Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 295-299  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
SPT Based Soil Liquefaction Susceptibility  
Assessment: A Review  
Sarah Tahsin Noor*, Sherajul Islam, Shaikh Mohammad Shamim Reza  
University of Asia Pacific, Dhaka Bangladesh  
Received: 23/01/2019  
Accepted: 11/06/2019  
Published: 30/09/2019  
Abstract  
Development projects in the low land areas are frequently carried out in Bangladesh after filled lands. Bangladesh lies in the  
seismic active zone. Therefore, during the earthquake, severe shaking or liquefaction of the ground may be experienced in these  
areas due to the presence of thick loose sand bed. When the loose sand is saturated and under moderate to high shear stresses,  
such as beneath a foundation or sloping ground, large shear deformations or even flow failure may take place due to the loss of  
shear strength accompanied by the softening. This paper presents the results of a study carried out to examine the variation of  
different variable parameters in the cyclic stress-based method while evaluating the liquefaction potential. The risk of  
liquefaction in Bangladesh and the issues that are needed to be addressed in evaluation in liquefaction evaluation are also  
discussed. The output of the study will enable the practicing engineer to assess liquefaction susceptibility of the construction site  
from the borehole data.  
Keywords: liquefaction, SPT, cyclic stress ratio, cyclic resistance ratio  
1
ground level) can be eliminated by planning an adequate  
1
Introduction  
number of basement floors. However, the basement walls  
needs to be designed with special consideration to the  
additional lateral pressures, thrusts and also to any changes  
in the effective lateral confinements, that may result from  
liquefaction in the lands adjacent to the site under  
consideration.  
This paper presents the results of a study carried out to  
examine the variation of different variable parameters used  
in the cyclic stress based method, while evaluating the  
liquefaction potential. The risk of liquefaction in  
Bangladesh and the issues that are needed to be addressed  
in evaluation in liquefaction evaluation are also discussed.  
All equations are given in the literature section [2, 3, 4, 5,  
Soil profiles, in seismic active zone, demands  
assessment of liquefaction susceptibility, in terms of  
liquefaction potential (alternately factor of safety against  
liquefaction), prior to the design of foundation for the  
proposed structure. This evaluation is important in  
choosing the type of foundation and in also its design with  
protection against liquefaction during any earthquake  
expected at that location during the life of the structure.  
During liquefaction, different foundation types suffers from  
different problems. If soil layer(s) at depth can liquefy  
during future seismic event, shallow foundation is not  
considered for supporting structures there, as it can sink  
into the liquefied soil and cause tilting the structure. In case  
of pile foundation, liquefaction causes two different  
problems. Most importantly, pile suffers from reduction in  
its capacity due to the development of negative skin friction  
on the pile surface, where positive skin friction was  
previously mobilized. Further, liquefied soil can pose  
lateral force on the pile [1]. Thus, the drag load due to  
negative skin friction needs to be considered during design  
of pile in liquefaction susceptible soil. Instead, by choosing  
raft foundation, sometimes liquefaction susceptible soil  
layers (if at shallow depths within top 15 m below the  
6
, 7].  
2
Evaluation of Liquefaction Susceptibility  
Liquefaction susceptibility of a soil profile can be  
evaluated by different methods based on the energy, the  
cyclic stress and the cyclic strain. The energy-based  
approach is theoretically based on the principle that the  
dissipated energy reflects both cyclic stress and strain  
amplitudes, while the theory of the cyclic strain based  
method is based on the fact that there might exist a  
threshold volumetric strain below, which densification does  
not occur. The time history of the cyclic shear strain is  
estimated from the ground response analysis.  
Corresponding author: Sherajul Islam, University of Asia  
Pacific, Dhaka, Bangladesh. E-mail:  
sherajulbd@gmail.com.  
In cyclic stress based method, both the earthquake  
induced loading (CSR) and the liquefaction resistance  
(CRR) of soil are expressed in terms of cyclic shear stress,  
2
95  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 295-299  
and these two variables are compared in evaluating factor  
of safety (FS) against liquefaction or liquefaction potential.  
In general, soil liquefaction is expected to occur at the  
location, where the stress due to earthquake loading  
exceeds the resistance of the soil to liquefaction. The  
equation of determining FS, basically defined by the ratio  
of CRR to CSR, undergoes subsequent refinements over  
past 30 years [6]. equation 1 gives the present form of FS  
calculation against liquefaction:  
Resistance Ratio (CRR) can also be determined by equation  
3, given by Rauch [7]:  
1
N 1 60  
50  
1
CRR  
M
7.5  
2
34   
N 1 60  
135  
[10 .  
N 1 60  45 ]  
200  
………………. (3)  
Boulanger and Idriss [3] derived equation 4 for  
determining CRR value for cohesionless soil with any fines  
content:  
FS = (CRRM=7.5/CSR) . MSF. K . Kα  
(1)  
σ
Where, CSR= calculated cyclic stress ratio generated  
by the earthquake shaking; CRR = cyclic resistance ratio  
for magnitude 7.5 earthquakes; MSF = magnitude scaling  
factor; Kσ = correction factor for effective overburden  
pressure; and Kα = correction factor sloping ground.  
2
3
4
N 1 60 cs  
N 1 60 cs  
N 1 60 cs  
N 1 60 cs  
CRR  
exp  
   
   
   
2.8  
M
7.5  
1
4 .1  
126  
23 .6  
25 .4  
…………….. (4)  
MSF and Kσ are to adjust CSR generated by any  
earthquake magnitude to a benchmark earthquake of  
moment magnitude (Mw) of 7.5 and to an equivalent σ'v of  
 N 1 60  
N 1 60 cs N 1 60     
1
01kPa, respectively.  
where, Δ(N1)60 is the correction for fines content in percent  
2
.1 Cyclic Stress Ratio (CSR)  
(FC) in the soil and is expressed by equation 5:  
In literature, the intensity and duration of earthquake  
2
shaking, and the density and effective overburden pressure  
of the soil are considered the major influencing factors of  
liquefaction phenomena, as saturated and loose  
cohesionless soil liquefies due to earthquake tremor. CSR  
can be estimated in two ways: the simplified procedure as  
proposed by Seed and Idriss [8], and a detailed ground  
response analysis.  
The simplified procedure (given by equation 2) is often  
used to calculate CSR generated by the earthquake shaking  
in practice [4, 9, 10]:  
9
.7  
15 .7  
(5)  
N 1 60  exp 1 .63   
   
FC  0 .01  
 FC  0 .01   
Standard penetration resistance (N1)60 value is used in  
this study after other corrections on the field measured  
value for overburden pressure, energy ratio, borehole  
diameter, rod length and the presence liner, according to  
equation 6:  
(
N1)60 = N . C . C . C . C . C  
(6)  
= measured standard penetration resistance; C =  
N
m
N
E
B
R
S
avg  
a avg  
g
  
  
CSR =  
 0.65   
rd  
(2)  
where, N  
m
factor to normalize Nm to common reference effective  
overburden pressure (approximately 100 kPa); C =  
E
correction for hammer energy ratio; C = correction factor  
where, τav = average equivalent uniform cyclic shear stress  
caused by the earthquake and is assumed to be 0.65 of the  
B
for borehole diameter; C = correction for rod length and  
R
C = correction for samplers with or without liners.  
S
maximum induced stress; amax  
=
peak horizontal  
acceleration at ground surface generated by the earthquake;  
g = the acceleration of gravity; σv = total vertical  
overburden stresses; σʹv = effective vertical overburden  
stresses; rd = Stress reduction coefficient. The simplified  
procedure was verified with the case history data up to a  
depth of 15 m below the ground level.  
3 Variables in Determining FS against  
Liquefaction  
3.1 Peak ground acceleration (a  
max)  
Ground movement is resulted from dispersion of  
earthquake energy in waves from its hypocenter. Peak  
ground acceleration (PGA) records the maximum rate of  
change of speed of these movements in absence of excess  
pore water pressure of liquefaction generated by the  
earthquake. PGA is generally considered the best  
determinate of damage in severe earthquakes. During  
earthquake, ground acceleration is measured in three  
directions: vertically for up-down shaking, and two  
perpendicular horizontal directions. In the cases where  
recorded motion were available, the larger of the two  
horizontal peak components of acceleration was considered  
as the amax value of in the original derivation of CSR [6].  
This provides a larger estimate of amax but considered  
conservative and allowable. In the cases where recorded  
2
.2 Cyclic Resistance Ratio (CRR)  
In literature, cyclic resistance ratio for moment  
magnitude of 7.5 (CRR =7.5) is formulated as a function  
M
of (N1) for clean sand and also for sand with different  
60  
fines content (non-plastic). While deriving the relationship  
of CRR =7.5 with consideration for fines content, the SPT  
M
blow count of silty sands is converted to equivalent clean  
sand SPT blow count. Different relationships between  
(
CRR =7.5) and (N ) are available in the literature [5, 7,  
M 1 60  
9]. The graphical representation of this relationship, given  
by [9], is widely used for calculating CRRM=7.5. Cyclic  
2
96  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 295-299  
values are not available, peak accelerations are  
recommended for estimation from attenuation relationship.  
This method of determining the value of amax is based on  
the geometric mean of the two orthogonal peak horizontal  
accelerations. As peak vertical accelerations are much  
smaller than amax, this component of acceleration is ignored  
in the calculation of CSR. PGA of 0.5g is considered as  
very high level of ground shaking, as only well-designed  
buildings will survive after such an acceleration (even for a  
short period of time).  
Different complex variable factors, including the length  
of fault, magnitude, the depth of the quake, the distance  
from the epicenter, the duration of the earthquake cycle and  
geology of the ground, are involved in the magnitude of  
ground acceleration (in terms of amax) resulting from a  
given earthquake event. Thus, the value of amax, during  
moderate to large earthquakes, can vary significantly within  
the sites those are a few kilometers apart, depending on the  
geologic features and ground type of the shaked zone. An  
earthquake of moderate magnitude can have the significant  
potential for generating amax larger than that of larger  
magnitudes. Moreover, shallow focused earthquakes  
generate stronger acceleration than deep quakes.  
Furthermore, earthquakes of similar magnitude can  
generate different amax due to variations in ground type.  
functional dependence on an index of the soil properties, in  
addition to the earthquake magnitude. According to their  
specifications, MSF should not exceed 2.2 in the  
calculation of FS against liquefaction.  
4 Factor of Safety  
4
.1 Conclusions  
The soil at depth of the measured SPT blow-count  
(employed in determining CRR) is predicted to liquefy  
when FS ≤ l, and is predicted as non-liquefiable when FS >  
l. The soil could be considered more resistant to  
liquefaction if calculated factor of safety is greater [14].  
However, soil that has a factor of safety slightly greater  
than 1.0 may still liquefy during an earthquake, as FS  
against liquefaction depends on the magnitude of amax. For  
example, if a lower layer liquefies, then the upward flow of  
water could induce liquefaction of the layer that has a  
factor of safety slightly greater than 1. In this study, factor  
of safety is evaluated for three different magnitudes of amax  
(0.1g, 0.2g and 0.3g), three different N-values (15, 25 and  
30), and three fines content (less than 5%, 15% and 35%)  
up to a depth of 23 m below the ground level. The results  
are summarized in Table.  
Table: FS against liquefaction for different amax and SPT N  
values  
3
.2 Stress reduction coefficient (rd)  
Factor of Safety  
(
N )  
amax  
Stress reduction coefficient (r ) accounts for flexibility  
1 60cs  
d
FC=35%  
FC=15%  
FC<5%  
of the soil profile as a function of depth. At a depth, rd  
varies within a range, depending on the variability at field  
sites. The range of rd variation increases with depth, as  
0
.1g  
2 2.5  
1.75  3.2 1.3  1.8  
1
2
3
5
5
0
0.2g  
1 1.25  
0.9 1.6  
<1  
0.66 0.89  
<1  
2.5 2.9  
1.2 1.5  
<1  
3.1 4.2  
1.6 - 2  
1.1 1.4  
0
0
.3g  
.1g  
<1  
≈4  
1.6 - 2  
noted from the r versus depth curves by Seed and Idriss  
d
3.1 4.5  
1.6 - 2  
[8]. These curves provide the maximum and minimum  
0.2g  
values of r considering different soil profiles.  
d
0
0
.3g  
.1g  
1.3 1.6  
1 1.4  
4.4 5.9  
2.2 2.9  
1.5 1.9  
In literature, several linear and polynomial equations  
-
-
-
[11, 12] were suggested for estimating the rd values at  
0.2g  
.3g  
different depths. For routine practice and noncritical  
projects, the equations by Liao and Whitman [12] are  
0
recommended for obtaining average values of r . These  
d
It can be noted that FS is highly dependent on the  
magnitude of amax. During an earthquake causing amax of  
equations [Liao] yield almost the same average value for rd.  
Minimum, maximum and average values of rd are very  
close (such as 0.95, 0.98 and 0.97, respectively for a depth  
of 4 m) at shallow depths, while these values vary widely  
0
.1g, none of (N )  
may not liquefy. The same profile  
1 60cs  
will liquefy by an earthquake causing amax of 0.3g.  
(such as 0.62, 0.92 and 0.75, respectively for a depth of 15  
m).  
5 Liquefaction Risk in Bangladesh  
Two devastating earthquakes that took place in  
April and October of 2015, caused severe damage  
and great loss of lives in Nepal, and in Pakistan and  
Afganistan, respectively. The former earthquake  
event of M 7.9 jolted Bangladesh several times  
through northern India, and left a trail of damage in  
Bangladesh with several buildings developing cracks  
or tilts across the country, including capital Dhaka.  
According to the historical records, Bangladesh was  
affected by earthquakes since ancient times, as the  
country is surrounded by five active tectonic blocks.  
These recent earthquakes are due to strain energy  
accumulation that have been taking place over the  
years. Within the last 150 years, Bangladesh was  
3
.3 Magnitude scaling factor (MSF)  
MSF was first introduced by Seed and Idriss [13] to  
scale CRR value on the plot of CRR(M=7.5) versus (N ) . In  
literature, several equations, as a function of earthquake  
moment magnitude (M ), are available [6]. When M <7.5,  
MSF is greater than 1, and when M < 7.5, MSF is less than  
1
Idriss [13] and the revised equation by (reported in Youd et  
al. [6]). On the other hand, for a given Mw of 5.5, other  
equations give MSFs equal 3 or even greater than 4. It has  
been noted that Seed and Idriss [13] gives the lowest values  
of MSF for the Mw below 7.5, while the revised equation  
by Youd et al. [6] gives the smallest MSF for Mw greater  
than 7.5. Later, Boulanger and Idriss [2] formulated an  
equation of maximum MSF in terms of (N1)60 for including  
1 60  
w
w
w
. For M of 5.5, MSF is found 1.43 and 2.2 from Seed and  
w
2
97  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 295-299  
jolted by some damaging tremors: the Mandalay  
earthquake of 1858 affecting Chittagong division; the  
Srimangal earthquake of 1918 affecting Sylhet; the  
Bihar-Nepal earthquake of 1934 felt from Dinajpur  
and Rangpur; the Assam earthquake in 1950 felt  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission,  
manipulation of figures, competing interests and  
compliance with policies on research ethics. Authors  
adhere to publication requirements that submitted work is  
original and has not been published elsewhere in any  
language.  
throughout  
Bangladesh.  
Instead,  
earthquake,  
considered as the most destructive type of natural  
disasters, are not receiving sufficient attention in  
Bangladesh. New developments that are carried out  
on uncontrolled filling up of wetlands, are highly  
vulnerable to earthquake triggering liquefaction. This  
paper has identified some issues that need to be  
considered by the concerned authority:  
Competing interests  
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
a) Bangladesh should have more seismic  
observatory stations where earthquake moment  
magnitude and ground accelerations would be  
recorded. Seismic records are important to  
obtain the amax value while evaluation  
liquefaction potential. The value of amax is  
found to vary widely from 0.11g to 0.51g due to  
an earthquake tremor of M7.3 M7.6.  
b) In the evaluation of FS against liquefaction,  
magnitude scaling factor (MSF) should be  
considered equal 1. MSF has not yet been  
studied for the soil types usually used for filling  
up the wetlands. MSF is known to be affected  
by several factors, including the earthquake  
source characteristics, distance from the site to  
the source, soil profile characteristics and depth  
of the soil profile.  
Authors’ contribution  
All authors of this study have a complete contribution  
for data collection, data analyses and manuscript writing.  
References  
[
[
1]  
2]  
Noor, S.T., Hanna, A.M. and Mashhour, I. (2013),  
Numerical modeling of piles in collapsible soil  
subjected to inundation, International Journal of  
Geomechanics, 13(5), 514-526.  
Boulanger, R. W., and Idriss, I. M. (2015), Magnitude  
scaling factors in liquefaction triggering procedures,  
Soil Dynamics and Earthquake Engineering,  
10.1016/j.soildyn.2015.01.004.  
Idriss, I. M., and Boulanger, R. W. (2006), Semi-  
empirical procedures for evaluating liquefaction  
potential during earthquakes, Soil Dynamics and  
Earthquake Engineering, 26, 115-130.  
[3]  
[
[
4]  
5]  
Boulanger, R. W. and I. M. Idriss, (2004), State  
normalization of penetration resistances and the effect  
of overburden stress on liquefaction resistance, Proc.,  
c) While filling the low lands, percent fines  
content may be increased by adding lime or fly  
ash in order to reduce liquefaction susceptibility  
or factor of safety against liquefaction.  
1
1th Int. Conf. on Soil Dyn. and Earthquake Engrg.,  
and 3rd Int. Conf. on Earthquake Geot. Engrg, D.  
Doolin et al., eds., Stallion Press, Vol.2, 484-491.  
Cetin, K. O., Seed, R. B., Der Kiureghian, A.,  
Tokimatsu, K.., Harder, L. F., Kayen, R. E., & Moss, R.  
E. S. (2004), Standard penetration test-based  
probabilistic and deterministic assessment of seismic  
6
Conclusion  
Liquefaction susceptibility may only be reduced by  
modifying the properties of the soil, as arrangements of  
recording the magnitudes of amax and Mw can be recorded  
but an earthquake event is absolutely inevitable. The  
seismic records will aid in evaluation of FS with regional  
data and allow to design a soil stabilization technique (by  
using additives) for minimizing the probability of  
liquefaction. The soil condition of (N1)60cs equal 15 is  
quite critical and unsafe during amax greater than 0.2g. On  
the other hand, the soil condition of (N1)60cs equal 25 may  
be improved from liquefaction point of view by increasing  
percent fines during filling. However, the condition of  
soil liquefaction potential,  
Geoenvir Eng, ASCE, 130(12), 1314340.  
J
Geotechnical and  
[6]  
Youd, T. L., Idriss I. M., Andrus R. D., Arango, I.,  
Castro, G., Christian, J. T., Dobry, R., Liam Finn, W.  
D., Harder Jr, L. F., Hynes, M. E., Ishihara, K.,  
Koester, J. P., Liao, S. S. C., Marcuson III W. F.,  
Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M.  
S., Robertson, P. K., Seed, R. B., and Stokoe II, K. H.  
(2001), Liquefaction resistance of soils: summary  
report from the 1996 NCEER and 1998 NCEER/NSF  
workshops on evaluation of liquefaction resistance of  
soils, Journal of Geotechnical and Geoenvironmental  
Engineering, ASCE,127 (10), 817-833.  
(
0
N1)60cs equal 30 is found quite stable even under amax of  
.3g.  
[
7]  
Rauch, A. F.(1997), EPOLLS: An Empirical Method  
for Predicting Surface Displacement Due to  
Acknowledgment  
Authors are very grateful to all the instructors,  
employees and other stuffs of The University of Asia  
Pacific for their cordial help and support.  
Liquefaction-Induced  
Lateral  
Spreading  
in  
Earthquakes,Ph.D.dissertation, Chapter 7,Faculty of the  
Virginia Polytechnic Institute and State University,VA.  
Page-120.  
2
98  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 295-299  
[
[
8]  
9]  
Seed, H. B., and Idriss, I. M. (1971), Simplified  
procedure for evaluating soil liquefaction potential,  
Journal of the Soil Mechanics and Foundations  
Division, ASCE, 97(SM9), 12491273.  
Sherajul Islam received his Master of  
Engineering in Civil Engineering at  
University of Asia Pacific, Dhaka; in  
2
015 Also received his Bachelor of  
Science in Civil Engineering from  
Stamford University Bangladesh;  
Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung,  
R. (1985), Influence of SPT procedures in soil  
liquefaction resistance evaluations, Journal of  
Geotechnical Engineering, ASCE, 111(12), 1425-1445.  
Seed, H. B., Idriss, I. M., and Arango, I. (1983),  
Evaluation of liquefaction potential using field  
performance data, Journal of Geotecchnical  
Engineering Division, ASCE, 109 (3), 458-482.  
Tokimatsu K, Yoshimi Y (1983), Empirical correlation  
of soil liquefaction based on SPT-N value and fines  
content. Soils and Foundation, JSSMFE, 23(4): 56-74.  
Liao, S. S. C., and Whitman, R. V. (1986), Catalogue  
of Liquefaction and Non-Liquefaction Occurrences  
during Earthquakes, Research Report, Department of  
Civil Engineering, Massachusetts Institute of  
Technology, Cambridge, MA, USA.  
Dhaka; in 2012. He has more then 6  
years working experience on Water  
Supply,  
impact  
Sanitation,  
assessment  
environmental  
and Waste  
[
10]  
Management sectors. His research  
interests are in geotecnical engineering,  
environmetal polution control (air and  
noise), solid waste management,  
recycling of waste for sustainable  
development etc.  
[
[
11]  
12]  
Shaikh Mohammad Shamim Reza  
received his Master of Engineering in  
Civil Engineering at University of Asia  
Pacific, Dhaka; in 2018 Also received  
his Bachelor of Science in Civil  
Engineering from Stamford University  
Bangladesh , Dhaka; in 2012. Currently  
he is doing Master of Business  
Administration at Army Isntitute of  
Business Administration, Savar under  
Bangladesh University of Professionals,  
[
[
13]  
14]  
Seed, H. B., and Idriss, I. M. (1982), Ground motions  
and soil liquefaction during earthquakes, Earthquake  
Engineering Research Institute, Oakland, CA, 134  
pages.  
Ishihara, K. (1993). Liquefaction and flow failure  
during earthquakes, Geotechnique, 43 (3), 351-415.  
Dhaka. He has more then  
6 years  
working experience on Water Supply,  
Sanitation and Waste Management  
sectors. His research interests are in  
hazardous/medical waste management,  
municipal waste management, recycling  
of waste for sustainable development  
etc.  
Author Profile  
Dr. Sarah Tahsin Noor completed her  
PhD. in Civil Engineering from  
Concordia University, Montreal, Canada  
in 2011. She completed her Masters in  
Civil Engineering from Concordia  
University in 2005. She received the  
prestigious Alexander Graham Bell  
NSERC Canada Graduate Scholarship in  
her PhD program. She was also awarded  
with the Doctoral Research Scholarship  
from Quebec Government and four  
scholarships from Concordia University.  
Earlier, she completed her bachelor in  
Civil Engineering from BUET, Dhaka in  
2
002. Her present research topic  
includes pile foundation, unsaturated  
soil mechanics, problematic soils  
(including sensitive clay and collapsible  
soil), numerical modeling, etc. Sarah is a  
member of Golden Key International  
Honor Society.  
2
99