  
Pornreongwong,  
S.,  
Pulsrikarn,  
C.,  
It is of utmost significance to pay quality attention to  
Sawanpanyalert, P., Hendriksen, R. S., and Aarestrup,  
F.M. Shigella from humans in Thailand during 1993 to  
the distinctive use of antibiotics, health education of food  
handlers, maintenance of door fomites in the school, the  
validation of hygienic measures to minimize transmission,  
and the establishment of new efficient and effective drugs  
that can be safely utilized in combating Shigellosis. There  
should also be a Public Enlightenment Programme to create  
an urgent awareness in educating the general masses  
especially residents of rural communities on the adverse  
effects of this disease- causing bacteria.  
2
006: Spatial-time trends in species and serotype  
distribution. Foodborne Pathogen Disease 2008;  
:773784.  
5
1
1
1
0. Advisory Committee on Dangerous Pathogens.  
Infections at work: Controlling the risks. Her Majesty's  
Stationery Office, 2003.  
1. Advisory Committee on Dangerous Pathogens. The  
Approved List of Biological Agents. Health and Safety  
Executive. 2013; pp. 1-32.  
2. Peng J., Yang J., Jin Q. The molecular evolutionary  
history of Shigella spp. and enteroinvasive Escherichia  
coli. Infection, Genetics and Evolution. 2009; 9:147-52.  
3. Singh, K. Laboratory-acquired infections. Clinical  
Infectious Diseases. 2009; 49:142-7.  
4. Baron, E. J., and Miller J. M. Bacterial and fungal  
infections among diagnostic laboratory workers:  
evaluating the risks. 2008; 3(60):241-6.  
Acknowledgement  
I would like to thank Professor D.A Ojo for his support  
and supervision upon whose shoulder I stood to complete  
this research work, also Dr. P.A Akinduti whose critical  
appraisal and constructive comments were of immense  
value and to all the government-owned primary schools  
who volunteer voluntarily to participate in the study; I say  
thank you all.  
1
1
1
5. Akinrotoye Kehinde Peter., Mobolaji Oluwafunmilayo  
Bankole., and Stephen Oluwole Akinola. Occurrence of  
Pathogenic Bacteria on Public Surfaces within  
Community Schools in Abeokuta Environs, Ogun  
State. Journal of Environmental Treatment Techniques.  
2018; 6(3):47-52.  
Declaration  
No conflict of interests is declared for this study  
References  
1
.
UNICEF/WHO, Diarrhoea: Why children are still  
dying and what can be done. A Joint Publication of the  
United Nations Children’s Fund (UNICEF) and the  
World Health Organization (WHO) 2009; pp. 1-40.  
16. Egah, D. Z., Banwat, E. B., Audu, E. S., Allanana, J.  
A., Danung, M. L., Damen, J. G and Badung, B. P.  
“Multiple drug resistant strains of Shigella isolated in  
Jos, central Nigeria”. Nigeria Postgraduate Medical  
Journal. 2003; 10:154- 156.  
17. Farshad, S., Sheikhi, R., Japoni, A. “Characterization  
of Shigella strains in Iran by plasmid profile analysis  
and PCR amplification of Ipa genes”. Journal of  
Clinical Microbiology. 2006; 44 (8):2879-83.  
18. Cheesbrough, M. District Laboratory Practice in  
Tropical Countries: Part one (Second edition).  
Cambridge University Press, U.K. 2006, pp 143-157.  
19. Clinical and Laboratory Standards Institute.  
Performance Standards for Antimicrobial Susceptibility  
2
006;55(9):247-249  
Peter A.K., Umar U.  
Nigeria: the way forward. Journal of Microbiology and  
Experimentation. 2018; 6(4):191‒197. DOI:  
0.15406/jmen.2018.06.00213  
2
3
.
.
Combating diarrhoea  
in  
1
Akinrotoye, K.P. Effects of fermented palm wine on  
some diarrhoeagenic bacteria. Elite Research Journal  
of Biotechnology and Microbiology, 2014; 2 (1): 4 –  
1
4.  
4
5
.
.
Bastos, F.C., and Loureiro, E. C. Antimicrobial  
Resistance of Shigella spp. isolated in the State of Pará,  
Brazil. Rev. Soc. Bras. Med. Trop., 2011; 44: 607610.  
Huang, I. F., Chiu, C. H., Wang, M. H., Wu, C. Y.,  
Hsieh, K. S., and Chiou, C. C. Outbreak of dysentery  
associated with Ceftriaxone-resistant Shigella sonnei:  
First report of Plasmid-Mediated CMY-2- Type Amp C  
ß-Lactamase resistance in S. sonnei. Journal of Clinical  
Microbiology, 2005; 43, 26082612.  
th  
Testing; 16 Information Supplement. Clinical and  
Laboratory Standards Institute, Wayne, PA. 2007.  
20. Clinical and Laboratory Standards Institute.  
Performance standards for antimicrobial susceptibility  
testing: 20th informational supplement M100S20.  
Clinical and Laboratory Standards Institute. 2014.  
21. Akinjogunla, O. J., and Enabulele, I. O. Virulence  
Factors, Plasmid Profiling and Curing analysis of  
Multi-drug Resistant Staphylococcus aureus and  
Coagulase negative Staphylococcus spp. isolated from  
Patients with Acute Otitis Media. Journal of American  
Science. 2010; 6:1022-1033.  
22. Moezardalan, A. K., Zali, M. R., Soltan-Dallal, M. M.,  
Hemami, M. R., and Salmanzadeh-Ahrabi, S.  
Prevalence and pattern of antimicrobial resistance of  
Shigella species among patients with acute diarrhoea in  
Karaj, Tehran, Iran. Journal of Health Population  
Nutrition. 2003; 21: 96102.  
6
7
.
.
Ashkenazi, S. Shigella infections in children: new  
insights. Seminar on Pediatric Infectious Diseases  
2
004; 15: 246252.  
Barman, S., Saha, D. R., Ramamurthy, T., and Koley,  
H. Development of a new Guinea-pig model of  
Shigellosis. FEMS Immunology Medical Mirobiology  
2
011; 62: 304314.  
8
.
Vinh, H., Anh, V. T., Anh, N. D., Campbell, J .I.,  
Hoang, N. P., Nga, T. V., Nhu, N. T., Minh, P. V.,  
Thuy, C. T., Duy, P. T, et al. A multi-center  
randomized trial to assess the efficacy of gatifloxacin  
versus ciprofloxacin for the treatment of shigellosis in  
Vietnamese children. PLoS Neglected Tropical  
Diseases 2011; 5: e1264.  
23. DeLappe, N., O’Halloran, F., Fanning,, S., Corbett-  
Feeney, G., Cheasty, T., Cormican, M. Antimicrobial  
resistance and genetic diversity of Shigella sonnei  
2
79  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
isolates from western Ireland, an area of low incidence  
of infection, Journal of Clinical Microbiology. 2003;  
36. Replogle, M. L., Fleming, D. W and Cieslak, P. R.  
Emergence of antimicrobial-resistant shigellosis in  
Oregon. Clinical Infectious Diseases. 2000; 30: 515–  
519.  
37. McIver, C. J., White, P. A., Jones, L. A., Karagiannis,  
T., Harkness, J and Marriott, D. Epidemic strains of  
Shigella sonnei biotype g carrying integrons. Journal of  
Clinical Microbiology. 2002; 40: 15381540.  
38. Oh, J. Y., Yu, H. S., Kim, S. K., Seol, S. Y., Cho, D. T  
and Lee, J. C. Changes in patterns of antimicrobial  
susceptibility and integron carriage among Shigella  
sonnei isolates from southwestern Korea during  
epidemic periods. Journal of Clinical Microbiology.  
2003; 41: 421423  
4
1: 1919-1924.  
2
2
4. Fullá, N., Prado, V., Duran, C., Lagos, R., Levine,  
M.M. Surveillance for antimicrobial resistance profiles  
among Shigella species isolated from a semirural  
community in the northern administrative area of  
Santiago, Chile. American Journal of Tropical  
Medicine Hygiene. 2005; 72: 851-854  
5. Mengistu, G., Mulugeta, G., Lema, T., and Aseffa, A.  
Prevalence and Antimicrobial Susceptibility Patterns of  
Salmonella serovars and Shigella species. Journal of  
Microbiology, Biochemistry Technology. 2014; S2:  
0
06.  
2
2
6. Opintan, J., Newman, M. J. Distribution of serogroups  
and serotypes of multiple drug resistant Shigella  
isolates. Ghana Medical Journal. 2007; 41: 8-29.  
7. Gaurav, A., Singh, S. P., Gill, J. P. S., Kumar, R., and  
Kumar, D. Isolation and identification of Shigella spp  
from human faecal samples collected from Pantnagar,  
India, Vet world. 2013; 6 (7):376-379.  
39. Lee, J. C., Oh, J. Y., Kim, K. S., Jeong, Y. W., Cho, J.  
W and Park, J. C. Antimicrobial resistance of Shigella  
sonnei in Korea during the last two decades. Acta  
Pathology Microbiology Immunology. Scand. 2001;  
109: 228234.  
40. Centers for Disease Control and Prevention (CDC).  
Antibiotic resistance threats in the United States.  
2
8. Beyene, G., and Tasew, H. Prevalence of Intestinal  
parasite, Shigella and Salmonella species among  
Diarrhoeal children in Jimma health center, Jimma  
southwest Ethiopia: a cross sectional study. Annals of  
Clinical Microbiology Antimicrobial. 2014; 13(10): 1-  
Available  
at  
www.cdc.gov/drugresistance/threat-  
report2013/pdf/ar-threats-2013-508.pdf, 2013.  
41. Reda, A. A., Seyoum, B., Yimam, J., Andualem, G.,  
Fiseha, S., and  
Vandeweerd, J. M. Antibiotic  
Susceptibility of Salmonella and Shigella isolates in  
Harar, Eastern Ethiopia. Journal of Infectious Diseases  
Immunology. 2011; 3(8):134-139.  
7
.
2
3
9. World Health Organization/United Nations Children’s  
Fund. Progress on Drinking Water and Sanitation:  
Special focus on sanitation, UNICEF, New York. 2008.  
0. Beyene, G., Nair, S., Asrat, D., Mengistu, Y., and  
Engers, H, et al. Multidrug resistant Salmonella  
Concord is a major cause of salmonellosis in children  
in Ethiopia. Journal of Infection of Developing  
Countries.2011; 5: 23-33.  
42. Kasper, D. L., Fauci, A. S., Longo, D. L., Braunwald,  
E, Hauser, S. L, and Jameson, .J. L. (Eds). Harrison's  
Principles of Internal Medicine. New York. The  
McGraw-Hill Companies. 2005; pp. 897-906.  
43. Sule, W. F., Adige, A. A., Abubakar, M. O., and  
Ojezele, M. O. Antimicrobial resistance of clinical  
isolate of Salmonella typhi in Ayingba, Kogi State,  
Nigeria. Global Advance Research Journal of  
Microbiology. 2012; 1(4):57-61.  
44. Tiruneh, M. Serodiversity and antimicrobial resistance  
pattern of Shigella isolates at Gondar University  
teaching hospital, Northwest Ethiopia. Japan Journal  
of Infectious Diseases. 2009; 62: 93-97.  
45. Subekti, D., Oyofo, B. A., Tjaniadi, P., Corwin, A.L.,  
Laraset, W., Putri, M., Simanjuntak, C. H., Punjabi, N.  
H., Taslim, J., and Setiawan, B. Shigella spp  
surveillance in Indonesia: the emergence and re-  
emergence of Shigella dysenteriae, Emerging Infectious  
Diseases. 2001; 7: 137-140.  
46. Voogd, C. E., Schot, C. S., Van Leeuwen, W. J and  
Van Klingeren, B. “Monitoring of antibiotic resistance  
in Shigellae isolated in the Netherlands”. Journal of  
Clinical Microbiology of Infectious Diseases. 2002; 11:  
164-165.  
47. Asrat, D. Shigella and Salmonella serogroups and their  
antibiotic susceptibility patterns in Ethiopia. East  
Mediterranean Health Journal. 2008; 14: 760-767.  
48. Yismaw, O, Negeri, C, and Kassu, A. A five-year  
antimicrobial resistance pattern observed in Shigella  
species isolated from stool samples in Gondar  
University Hospital, northwest Ethiopia. Ethiopian  
Journal of Health Development. 2009;  
3
3
1. Niemogha, M. T., Alabi, S. A., Uzoma, K. L.,  
Odugbemi, T. O., Adegbola, R. O., and Coker, A. O.  
(2005). The incidence of Salmonella, Shigella and other  
enteric bacterial pathogens in stool specimens of  
diarrhoea patients, Nigerian Medical Journal 28: 70-74.  
2. Iwalokun, B.A., Gbenle, G.O., Smith S.I., Ogunledun,  
A., Akinside, K.A., and Omonigbehin, E.A.  
Epidemiology of shigellosis in Lagos, Nigeria: trends  
in antimicrobial resistance, Journal of Health  
Population Nutrition. 2001; 19(3):183-190.  
3. Preston, M. A. and, Borczyk A. A. Genetic variability  
and molecular typing of Shigella sonnei strains isolated  
in Canada, Journal of Clinical Microbiology. 2004; 32:  
3
3
1
427-1430.  
4. Panhotra, B. R., Saxena, A. K., and AlMulhim, K.  
Emergence of nalidixic-acid resistance in Shigella  
sonnei isolated from patients having acute diarrhoeal  
disease: report from eastern province of Saudi Arabia,  
Japan. Journal of Infectious Diseases. 2004; 57: 116-  
1
18.  
3
5. Dutta, S., Rajendran, K., Roy, S., Chatterjee, A., Dutta,  
P., Nair, G.B., Bhattacharya, S.K., and Yoshida, S. I.  
Shifting serotypes, plasmid profile analysis and  
antimicrobial resistance pattern of Shigellae strains  
isolated from Kolkata, India during 1995-2000,  
Epidemiology of Infection. 2002; 129: 235-243.  
49. Roma, B, Worku, S, Mariam, S. T, Langeland, N.  
Antimicrobial susceptibility pattern of Shigella isolates  
2
80  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 270-281  
in Awassa. Ethiopian Journal of Health Development.  
multidrug-resistant Shigella dysenteriae type 1 strains  
associated with epidemic and sporadic dysenteries in  
eastern India. Antimicrobial Agents Chemotherapy.  
2004; 48: 681684.  
2
000; 14:149-154.  
5
5
5
0. Vu Nguyen, T, Le Van, P, Le Huy, C, Nguyen Gia, K,  
and Weintraub, A. Etiology and epidemiology of  
diarrhoea in children in Hanoi, Vietnam. International  
Journal of Infectious Diseases. 2006; 10: 298-308.  
1. Ecker, L., Olarte, L., Vilchez, G., Ochoa, T.J.,  
Amemiya, I, et al. Physicians’ responsibility for  
antibiotic use in infants from periurban Lima, Peru. Rev  
Panam Salud Publica. 2011; 30: 574-579.  
2. Isenberger, D. W., Hoge, C. W., Srijan, A., Pitarangsi,  
C., Vithayasai, N., Bodhidatta, L., Hickey, K. W., and  
Cain, P. D. Comparative antibiotic resistance of  
diarrhoeal pathogens from Vietnam and Thailand 1996-  
59. Taneja, N., Mohan, B., Khurana, S. and Sharma, M.  
Antimicrobial resistance in selected bacterial  
enteropathogens in north India. Indian Journal of  
Medical Research. 2004; 120: 3943.  
60. Canada Communicable Disease Report (CCDR).  
Emergence of quinolone-resistant Shigella dysenteriae  
type 1 in Canada. Canadian Communicable Disease  
Report. 2005; 31:193-197.  
61. Enabulele, I. O., Yah, S. C., Yusuf, E. O and Eghafona,  
N. O. Emerging quinolones resistant transfer genes  
among gram-negative bacteria, isolated from faeces of  
HIV/AIDS patients attending some clinics and  
hospitals in the city of Benin, Edo State, Nigeria.  
Online Journal of Health Allied Science. 2006; 5: 1-9.  
62. Von Seidlein, L., Kim, D. R., Ali, M., Lee, H., Wang,  
X., Thiem, V. D., Canh do, G., Chaicumpa, W.,  
Agtini, M. D., Hossain, A., et al. A multicentre study  
of Shigella diarrhoea in six Asian countries: disease  
burden, clinical manifestations, and microbiology.  
PLoS Med.2006; 3, e353.  
63. Cheasty, T., Skinner, J. A., Rowe, B., and Threlfall, E.  
J. “Increasing incidence of antibiotic resistance in  
Shigella from humans in England and Wales:  
Recommendations for therapy”. Microbial Drug  
Resistance. 2008; 4: 57-60.  
1
999, Emerging Infectious Diseases. 2002; 8(2): 1- 4.  
5
5
3. Pazhani, G. P., Ramamurthy, T., Mitra, U.,  
Bhattacharya, S. K and Niyogi, S. K. Species diversity  
and antimicrobial resistance of Shigella spp. isolated  
between 2001 and 2004 from hospitalised children with  
diarrhoea in Kolkata (Calcutta), India. Epidemiology of  
Infection. 2005; 133:1089-1095.  
4. Sivapalasingam, S., Nelson, J. M., Joyce, K., Hoekstra,  
M., Angulo, F. J., and Mintz, E. C. High prevalence of  
antimicrobial resistance among Shigella isolates in the  
United States tested by the National Antimicrobial  
Resistance Monitoring System from 1999 to 2002,  
Antimicrobial Agents Chemotherapy. 2006; 50: 49-54.  
5. Peirano, G., Souza, S. F., and Rodrigues, D. P.,  
Shigella Study Group. Frequency of serovers and  
antimicrobial resistance in Shigella spp. from Brazil.  
Mem Inst Oswaldo Cruz, Rio de Janeiro. 2006; 101:  
5
5
64. Akhter, A., Imran, M., and Akhter, F. Determination of  
multiple antibiotic resistance patterns and indexing  
2
45-250  
among  
metal  
tolerant  
β-lactamase-producing  
6. Rahman, M., Shoma, S., Rashid, H., Siddique, A. K.,  
Nair, G. B and Sack, D. A. Extended-spectrum β-  
lactamase-mediated third generation cephalosporin  
resistance in Shigella isolates in Bangladesh. Journal of  
Antimicrobial Chemotherapy. 2004; 10: 846-847  
7. Bhattacharya, S. K.., Sarkar, K., and Nair G. B.  
Multidrug-resistant Shigella dysenteriae type 1 in south  
Asia. Lancet Infectious Diseases. 2003; 3: 755.  
Escherichia coli. African Journal of Microbiology  
Research. 2014; 8(7):619-627.  
65. Hemen, J. T., Johnson, J. T., Ambo, E. E., Ekam, V. S.,  
Odey, M. O., and Fila, W. A. Multi-antibiotic  
Resistance of some Gram negative bacterial isolates  
from poultry litters of selected farms in Benue State.  
International Journal of Science and Technology. 2012;  
1(8): 543-547.  
5
5
8. Pazhani, G. P., Sarkar, B., Ramamurthy T.,  
Bhattacharya S. K., Takeda Y and Niyogi S. K. Clonal  
2
81