Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 250-259  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Reducing Carbon Emission by two Dispatching  
Rules for Multi-Objective Flexible Job Shops  
Arash Gholamkhasi, Syed Helmi Bin Syed Hassan, Aini Zuhra bt Abdul kadir  
Department of Mechanical Engineering, University Technology Malaysia, Johor Bahru, 81310, Malaysia  
Received: 16/02/2019  
Accepted: 05/06/2019  
Published: 30/09/2019  
Abstract  
Manufacturing direct or indirect is accountable for almost one-third of carbon emission. Carbon eventually has trapped in the  
atmosphere in the shape of Co2; the dangerous gas that causes climate change and threatens human life. On the other hand, albeit  
the significant share of flexible job shops in manufacturing systems; few studies have been executed to overcome the carbon  
emission issue. Thus two fast algorithms called MCT and MCE have been introduced to reduce carbon emission along C-max  
and total machine workload. Then the results have been examined alongside some well-known meta-heuristic algorithms.  
Investigating results have shown a reasonable standard deviation; which proves a proper balance in production lines.  
Furthermore, for most instances, a minimum workload has been reported. Moreover, the completion times were acceptable, as  
well. Then reported data guaranteed the quality of the offered algorithm regarding time and accuracy. Furthermore, implementing  
a random operator or hybridizing these methods with meta-heuristics might enhance the performance.  
Keywords: Environment, Carbon emission, Flexible job shop, Dispatching rules, Multi-objective, Makespan  
1
obvious. Some had clustered carbon emissions declining  
1
Introduction  
approaches in three fields: 1- strategic; as pre-production  
decisions consist of supply chain planning and structural  
layout decisions. 2- Tactical during manufacturing and  
distribution phases; like changing the cutting tools, the turn  
on/off policy, and speed-level of machines. 3-operational;  
that decision makers concentrate on scheduling and  
planning more than anything else. Nonetheless, previous  
studies significantly have been directed on the first two  
perspectives and production focus strategies like scheduling  
have been neglected [1,2,8]. That was the reason Piroozfard  
et al. have described carbon footprint problems as an  
inventory control problem [6]. For instance, a turn on/off  
policy on scheduling model has been initiated by Mouzon  
et al. Albeit their objective was to lessen the energy costs,  
diminishing emitted carbon will be guaranteed [9]. Fang et  
al. offered another tactical strategy regarding the speed-  
level of machining. They have reported the higher speed  
level implies a lower machining time, but the higher energy  
utilization [10]. Lin et al. have used mentioned strategies  
along with a delay policy. To apply this, all operations but  
the last of each job have delayed as much as possible to  
reduce the machine pauses [8].  
Eventually, human has apprehended that protecting the  
environment guarantees a better life for the next generation.  
From1980 to 2010, carbon emission (CE) rate increased by  
7
2% notwithstanding a 3% decline in the emission  
intensity; this outlines a serious greenhouse impact matter  
called the global climate change. Anthropogenic events  
such as coal-fired electricity have increased the carbon  
dioxide (CO  
gas that traps heat and threatens the environment [1]. Some  
have anticipated that the emitted CO resultant from energy  
2
) concentration in the atmosphere; a dangerous  
2
consumption in 2035 possibly increases by 43% higher  
than the 2007 reported data [2]. Some others believe that  
keep pumping emitted carbon to the atmosphere at the  
current rate may increase the global temperature by 1.9 C in  
the year 2100; that means a 3.8m higher level of water in  
the sea [3]. Thus, as a universal matter, any activity leads to  
it needs to be monitored consciously [4]. On the other hand,  
circulated reports have emphasized the manufacturing is  
accountable for 29% of the total emitted CO2 directly. The  
aforementioned incites the manufacturers to consider  
diminishing strategies regarding carbon emission [57].  
Researches indicated on manufacturing regarding  
sustainable manufacturing have existed; however, the lack  
of efficient strategies adopted by literature remained  
The aforementioned besides turn on/off policy eliminate  
most of the wasted energy during the machine pauses.  
Speed and feed rate of machining was the other considered  
policy that they had studied. Jiang et al. also employ a  
speed scaling strategy to minimize total completion time  
Corresponding author: Arash Gholamkhasi, Department  
of Mechanical Engineering, University Technology  
Malaysia, Johor Bahru, 81310, Malaysia.  
(
C-max) and carbon emission (CE) on a distributed  
permutation flow-shop [11]. Furthermore, Chen et al. and  
250  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 250-259  
Lu and Jiang assumed a multi-speed strategy to control  
energy consumption [12,13]. Wu and Sun relatively have  
practiced a multi-speed model with a turn on/off switcher;  
which an excessive number of switching could damage the  
machines [14]. Despite the importance of these contributed  
approaches, some believed strategic and tactical methods  
which concern machine tools, were barely applicable and  
may harm the machine and job; especially for small and  
medium enterprises (SMEs) with no multi-speed machines  
and the exceeding cost of updates [1216].  
The literature on sustainable manufacturing significantly  
has been focused on managing energy. Albeit, reducing  
energy utilization leads to higher beneficial aspects, and  
may satisfy manufacturers economically; involving energy  
expenses, planning, inventory, maintenance, machines life  
cycle, and other associated prices. Still, another crucial  
environmental issue, carbon emission, has been neglected  
entirely [5,8]. Adversely the classics in modern systems,  
the new high-performance machines are multi-task; this  
leads manufacturers to flexibility besides more  
complications regarding energy utilization and carbon  
colony (ABC), Tabu search (TS), Annealing simulation  
(SA), particle swarm optimization (PSO), and etc. [17–  
23,27].  
As mentioned above, meta-heuristics have been applied  
to FJSP to save time while other objectives almost  
neglected. In other words, environment-oriented papers  
mostly have reviewed flow shops, JSP, and other  
manufacturing. Moreover, despite some studies on energy  
consumption, carbon emission rarely has been targeted in  
FJSP [6,14,21,26,28,29]. Zheng and Wang studied project  
scheduling with limited resources using an estimation  
distribution algorithm (EDA) aimed to minimize C-max  
and carbon emission [1]. Moreover, some considered  
carbon emission dealing multi-objective flow-shops  
scheduling problems [10,11,30]. Another research has been  
done by Lin et al. to reduce the carbon footprint in flow-  
shops [8]. They employed three methods named: 1-  
postponing; by reducing the gap between completion of  
th  
operation oi,j and commence ofoi,j+1 in  job, 2-setup  
concerned; by turn on/off the machines on their idle time,  
beside 3-parameter concerned; adjusting tools at proper  
processing parameters. Regarding job shops, Yi et al.  
simultaneously targeted minimizing carbon footprint and  
C-max [15]. Lei and Gao, likewise, executed their novel  
method on a dual-resource constraint job shop [5].  
Furthermore, Seng et al. tried to reduce carbon footprint  
and total completion time on a job shop equipped by multi-  
speed machines using an NSGA-II [31].  
To the best of the author’s knowledge, few papers have  
been concerned emitted carbon as the central objective. The  
most related works in this area were a low-carbon pattern  
that has been studied by Zhang et al. to diminish C-max,  
the total workload and the emitted carbon [2]. and a  
different multi-objective Genetic Algorithm (MOGA)  
suggested by Piroozfard et al. to decrease total work and  
carbon footprint concurrently [6]. They claimed there was  
no low-carbon FJSP regarding job routing and sequencing.  
Following that Yin et al. had investigated the emitted  
carbon from different points of view includes productivity,  
energy consumption, and noise [28]. At the same time, a  
fruit fly optimization algorithm (FOA) has been offered by  
Liu et al. to decrease the makespan and carbon footprint  
considering 1-plant inputs, 2-material inputs, 3-process  
energy inputs and 4-transportation [21].  
emission control. For instance,  
a flexible job shop  
represents the job shop with the advantage of multitasking  
machines [17].  
Recently flexible job shop scheduling problem (FJSP)  
has studied by many researchers due to broadly applicable  
fields. FJSP being NP-hard problem seems obvious since  
traditional job shop scheduling problem (JSP) had  
classified as one. Augmenting flexibility by using more  
than one capable machine modifies the job shop scheduling  
problem (JSP) to a flexible one [6,1719]. Although the  
foremost scheduled FJSP has practiced by Bruker and  
Schlie at 1990; still, researchers keep seeking novel  
approaches to optimize complex FJSPs [20,21].  
The FJSP mainly presents two difficulties. To assign  
every operation to a machine out of a set of fit machines  
and to determine the sequence of indicated operations,  
respectively. The aforementioned has created two  
flexibilities regarding the machine selection and process  
plan [20,2224]. In reality, multiple objectives may cause  
trade-offs. Hence the Single-objective FJSP further  
investigated in the literature; due to some papers [25]. The  
contributed approaches to deal with the multi-objective  
flexible job shop scheduling (MO-FJSP) roughly have been  
categorized to the weighting approach and the Pareto-based  
ones. Turn the problem to a single objective using  
coefficients is what the weighting approach does. On the  
other hand, the Pareto face considers all objectives  
simultaneity and generates a set of optimums [2,26].  
Due to the complexity of FJSP, the exact approaches and  
JSP solvers have been emphasized inapplicable or time-  
consuming. Thus heuristic methods have been applied to  
find the best possible solution close enough to the global  
optimum. Thus heuristic methods have been applied to find  
the best possible solution close enough to the global  
optimum. Thus heuristic methods have been applied to find  
the best possible solution close enough to the global  
optimum. Other than these heuristics, the new generation of  
iterative algorithms, called meta-heuristics, have been  
offered to tackle FJSP cases; includes Genetic algorithm  
Kacem et al. believe the efficiency of an approach  
depends on how intelligently it seeks the solution area; to  
spend the precious time on valuable paths and nothing else  
[
17]. On the other hand, meta-heuristics methods generally  
take a lot of time and energy, especially for big problems  
30,32]. Therefore, in this study, an innovative approach  
[
with the original minimum completion time (MCT) by  
Maheswaran et al. has been investigated. MCT is one of the  
dispatching rules algorithms that discover the nearest  
completion time among the sets of capable machines [32].  
Nevertheless, the second provided method is not time  
concerned and has revised the MCT method to a carbon  
emission based attempting to hit the minimum possible  
emitted carbon in each iteration. Furthermore, to the best of  
the author’s knowledge, this is the first study that has been  
used the carbon emission criteria to select operations per  
iteration; All other methods focused on time while carbon  
(
GA), Ant colony optimization (ACO), Artificial bee  
251  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 250-259  
emission assumed as the second objective. Section 2  
describes the methodology and offered methods. Results  
have given in section 3 following by discussion and  
conclusion in section 4 and 5. Moreover, some potential  
future works have been declared succeeding.  
study, equations 1-3 presents how these objectives have  
fulfilled.  
ꢂꢃ1  
푚푖푛 푍퐶퐸 = 훼 ∗ { ꢂꢃ1  
푃표푤  푙  ∑ 푃표푤_푖푑푙푒 ∗ 푀  
}
ꢅꢆꢇꢈꢂ  
ꢁꢂ  
(ꢉ)  
(2)  
(3)  
푚푖푛 푍퐶−ꢊꢋ푥 = 푀푎ꢌ(푙표푎푑 )  
푚푖푛 푍 ꢇ = ∑ 푙표푎푑ꢂ  
ꢂꢃ1  
2
.2 The procedure of MCT algorithm  
The original MCT algorithm comprises these steps. First,  
process-times have imported from “EXCEL”; using the  
XLSREAD” function. Then, four different instances  
2
Proposed methods  
This paper investigates a multi-objective flexible job  
shop scheduling. The availability of more than one nominee  
machine to process each operation modifies a flexible job  
shop as a more complicated Np-Hard scheduling problem.  
Thus two main sub-problems have been described to be  
tackled regarding time, cost, and resource barriers. The  
operations sequence of each job and the design of allocated  
machines to the operations define those two difficulties.  
Technically, the FJSP represents by  jobs meant to  
process on  machines. Every job includes  sequenced  
operations; independent from other job's. These jobs have  
released at time zero; besides, in particular cases,  
cancelation or the arrival of new orders at an expected or  
random time have affected the scheduling. On the other  
hand, if all machines were able to perform any operations,  
flexibility is total; otherwise, partial. Assuming the  
following limitations may ease simulating carbon emission  
FJSP. 1- Jobs and machines are available from time zero. 2-  
The sequencing between the operations of each job shall  
consider. 3- Machines are independent, and always are  
available with full capacity and power. 4- Each machine  
can only process one operation per time. 5- Operations are  
not authorized to run on more than a device simultaneously.  
including: “4X4”, “8X8”, “10X10”, and “15X10” have  
been extracted from literature [35]. The first number in the  
mentioned instances (nXk) represents the number of jobs  
(
(
n), while the second one refers to the number of machines  
k). Along the process times, power consumption data had  
extracted too the process times, power consumption data is  
extracted too [6]. In step2 some indexes, parameters, and  
variables of a general FJSP were introduced; which have  
listed below:  
Indexes  
i:  
l:  
j:  
operation index (1, 2, . . ., mn)  
Job index (1, 2, . . ., n)  
Machine index (1, 2, . . ., k)  
Parameters  
m:  
Maximum no. of operation of all jobs  
Total number of jobs  
n:  
mn:  
Total number of operation  
6- Pre-emption is not allowed; interruption or pause is  
k:  
Total number of machines  
impossible after an operation initiated on a machine. 7-  
There is no buffer limit. 8- Transportation time and setup  
time have neglected; assumed as part of defined process  
time. 9-Machines are simple; mono-speed with no turn  
on/off switcher at the idle time. 10- The emitted carbon per  
kilowatt power utilization is constant [17,18,22,27].  
d (i,l,j):  
Pow_w (j):  
Pow_idl (j):  
α :  
Process time for op. i of job  on machine j  
Power consumption of machine j at working time  
Power consumption of the thmachin at idle time  
Quantity of emitted carbon per kilowatt hour  
Assumed as a big number  
2.1 Minimum completion time (MCT) algorithm  
BigM :  
One of the simplest methods among scheduling  
Variables  
heuristics is Dispatching rules (DR). Their mechanism is  
like when a machine is free, the DR ranks jobs based on  
their characteristics or system circumstances, to determine  
which job should run succeeding. Fast reacting to dynamics  
is DR's strength; which led them to obtain high-quality  
answers in a much better execution time comparing  
metaheuristic methods. Nonetheless, the proposed DRs  
rarely have studied different scheduling cases [33,34].  
In this paper a minimum completion time (MCT)  
heuristic has performed; a fast greedy method introduced  
by Maheswaran et al. MCT is an immediate mode  
heuristics which works indicating every job to a machine  
aim to achieve the closest completion time. In "immediate"  
models, jobs rapidly allot to machines at the arrival. Job  
selection per iteration is conditional and temporary; it  
means the second priority in this iteration may not  
preceding at the next round [32].  
Start time of job l on the thmachin  
Finish time of job l the thmachin  
st (l,j):  
ct (l,j):  
Availability of the thmachin  
M_avlbl (j):  
M_idle (j):  
load (j):  
Cmax:  
Duration of the idle state for the thmachin  
Total workload on the thmachine  
Total makespan (C-max)  
Carbon_E:  
kdd(i):  
Total emitted carbon footprint of the solution  
Priority index (0,1)  
t(l):  
Completion time of job l  
 Variables of Results  
X (i,1):  
X (i,2):  
X (i,3):  
X (i,4):  
Chromosome place  
Finally, the mathematical model regarding the objectives  
produces the answers. Since minimizing carbon emission  
and C-max along with total workload has targeted in this  
Operation number  
Process time  
Machine number  
252  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 250-259  
X (i,5):  
X (i,6):  
X (i,7):  
Power consumption  
Start time of operation  
Completion time of operation  
The only priority here was the sequencing among  
operations of every single job. Then, through each  
iteration  candidates (kdd) processes. In the first iteration,  
for example, the first operation of any job will be picked.  
Equation 4 declares how a simple m-steps counter in the  
range of [ꢉ 푚푛] can handle difficulty.  
ꢏ푑푑(ꢉ: 푚: 푚푛) = ꢉ;  
(4)  
Following step3 that has explained, in step4 a “SORT”  
function was applied regarding the objective criterion.  
Since only prior operations of each job have “kdd” with  
value 1 and others were 0, and then sorting function sorts  
these  candidates. Here the iterations start using an index 푖  
in the range[ꢉ 푚푛]. At each run or iteration, the result  
variables will produce and save. The result variables will  
produce and save. Next, in step5, the algorithm updates the  
variable, and after 푚푛 iterations the counter stops. Figure 1  
illustrates the update phase of the presented algorithm.  
At first, the algorithm checks if the operation was real or  
dummy. In the case of being dummy (branch1), there will  
be some updates following with another conditional  
statement that asks if this operation was the last of its job. If  
there were some unallocated operation in this job yet  
Figure 1: MCT algorithm updating per iteration  
ꢁ  
(
) = 푃푤  
(
)  ꢒ(, 푗) ꢓ 푠(, 푗);  
(5)  
(6)  
ꢅꢆꢇ  
(
) = ꢐꢑ  
ꢅꢆꢇ  
(
)  ꢕ푤  
ꢅꢆꢇ  
(
)  ꢒ 푐(, 푗) ꢓ 푀 );  
ꢋ푣ꢇ푏ꢇ  
(
(
(
branch4), the priority shifts to the next one; oppositely  
branch3), priority doesn't change, except its process time  
alters to a 퐵푖푔 later to prevent reselection. And left of  
updates applies at the end.  
On the other hand, if the operation was not dummy  
3 Results  
Four instances have extracted from literature and results  
for the proposed algorithms have been revealed; three total  
flexible job shop (4X5, 10X10, and 15X10 respectively)  
and a partial (8X8). Later these results have been compared  
with reported results of some quality methods offered by  
[17,35]. In “Total 4X5” to ease the simulation, one dummy  
operation has been allocated to jobs 1 and 2, while two  
dummies completed job 4.  
(
branch2), the same question regarding the possibility of  
being the last operation will be examined. Updates and  
adjusting퐵푖푔푀, as the processing time, follows the yes  
scenario (branch5). Oppositely, changing candidates, and  
updating the variables before moving to the next possible  
iteration happens.  
Steps3 to 5 repeats for 푚푛 iteration and finally when =  
푚푛, step6 commences. At this step, the results to the  
objective will count.  
2.3 Minimum carbon emission (MCE) algorithm  
The MCE algorithm, on the other hand, almost follows  
the same steps. First importing data, then indexes and  
variables have addressed in the second step; similar to  
section 2-2. Later in step3 and step4, the candidate  
operations have been selected. The only contrast here was  
the criteria; the original method was time oriented while in  
this algorithm, carbon emission was the criterion. Per  
iteration, a compare between candidates declares the best  
operation to assign with the lowest amount of power  
consumption (or carbon emission). Devices at a production  
line are busy, or in the idle mode; with adverse power  
utilization [6][8]. Utilizing a machine alters others to idle  
mode. Hence two equations of power consumption have  
been calculated; operating using of machine j (equation 5)  
along with the idle consumption of others (equation 6).  
Figure 2: Gant chart of result for MCT algorithm (Total emitted  
carbon=278.198, C-max=12)  
Figure 3: Gant chart of result for MCE algorithm (Total emitted  
carbon=266.585, C-max=13)  
253  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 250-259  
In this “Partial 8X8” dummy operation has been applied  
on every job except the second, fifth, and eighth. On the  
other hand, instead of infinite, a constant (BigM=1000) has  
been employed to present the incapability of machines  
regarding the allocation.  
Table 2: Processing times of instance “Partial 8X8”  
Jobs 8X8  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
o1  
o2  
5
3
5
5
3
8
5
3
3
6
1000  
10  
9
9
6
5
10  
1000  
10  
9
2
1
o3  
1000  
1000  
4
Table 1: Processing times of instance “Total 4X5”  
Jobs 4X5  
M1  
2
M2  
5
M3  
4
M4  
1
M5  
2
o4  
o5  
o6  
0
5
0
7
0
3
0
9
2
5
6
0
8
6
6
4
0
1000  
7
0
9
0
1000  
9
o1  
o2  
5
4
5
7
5
1000  
1000  
10  
8
5
10  
1
2
1
o3  
4
5
5
4
5
o7  
10  
8
1000  
9
4
7
o8  
o9  
7
1000  
1000  
o4  
o5  
0
0
0
0
0
2
5
4
7
8
10  
1000  
1
1000  
10  
4
1000  
7
4
6
8
5
9
2
10  
1000  
0
4
o6  
5
6
9
8
5
o10  
6
5
0
6
7
2
1000  
3
2
o11  
6
1000  
0
10  
0
7
0
4
9
7
o7  
4
5
4
54  
0
5
o12  
o13  
o14  
0
0
0
o8  
o9  
0
0
0
0
3
1
5
9
7
8
9
8
6
7
9
12  
4
11  
6
8
10  
3
5
6
o10  
6
1
2
5
4
4
3
o15  
10  
9
5
o11  
2
5
4
2
4
o16  
o17  
o18  
0
3
0
6
0
7
0
8
4
7
6
0
9
9
4
7
0
1000  
8
0
10  
6
0
o12  
o13  
o14  
4
5
2
1
5
1000  
1000  
1000  
6
1
5
2
1
12  
2
10  
1000  
9
7
5
1
2
1
5
4
o19  
1000  
11  
8
2
7
o15  
0
0
0
0
0
o20  
o21  
9
1000  
5
3
o16  
0
0
0
0
0
6
11  
10  
0
7
1000  
5
1
9
4
9
6
9
9
7
1000  
6
10  
4
o22  
6
o23  
9
10  
0
11  
0
1000  
0
10  
0
1000  
0
o24  
o25  
0
0
5
4
2
6
7
1000  
9
10  
10  
1000  
5
o26  
1000  
9
1000  
9
11  
7
o27  
o28  
o29  
1000  
8
0
8
9
0
5
3
0
9
8
0
6
0
4
1000  
0
10  
0
0
2
Figure 4: Gant chart of result for MCT algorithm (Total emitted  
carbon=766.2548, C-max=18)  
1000  
1000  
10  
o30  
7
9
9
4
9
7
1000  
3
8
8
7
9
5
1
1000  
10  
7
1000  
1
8
o31  
6
5
o32  
1000  
8
1000  
In this “Total 10X10”, there was no dummy, nor a  
BigM. Moreover, all machines were capable of being  
assigned to every operation.  
In the "Total 15X10", sixth and seventh jobs were the  
exceptions; which two dummies have been attached to  
preserve the unity of operation numbers.  
Figure 5: Gant chart of result for MCE algorithm (Total emitted  
carbon=752.476, C-max=17)  
254  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 250-259  
Table 3: Processing times of instance “Total 10X10”  
Table 4: Processing times of instance “Total 15X10”  
Jobs 10X10 M1 M2 M3 M4 M5 M6  
M7  
2
M8  
8
M9 M10  
Jobs 15X10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10  
o1  
o2  
1
4
4
1
6
1
9
3
3
4
5
8
9
5
4
o1  
o2  
1
1
2
10  
4
6
8
9
7
5
4
7
6
8
9
11  
6
5
6
6
4
1
0
0
1
2
0
0
2
4
3
1
6
2
20  
9
5
2
6
3
1
2
3
4
9
5
12  
8
4
3
5
3
2
6
3
8
2
5
4
6
4
1
5
4
8
11  
5
3
1
10  
2
3
2
5
6
4
9
4
2
5
1
3
0
0
4
1
0
0
3
5
5
2
3
3
17  
8
8
5
3
2
2
3
6
1
8
8
5
7
2
5
4
2
3
2
25  
5
5
6
5
2
6
3
1
5
7
2
8
6
8
6
3
12  
5
7
2
5
2
6
4
4
3
6
0
0
2
4
0
0
6
6
4
36  
2
2
12  
7
7
6
2
5
3
6
2
45  
5
9
4
9
5
4
5
5
5
4
4
6
6
2
2
11  
9
4
5
9
1
7
9
1
5
4
8
1
4
4
4
6
3
3
3
2
3
8
6
8
9
5
4
2
4
9
7
6
1
1
5
2
5
5
6
3
5
10  
9
4
6
3
3
6
9
5
4
5
2
2
1
7
8
2
5
2
9
7
0
0
6
3
0
0
4
5
49  
3
11  
10  
6
8
3
5
7
8
2
1
4
4
6
75  
2
3
5
8
4
4
5
6
6
3
6
2
2
3
2
4
8
11  
10  
8
9
4
3
4
7
9
8
7
3
1
8
5
5
8
5
2
1
4
7
7
4
3
2
4
1
2
1
2
4
6
4
2
4
5
2
1
2
5
9
5
10  
4
11  
1
2
1
2
3
4
5
o3  
5
o3  
o4  
o5  
3
2
4
2
10  
8
5
4
7
1
5
1
5
9
9
6
8
6
9
4
1
5
10  
8
3
4
1
o4  
15  
1
15  
10  
o5  
10  
14  
3
7
o6  
5
o7  
5
o6  
o7  
o8  
o9  
6
8
9
7
11  
5
2
8
6
8
7
9
1
5
5
4
2
4
3
3
6
9
5
5
4
1
14  
3
9
8
7
3
2
1
2
4
o8  
4
1
o9  
1
2
3
3
1
o10  
o11  
o12  
o13  
o14  
o15  
o16  
o17  
o18  
o19  
o20  
o21  
o22  
o23  
o24  
o25  
o26  
o27  
o28  
o29  
o30  
o31  
o32  
o33  
o34  
o35  
o36  
o37  
o38  
o39  
o40  
o41  
o42  
o43  
o44  
o45  
o46  
o47  
o48  
o49  
o50  
o51  
o52  
o53  
o54  
o55  
o56  
o57  
o58  
o59  
o60  
1
7
6
9
1
2
8
3
o10  
o11  
o12  
5
4
7
10  
2
6
3
4
8
1
9
7
6
5
4
5
1
6
8
7
9
3
1
8
5
6
4
2
3
6
4
5
6
7
36  
3
5
3
12  
6
5
4
o13  
7
`0  
4
5
6
3
5
15  
2
6
7
4
o14  
o15  
5
6
6
1
3
4
9
1
8
10  
2
4
8
3
6
11  
1
13  
7
9
28  
2
7
4
o16  
o17  
o18  
8
7
4
9
3
7
10  
12  
3
8
5
6
4
4
3
2
3
4
7
6
1
8
9
5
3
2
1
10  
15  
11  
5
4
2
6
8
5
4
2
5
0
0
5
5
0
0
2
2
2
5
4
0
0
3
2
0
0
5
3
5
2
5
4
6
0
5
0
0
4
5
0
0
7
5
5
2
1
16  
6
2
1
4
1
2
1
1
5
4
2
21  
5
4
2
2
2
4
5
6
4
4
4
5
5
8
6
0
0
o19  
o20  
1
3
7
8
8
1
3
2
4
3
9
6
4
11  
13  
2
10  
13  
7
3
0
0
0
9
8
5
o21  
5
4
2
1
2
1
8
14  
5
7
5
4
2
o22  
o23  
o24  
o25  
o26  
o27  
5
8
6
3
4
8
7
3
2
9
6
5
11  
10  
13  
1
2
4
3
7
5
3
5
8
2
5
4
8
7
6
9
13  
3
1
3
8
4
5
6
1
2
5
6
7
7
9
3
12  
8
9
5
6
8
4
5
4
7
7
8
9
0
0
0
8
9
0
0
0
1
5
8
4
1
2
8
5
4
1
10  
12  
6
4
11  
5
o28  
o29  
o30  
4
3
9
3
1
2
1
8
4
6
1
2
7
9
3
1
4
5
2
1
2
6
4
4
20  
17  
10  
6
22 44  
12 15  
10  
12  
4
23  
14  
7
1
0
15  
23  
18  
5
5
4
4
9
5
6
6
3
5
6
6
5
6
5
6
7
8
6
4
5
8
4
8
5
3
14  
9
5
56  
8
4
5
5
2
8
2
3
4
3
6
8
5
5
5
6
8
5
2
5
4
5
2
7
4
56  
4
2
5
4
2
5
1
0
1
2
3
4
5
4
5
2
7
4
5
1
4
2
4
10  
3
12  
2
1
1
1
1
1
6
1
25  
2
2
5
4
63  
5
6
5
4
2
2
5
8
6
4
6
6
6
3
6
5
4
8
5
6
Figure 6: Gant chart of result for MCT algorithm (Total emitted  
carbon=465.2415, C-max=9)  
4
85  
4
4
5
2
3
2
5
6
8
5
3
2
5
5
3
2
8
4
7
6
5
4
Figure 7: Gant chart of result for MCE algorithm (Total emitted  
carbon=439.8576, C-max=10)  
255  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 250-259  
Table 6.  
Figure 10: Gant chart of result for [35] (Total emitted  
carbon=278.198, C-max=12)  
Figure 8: Gant chart of result for MCT algorithm (Total emitted  
carbon=932.8696, C-max=14)  
Table 6: Reported emitted carbon for [35]Total 4X5  
time  
energy cons.  
idle work  
idle work  
Machine1  
Machine2  
Machine3  
Machine4  
Machine5  
6
7
7
6
6
7
6
6
7
7
14.46 56.84  
17.99 49.74  
13.65  
16.5  
7.38  
74.4  
49.98  
79.8  
Sum:  
Total energy cons:  
69.98 310.8  
380.74  
results:  
Emitted Carbon:  
289.3624  
Figure 9: Gant chart of result for MCE algorithm (Total emitted  
carbon=940.9864, C-max=17)  
4
-2 Instance “Partial 8X8”  
A partial flexible job shop, with six or more machines  
for every operation, has been studied here. Other than  
second, fifth, and eighth jobs, all others have received a  
dummy. In addition, a big constant has been performed to  
code the incapability of some machines; by forcing the  
algorithm to neglect to assign this machine to the current  
operation.  
4
Discussions  
4
-1 Instance Total 4X5”  
All machines in this total flexible system were capable  
of processing all operations; there were five options for  
each. As it has shown in figures 1 and 2, completion times  
were 12 and 13, respectively. The fifth machine, because of  
its smaller power usage, was completely idle for both  
models. Despite reducing workloads was not the prior  
objective, still has been calculated for both algorithms  
Figures 4 and 5 demonstrated that the seventh machine  
has the lowest workload among all. Completion times were  
18 and 17, and the carbon emissions have been calculated  
as 766.3 and 752.5, respectively. Further, for evaluating the  
carbon emission, the power consumption index has been  
shown in Table7.  
(
MCT: M1=12, M2=6, M3=11, M4=4, M5=0 and MCE:  
M1=10, M2=11, M3=6, M4=6, M5=0).  
Machines idle-time has been calculated by reducing  
machine workloads from C-max (MCT: M1=0, M2=6,  
M3=1, M4=8, M5=12 and MCE: M1=3, M2=2, M3=7,  
M4=7, M5=13). The power consuming indexes (Table 5)  
were extracted from literature and multiplied by 0.76 to  
find the carbon emission per kilowatt [6]; which were 278.2  
and 266.6 respectively.  
Some standard instances have been taken from [35] to  
verify the quality of the solution. They have suggested a  
hybrid Genetic Algorithm to tackle the FJSP. Later their  
results have been compared to the collected answers of  
proposed algorithms.  
Table 7: Power consumption indexes for Partial 8X8”  
8X8  
M1  
7.45  
1.38  
M2  
17.81  
2.61  
M3  
15.5  
1.94  
M4  
12.98  
2.44  
M5  
11.57  
1.12  
M6  
M7  
7.82 11.05  
2.4 2.98  
M8  
work  
idle  
5.7  
2.99  
Despite the proper balance of workloads, the total  
workload of all machines (83) was 10 minutes more than  
both offered algorithms. Predicting more energy  
consumption and carbon emission as well resulted by a  
higher total workload was not that surprising. Then a 55-  
kilowatt idle-consumption plus a 950.8-kilowatt processing  
consumption results in  
a 764.38 carbon emission.  
Table 5: Power consumption indexes for “Total 4X5”  
Comparing MCT and MCE with the presented GA has  
confirmed that MCE produced a better schedule regarding  
emission reduction. As mentioned before, MCT has a time-  
concerned nature while MCE focused on carbon emission;  
and this has justified 766.3 emitted carbon in MCT and  
4
X5  
M1  
8.12  
2.41  
M2  
8.29  
2.57  
M3  
12.4  
1.95  
M4  
7.14  
2.75  
M5  
11.4  
1.23  
work  
idle  
The calculations on data extracted from [35] revealed a  
higher carbon emission comparing both MCT and MCE  
methods (carbon=278.198 and C-max=12); which proves  
the quality of the proposed algorithms. Figure 10 clarified  
the final schedule, and all calculations have displayed in  
7
52.5 for MCE. Table 8 exposes the details of calculating  
carbon emission for "Partial 8X8" using [17].  
256  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 250-259  
Table 8: Reported emitted carbon for [17] “Partial 8X8”  
however, refer to methods investigated by [17].  
Furthermore, the last row, has been addressed a PSO  
algorithm offered by [36].  
time  
energy cons.  
idle  
10  
0
4
5
4
0
2
4
work  
4
14  
10  
9
10  
14  
12  
10  
idle  
13.8  
0
7.76  
12.2  
4.48  
0
4.8  
11.92  
54.96  
work  
29.8  
249.34  
155  
116.82  
115.7  
79.8  
93.84  
110.5  
950.8  
Machine1  
Machine2  
Machine3  
Machine4  
Machine5  
Machine6  
Machine7  
Machine8  
Table 11: Data on Makespan and Maximum Workload  
MAKESPAN  
CRITICAL MWL  
METHODS  
4X5  
8X8  
17  
18  
14  
14  
19  
16  
16  
10X10 15X10 4X5  
8X8  
13  
16  
11  
12  
-
10X10 15X10  
13  
10  
9
17  
14  
11  
12  
-
11  
12  
7
8
8
14  
13  
11  
10  
-
solution1 MCT  
12  
solution2 MCE  
Solution1  
Sum:  
1
3
2
7
5
results:  
total energy cons:  
1005.76  
764.3776  
1
8
8
5
Emitted Carbon:  
Solution2  
A1: ‘Temporal  
Decomposition  
-
16  
7
-
16  
7
4
-3 Instance Total 10X10”  
In the first method, the eighth machine was completely  
-
-
-
-
-
-
A2: ‘Classic’ GA  
A3: Approach by  
Localization  
8
-
-
-
6
-
idle; on the other hand, in the second method, it has been  
processed only one minute. Then, C-max and carbon  
emission were 9 and 465.2 for MCT vs. 10 and 439.9 for  
MCE. Table 8 has presented the detailed data needed to  
find the reported carbon emission for the GA algorithm.  
And Table 9 has elicited the multipliers for power  
consumption.  
A4: ‘AL+CGA’  
A6: ‘PSO+SA’  
16 14/15/16  
11 15/16/14  
7
7
24/23 10  
12  
14/13/13  
10 12/13/2012  
5
6
11/11  
11  
According to Table 11, the reported makespan was  
acceptable in most cases. However, the critical machine  
workload, which did not consider as a primary objective,  
was not promising.  
On the other hand, in Table 12, the results for total  
machine workload have presented; that is crucial regarding  
power consuming. Investigating machine workloads reveals  
that the results were proper and better than most of the  
reviewed meta-heuristics. Furthermore, the standard  
deviation, which refers to line balancing, has been  
calculated for studied methods.  
Table 9: Power consumption indexes for Total 10X10”  
1
0X10 M1  
work 7.45 17.81  
idle 1.38 2.61  
M2  
M3  
15.5  
1.94  
M4  
12.98 11.57  
2.44 1.12  
M5  
M6  
M7  
7.82  
2.4  
M8  
11.05 11.05 11.05  
2.98 2.98 2.98  
M9  
M10  
5.7  
2.99  
4
-4 Instance Total 15X10”  
All machines in this total flexible system have been  
available for all operations. Then C-max has been counted  
and 10 for both models in order. Despite neglecting the  
machine workloads, yet MCT showed balanced  
Table 12: Data on Total Workload and Standard Deviation  
9
TOTAL MWL  
Standard Deviation  
METHODS  
a
4
X5  
8X8  
73  
10X10 15X10 4X5  
8X8  
0.033  
0.044  
0.023  
-
10X10 15X10  
allocation, except the 52nd (the last operation of the 13th  
job) in MCE, has been placed on the second machine  
behind an enormous gap. This extended C-max and idle-  
time, so the emitted carbon increases from 932.9 in MCT to  
3
3
42  
43  
43  
42  
95  
100  
91  
0.131  
0.151  
0.017  
-
0.051 0.0247  
0.05 0.0226  
0.029 0.0217  
solution1 MCT  
solution2 MCE  
Solution1  
33  
33  
73  
78  
9
41.0 in MCE. The reason for this failure could be a wrong  
3
2
75  
93  
-
-
-
-
-
-
Solution2  
selection among two candidates with a similar value of  
selecting criterion. A random selection of the candidate in  
these circumstances may work. Table 10 illustrates the  
power consumption indexes regarding this instance.  
A1: ‘Temporal  
Decomposition  
A2: ‘Classic’  
GA  
A3: Approach  
by Localization  
-
91  
77  
75  
59  
53  
46  
-
-
-
-
-
-
-
-
-
-
-
0.018  
0.015  
-
-
A4: ‘AL+CGA’ 34 83/79/75  
A6: ‘PSO+SA’ 32 75/73/77  
45  
44  
91/95  
91  
-
-
0.038/-/-  
0.101/0.103 0.029 0.0173  
Table 10: Power consumption indexes for Total 15X10  
1
5X10 M1  
work  
idle  
M2  
18  
3
M3  
16  
2
M4  
13  
2
M5  
12  
1
M6  
M7  
M8  
11  
3
M9  
11  
3
M10  
7
6
8
11  
As illustrated in Table12, albeit machine workload and  
line balancing were not the priority of the proposed  
method, still results were in an acceptable range.  
Considering solutions created by proposed algorithms have  
been founded less than a minute, while results of these  
meta-heuristics collected due 100, 1000, or even more  
iterations, significantly assures the quality of MCT and  
MCE algorithms.  
1
3
2
3
The mentioned instances have been investigated  
precisely along with some well-known meta-heuristics.  
Then the results have been compared with the proposed  
algorithms. Tables 11 and 12 had summarized all  
comparisons.  
The stated meta-heuristics had focused on makespan and  
machine workloads. Therefore using available data on idle-  
times and workloads, the emitted carbon of each model, has  
been calculated subsequently. Data mostly has been  
extracted from [35]; then solution 1 and 2 (3rd and 4th raw)  
refers to their recommended solutions. Fifth to eighth rows,  
5
Conclusions and future recommendations  
Two fast algorithms, called MCT and MCE, have been  
proposed, to reduce carbon emission along C-max and total  
machine workload. Results had compared with some well-  
257  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 250-259  
known meta-heuristics. The original MCT was a time  
concern dispatching rules, while MCE is a novel method  
that has contributed to reducing carbon emissions. This  
method was significantly faster than meta-heuristics, while  
results comparing to most of them were better. For  
instance, the total machine workload in the "Partial 8X8"  
instance (72 and 73) was the best among all investigated  
approaches. And the emitted carbon was lower than both  
methods for minimization of energy consumption of  
manufacturing equipment. Int J Prod Res, 2007.45(18–  
19):424771.  
10. Fang K, Uhan N, Zhao F, Sutherland JW, A new  
approach to scheduling in manufacturing for power  
consumption and carbon footprint reduction. J Manuf  
Syst, 2011.30(4):23440.  
11. Jiang E, Wang L, Lu J, Modified Multiobjective  
Evolutionary Algorithm based on Decomposition for  
Intelligence, 2017. 147680  
12. Chen TL, Cheng YC, Chou HY, Multi-objective  
genetic algorithm for energy-efficient hybrid flow shop  
scheduling with lot streaming. Ann Oper Res, 2018. 1–  
24.  
13. Lu YI, Jiang T, Bi-Population Based Discrete Bat  
Algorithm for the Low-Carbon Job Shop Scheduling  
Problem. IEEE Access, 2019. 7(0):14513-22.  
14. Wu X, Sun Y, A green scheduling algorithm for fl  
exible job shop with energy-saving measures. J Clean  
Prod, 2018. 172:324964.  
5. Yi Q, Li C, Tang Y, Wang Q. A new operational  
framework to job shop scheduling for reducing carbon  
emissions. IEEE Int Conf Autom Sci Eng. 2012. 5863.  
6. Zheng X, Wang L, A Collaborative Multiobjective  
Fruit Fly Optimization Algorithm for the Resource  
Constrained Unrelated Parallel Machine Green  
Scheduling Problem. IEEE Trans Syst Man, Cybern  
Syst, 2018.48(5):790800.  
[35], and [17]. Moreover, the calculated standard deviation  
for each instance has proven that machine workloads  
balance were satisfying. Thus, this MCE method strongly  
suggested for carbon emission minimization problems in  
FJSP due to its quick performance and accuracy.  
However, as future work, a random operator in the phase  
of selection can improve the performance of the proposed  
MCE algorithm. Hybridizing these algorithms with a meta-  
heuristic or applying it as an initializer also seems  
promising. On the other hand, dynamic environment is  
another challenging field to examine the efficiency of these  
algorithms.  
References  
1
1
2
3
.
.
.
Zheng H, Wang L, Reduction of carbon emissions and  
project makespan by a Pareto-based estimation of  
distribution  
algorithm.  
Int  
J
Prod  
Econ,  
1
2015.164(0):42132.  
Zhang C, Gu P, Jiang P, Low-carbon scheduling and  
estimating for a flexible job shop based on carbon  
footprint and carbon efficiency of multi-job processing.  
Engineering Manufacture, 2015.229(2):32842.  
Dehkordi AA, Jahangiri A, Talaiekhozani A, Heidari  
A, Pilot-Scale Evaluation of CO 2 Loading Capacity in  
AMP Aqueous Solution beside the Improvers HMDA-  
NH 3 under a Series of Operational Conditions. Journal  
of Environmental Treatment Techniques, 2018.  
1
7. Kacem I, Hammadi S, Borne P, Approach by  
localization  
and  
multiobjective  
evolutionary  
optimization for flexible job-shop scheduling problems.  
IEEE Trans Syst Man Cybern Part C Appl Rev,  
2002.32(1):113.  
1
1
2
8. Member JLI, Pan Q, Xie S, Li H, Jia B, Zhao C, An  
effective hybrid particle swarm optimization algorithm  
for flexible job-shop scheduling problem. Computing,  
6(4):7480.  
4
5
.
.
Mohajan HK, Greenhouse Gas Emissions of China.  
Journal of Environmental Treatment Techniques,  
2009.1(October):813.  
2014.1(4):190202.  
9. Chang HC, Chen YP, Liu TK, Chou JH, Solving the  
Flexible Job Shop Scheduling Problem with Makespan  
Optimization by Using a Hybrid Taguchi-Genetic  
Algorithm. IEEE Access, 2015.3:174054.  
0. Gao KZ, Suganthan PN, Chua TJ, Chong CS, Cai TX,  
Pan QK, A two-stage artificial bee colony algorithm  
scheduling flexible job-shop scheduling problem with  
Lei D, Guo X, An effective neighborhood search for  
scheduling in dual-resource constrained interval job  
shop with environmental objective. Intern J Prod Eco,  
2015.159:296303.  
6
7
8
.
.
.
Piroozfard H, Wong KY, Wong WP, Minimizing total  
carbon footprint and total late work criterion in flexible  
job shop scheduling by using an improved multi-  
objective genetic algorithm. Resour Conserv Recycl,  
new  
job  
insertion.  
Expert  
Syst  
Appl,  
2015.42(June):765263.  
2018.128:26783.  
2
1. Liu Q, Zhan M, Chekem FO, Shao X, Ying B,  
Sutherland JW, A hybrid fruit fly algorithm for solving  
flexible job-shop scheduling to reduce manufacturing  
carbon footprint. J Clean Prod, 2017.168:66878.  
2. Pezzella F, Morganti G, Ciaschetti G, A genetic  
algorithm for the Flexible Job-shop Scheduling  
Problem. Comput Oper Res,2008.35(10):320212.  
3. Brandimarte P, Routing and scheduling in a flexible job  
shop by tabu search. Ann Oper Res, 1993.41(3):157–  
Jin M, Tang R, Ji Y, Liu F, Gao L, Huisingh D, Impact  
of advanced manufacturing on sustainabilityꢀ: An  
overview of the special volume on advanced  
manufacturing for sustainability and low fossil carbon  
emissions. J Clean Prod, 2017.161:6974.  
Lin W, Yu DY, Zhang C, Liu X, Zhang S, Tian Y, Liu  
S, Xie Z, A multi-objective teaching À learning-based  
optimization algorithm to scheduling in turning  
processes for minimizing makespan and carbon  
2
2
2
83.  
footprint.  
015.101:33747.  
Mouzon G, Yildirim MB, Twomey J, Operational  
Journal  
of  
Cleaner  
Production,  
4. Meng L, Zhang C, Shao X, Ren Y. MILP models for  
energy-aware flexible job shop scheduling problem. J  
Clean Prod, 2019.210:71023.  
2
9.  
258  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 250-259  
2
2
2
5. Rahmati SH a., Zandieh M, Yazdani M, Developing  
two multi-objective evolutionary algorithms for the  
multi-objective flexible job shop scheduling problem.  
Int J Adv Manuf Technol, 2012.64(58):91532.  
6. Zhang Y, Wang J, Liu Y, Game theory based real-time  
multi-objective fl exible job shop scheduling  
considering environmental impact.  
017.167:66579.  
J Clean Prod,  
2
7. Li J-Q, Pan Q-K, Suganthan PN, Chua TJ, A Hybrid  
Tabu Search Algorithm With an Efficient  
Neighborhood Structure for the Flexible Job Shop  
Scheduling Problem. Int  
011.52(58):68397.  
8. Yin L, Li X, Gao L, Lu C, Zhang Z, Sustainable  
Computingꢀ: Informatics and Systems novel  
mathematical model and multi-objective method for the  
low-carbon flexible job shop scheduling problem.  
Sustain Comput Informatics Syst, 2017.13:1530.  
9. Min D, Dunbing T, Adriana G, A SM, Multi-objective  
optimization for energy-efficient flexible job shop  
scheduling problem with transportation constraints.  
Robotics and Computer Integrated Manufacturing,  
J Adv Manuf Technol,  
2
2
2
A
2019.59(October 2018):14357.  
3
3
0. Ding J, Song S, Wu C, Carbon-efficient scheduling of  
flow shops by multi-objective optimization. Eur J Oper  
Res,2016.248(3):75871.  
1. Seng DW, Li JW, Fang XJ, Zhang XF, Chen J, Low-  
Carbon flexible job-shop scheduling based on improved  
nindominated sorting genetic algorithm-II. Int j simul  
model, 2018.17:71223.  
3
3
2. Maheswaran M, Ali S, Siegel HJ, Hensgen D,  
Dynamic Mapping of a Class of Independent Tasks.  
Journal of Parallel and Distributed Computing,1999.  
131:10731.  
3. Ðurasević M, Evolving dispatching rules for optimising  
many- objective criteria in the unrelated machines  
environment. Genet Program Evolvable Mach,  
2018.19(1):951.  
3
3
4. Ðurasev M, Jakobović D, A survey of dispatching  
rules for the dynamic unrelated machines environment.  
Expert Syst Appl, 2018.113:55569.  
5. Motaghedi-larijani A, Sabri-l K, Heydari M, Solving  
Flexible Job Shop Scheduling with Multi Objective  
Approach. International Journal of Industrial  
Engineering  
&
Production  
Research,  
2018.21(November): 197209.  
36. Xia W, Wu Z, An effective hybrid optimization  
approach for multi-objective flexible job-shop  
scheduling  
problems.  
Comput  
Ind  
Eng,  
2005.48(2):40925.  
259