Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 364-369  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
The Effects of ZnO Nanoparticles and  
ZnO/Chitosan NCs on Liver Histology and  
Serum Parameters in Rats  
Hajinezhad MR  
Associate Professor of physiology, Basic Science Department, Faculty of Veterinary Medicine, University of Zabol, Zabol,  
Iran.  
Received: 20/06/2019  
Accepted: 02/08/2019  
Published: 01/12/2019  
Abstract  
There are conflicting and confusing reports about prooxidant/ activities of Zinc oxide nanoparticles and Zinc oxide NCs.  
This study aimed to resolve these discrepanciesby examiningthe effects of these compounds on liver histopathology in healthy  
rats. Materials and Methods: 42 adult male Wistar rats were divided into 7 groups. Rats in the treatment group received  
intraperitoneal injections of ZnO nanoparticles 10, 20 and 40 mmol/ml) and ZnO nanocomposites (NCs) (10, 20 and 40  
mmol/ml) for 28 days. Control rats received distilled water. At the end of the study, the following parameters were assessed:  
serum liver enzymes (ALT and AST), the activity of serum catalase (CAT) and superoxide dismutase (SOD), serum BUN and  
serum creatinine and liver histology. Intraperitoneal injection of ZnO nanoparticles at a concentration of 10 mmol/ml/day had  
no significant effect on serum liver enzymes but at 20 and 40 mmol/ml/day significantly decreased serum catalase and SOD  
activity compared with the control group (P<0.05). ZnO NCs at the concentrations of 20 and 40mmol/ml/day decreased serum  
catalase activity and SOD activities and significantly elevates serum liver enzymes. Furthermore, both ZnO nanoparticles and  
ZnO NCs had no significant effect on serumBUN and creatininelevels. Both nanoparticlesinduced severe histological changes  
at the two higher doses (20 and 40 mmol/ml). The results suggest that proper concentrations of ZnO nanoparticles and ZnO  
NCs have no toxic effects on the liver while the higher doses can induce severe histological changes.  
Keywords: ZnO nanoparticles, ZnO NCs, serum biochemical parameters, Rat  
1
unique optical, chemical, mechanical and electrical  
1
Introduction  
properties, have attracted scientific attention (26). Based  
on previous reports, ZnO NPs can increase or decrease  
reactive oxygen species (ROS) generation and  
subsequentlyoxidative stress in different parts of the body  
Zinc is an essential component of many cytoplasmic  
enzymes that participates in the metabolism of  
carbohydrates, cytoplasmic proteins, lipids, and nucleic  
acids. This element induces many biological,  
physiological, and behavioral effects (1). Zinc is a  
necessary element for the growth of the body and zinc  
deficiency is associated with impaired immune function,  
irritability and stunting of growth. Specific age groups  
includinginfants, children, and adults are more susceptible  
to Zinc deficiency (2). Zinc is stable in the environment  
but is seldom abundant in food chains. Natural sources of  
zinc include meats, fruits, legume, and seeds. Major  
anthropogenic sources of zinc in the world are usually  
arising from municipal, industrial and agricultural  
activities (3). The brain, hematopoietic, hepatic and renal  
systems are the most important organs affected by Zinc  
deficiency (4). Nowadays there is an increasing trend  
toward the use of Zn in nanotechnology in the form of Zinc  
nanoparticles. Nanotechnology is a field of science which  
is about the preparation of nanoscale materials (5-7).  
Nanoparticles exhibit new and improved characteristics  
such as morphology and size distribution respectinglarger  
particles from which they are made (8-25). Zinc  
nanoparticles are widely used in agriculture, cosmetic  
industry and medicine. ZnO nanoparticles, due to their  
(
27). Reactive oxygen species are short-lived organic  
compounds with uneven number of electrons that stabilize  
themselves by oxidizing biological molecules (28).  
Normally, the reactive oxygen-containing molecules and  
other free radicals can be quickly removed by natural  
defense mechanisms such as Glutathione peroxidase,  
superoxidedismutase,and catalase (29). Nanochamposites  
are usually synthesized by using ionic gelation of  
pentasodium tripolyphosphate and chitosan. Applications  
of these compounds have also become more widespread  
regarding their chemical properties (30). Adding chitosan  
to Zinc structureaffects itsbiological and physicochemical  
properties (31) So in the present study, we decided to  
examine whether adding chitosan to zinc can decrease or  
increase the and pro-oxidant activities of Zinc.  
2 Material and Methods  
2.1 Animals  
Wistar rats (201- 234 g) obtained from Laboratory  
Animal Center University of Zabol were used in the  
current study. Animals were maintained in well-ventilated  
Corresponding author: Hajinezhad MR. Associate Professor of physiology, Basic Science Department, Faculty of Veterinary  
Medicine, University of Zabol, Zabol, Iran.  
364  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 364-369  
rooms at a constant temperature of 20–23 ◦C and 12 (h)  
light/dark cycles with free to standard rodent food  
embedding and block making of tissue samples, serial  
sections were prepared by using the hematoxylin-eosin  
method and were examined under a light microscope  
(Olympus, Tokyo, Japan).  
(
Javaneh-Khorasan, Iran) and tap water. they were handled  
in accordance with the Animal Ethics Committee of the  
University of Zabol, Zabol- Iran, and Guide for the Care  
and Use of Laboratory Animals (National Institutes of  
Health (NIH) publication 8623; revised 1985. 42 adult  
male Wistar rats were divided into 8 groups (7 rats in each  
group: one control group and six treatment group. Rats in  
treatmentgroup received intraperitonealinjections of ZnO  
nanoparticles (10, 20 and 40 mmol/ml/day) and ZnO NCs  
2.2 Statistical analysis  
The collected data were analyzed with SPSS software  
(version 20.0) expressed as mean ± SD. All Multiple  
comparisons were performed by using one-way analysis of  
variance (ANOVA) followed by posthoc Tukey's test.  
Statistical significance was set at P< 0.05.  
(
10, 20 and 40 mmol/ml/day) for 28 days. Control rats  
3
Results  
received 1 ml of distilled water intraperitoneally for 28  
days. At the end of our study, blood samples were  
collected via retro-orbital puncture and centrifuged (3000  
rpm for 10 minutes) for serum separation. The serum  
samples were immediately frozen at −80◦ C. Following  
blood collection, rats were sacrificed by cervical  
dislocation and whole-brain tissues were isolated. The  
fresh braintissueswere immediatelywashed with 0.9%Na  
Cl and stored at −20°C for further determination of lipid  
peroxidation in MDA form.  
Intraperitonealinjectionof ZnO NPs at a concentration  
of 10 mmol/ml had no significant effect on serum  
biochemical parameters (P> 0.05). Also, liver histology  
was not affected by this dose (fig.2). However, ZnO NPs  
at 20 and 40 mmol/ml significantly decreased serum  
catalase and superoxide dismutase activity compared with  
the control group (P< 0.05) (fig.1). As seen in fig.2, serum  
liver enzymes ALT and AST were increased by ZnO NPs  
administration (P>0.05). Furthermore, intraperitoneal  
injection of two low concentrations of ZnO NPs did not  
affect serum creatinine and BUN fig.3. As seen in fig 3,  
ZnO NPs intraperitonealinjection at a concentration of 40  
mmol/ml caused a non-significant difference in kidney  
function tests (BUN and serum creatinine) fig.3 (P>0.05).  
ZnO NCs at a concentration of 40 mmol/ml decreased  
serum catalaseand SOD activity (P< 0.05). Intraperitoneal  
injection of ZnO NCs also increased serum liver enzymes  
3
.1 Serum biochemical parameters  
Analyses of serum ALT, AST and ALP levels were  
performed by using the Selectra pro, M auto analyzer,  
(
Vital Scientific, SpanNeren, Netherlands) with Pars  
Azmoon reagents kit (Pars Azmoon. Co., Tehran, Iran).  
Serum creatinine and BUN were measured using  
commercial kits (Pars Azmoon Lab, Iran), according to  
manufacturer’s instructions. Serum antioxidant enzymes  
were measured usingcommerciall kits (ZellBio Germany)  
and according to the company instructions.  
(
fig 2), while serum BUN and creatinine levels were not  
affected by ZnO NCs administration fig.3. As expected,  
ZnO nanoparticles and ZnO NCs had no significant effect  
on serum BUN and creatinine fig.5. Liver histological  
investigation of rats received a low dose of ZnO NCs  
showed normal architecture. However, the rats received  
the 20 mmol/ml and 40 mmol/ml of NCs showed signs of  
necrosis and hemorrhage (fig.5).  
3
.2 Histopathological examination  
After animals were euthanized by diethyl ether, liver  
specimens were separated and washed in water. The liver  
specimens were then sliced and preservedin a 10% neutral  
buffered formalin solution (NBF). After paraffin  
Fig. 1: Serum CAT and SOD activities in rats treated with ZnO NPs (X ±SD, n=10). *P < 0.05, compared to control group.  
365  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 364-369  
Fig. 2: Serum ALT and AST activities in rats treated with ZnO NPs (X ±SD, n=10). *P < 0.05 compared to control group  
Fig. 3: Serum BUN and creatinine levels in rats treated with ZnO NPs (X ±SD, n=10). *P < 0.05compared to control group.  
366  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 364-369  
Fig. 4: Liver histology in control rats (a): Normal liver architecture with intact hepatocytes and sinusoids, rats received ZnO nanoparticles 10  
mmol (b): normal hepatocytes, rats received ZnO nanoparticles 20 mmol (c): necrosis (arrow), rats received ZnO nanoparticles 30 mmol (d):  
necrosis (arrow) and fatty changes. . H&E staining (× 40)  
Fig. 5: Liver histology in control rats (a): healthy hepatocytes and well-arranged sinusoids, rats received ZnO nanoparticles 10 mmol (b):  
normal liver histological pattern, rats received ZnO nanoparticles 20 mmol (c): necrosis (arrow), rats received ZnO nanoparticles 30 mmol (d):  
necrosis (arrow) and bleeding. . H&E staining (× 40).  
catalase and superoxide dismutase activity is an indicator  
4
Discussion  
of pro-oxidant activities of ZnO nanoparticles (36).  
Superoxide radical anion , peroxyl radicals which are the  
major reactive oxygen species generated duringoxidative  
stress, may induce liver fibrosis and fatty changes by  
activating type I procollagen synthesis enzyme. This  
process may led to the generation of lipid peroxidation  
end-products. Our eukaryotic cells have a broad types  
of oxidative defense mechanisms, like enzymatic  
molecules such as CAT, SOD, glutathione peroxidase and  
molecular scavengers such as vitamin A, reduced  
The effects of ZnO NPs on serum oxidative stress  
biomarkers have not been fully elaborated yet. Some  
studies had reported the properties of ZnO nanoparticles  
(
32) while other studies indicated oxidative damage  
caused by ZnO nanoparticles (33). As seen in this study,  
administration of ZnO nanoparticles decreased serum  
enzyme activities. These results were in line with previous  
studies about the biological effects of ZnO nanoparticles  
(
34, 35) It can be concluded that the decreases in serum  
367  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 364-369  
glutathione (GSH), ascorbic acid, vitamin E (alpha  
6. Alaee S, Ilani M. Effect of titanium dioxide nanoparticles on  
male and female reproductive systems. Journal of Advanced  
Medical Sciences and Applied Technologies. 2017;3(1):3-8.  
tocopherol)  
and  
N-acetyl-5-  
methoxytryptamine (melatonin) (37). In this investigation,  
decrease in the activities of SOD and CAT might be due  
to increased generation of reactive oxygen species or  
increased availability of NADPH that is required to  
maintain oxidative defenses mechanisms. These results  
suggest that the ZnO nanoparticles have free radical  
producing effect and can reduce the activity of the  
7
.
Ravanshad R, Karimi Zadeh A, Amani AM, Mousavi SM,  
Hashemi SA, Savar Dashtaki A, et al. Application of  
nanoparticles in cancer detection by Raman scattering based  
techniques.  
Nano  
reviews  
&
experiments.  
2018;9(1):1373551.  
8. Amani A. Synthesis and biological activity of piperazine  
derivatives of phenothiazine. Drug Res. 2015;65(01):5-8.  
9
.
Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A, Amani  
AM, Taghizadeh S. Green synthesis of iron oxide  
nanoparticles by aqueous leaf extract of Daphne mezereum  
endogenous enzymes. In this study,  
a
significant  
increase in serum AST and ALT levels was observed in  
rats treated with ZnO nanoparticles. These results were in  
line with other studies indicating hepatic damage caused  
by ZnO nanoparticles or with studies indicating  
hepatoprotective potential of these nanoparticles (38, 39).  
As previously noted, damage to liver tissues releases the  
AST, ALP and ALT into the serum, and, hence, elevation  
of serum activities of these enzymes is considered a  
valuable marker of liver damage (40). Serum creatinine  
and blood urea nitrogen are used as indicators of  
glomerular filtration rate and renal function (41). ZnO  
nanoparticles or ZnO nanochitosans had no significant  
effect on serum kidney function markers. These findings  
were in contrast with previous studies that reported  
significant increase in serum kidney markers following  
treatment with ZnO nanoparticles (8-23, 42). This result  
might be due to the low doses of ZnO nanoparticles or  
ZnO nanochitosans used in this study. This observation led  
us to conclude thatlow concentrations of thesecompounds  
have potential without any toxicity in vivo.  
as a novel dye removing material. Appl Phys A.  
018;124(5):363.  
2
1
1
0. Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Sina S,  
Amani AM. Lead oxide-decorated graphene oxide/epoxy  
composite towards X-Ray radiation shielding. Radiation  
Physics and Chemistry. 2018;146:77-85.  
1. Kouhbanani MAJ, Beheshtkhoo N, Amani AM, Taghizadeh  
S, Beigi V, Bazmandeh AZ, et al. Green synthesis of iron  
oxide nanoparticles using Artemisia vulgaris leaf extract and  
their application as a heterogeneous Fenton-like catalyst for  
the degradation of methyl orange. Materials Research  
Express. 2018;5(11):115013.  
12. Kouhbanani MAJ, Beheshtkhoo N, Fotoohiardakani G,  
Hosseini-Nave H, Taghizadeh S, Amani AM. Green  
Synthesis and Characterization of Spherical Structure Silver  
Nanoparticles Using Wheatgrass Extract. Journal of  
Environmental Treatment Techniques. 2019;7(1):142-9.  
1
3. Kouhbanani MAJ, Beheshtkhoo N, Taghizadeh S, Amani  
AM, Alimardani V. One-step green synthesis and  
characterization of iron oxide nanoparticles using aqueous  
leaf extract of Teucrium polium and their catalytic  
application in dye degradation. Advances in Natural  
Sciences:  
Nanoscience  
and  
Nanotechnology.  
5
Conclusion  
2
019;10(1):015007.  
Our results indicate that ZnO nanoparticles have  
1
4. Lohrasbi S, Kouhbanani MAJ, Beheshtkhoo N, Ghasemi Y,  
Amani AM, Taghizadeh S. Green Synthesis of Iron  
Nanoparticles Using Plantago major Leaf Extract and Their  
Application as a Catalyst for the Decolorization of Azo Dye.  
BioNanoScience. 2019;9(2):317-22.  
similar effects compared to ZnO NCs. Further studies are  
required to elucidate the effects of these compounds in  
laboratory animals.  
1
1
1
5. Mahdavinia GH, Rostamizadeh S, Amani AM, Sepehrian H.  
Fast and efficient method for the synthesis of 2-  
arylbenzimidazoles using MCM-41-SO3H. Heterocycl  
Commun. 2012;18(1):33-7.  
6. Mousavi SM, Hashemi SA, Arjmand M, Amani AM, Sharif  
F, Jahandideh S. Octadecyl amine functionalized Graphene  
oxide towards hydrophobic chemical resistant epoxy  
Nanocomposites. ChemistrySelect. 2018;3(25):7200-7.  
7. Rostamizadeh S, Amani AM, Aryan R, Ghaieni HR, Norouzi  
L. Very fast and efficient synthesis of some novel substituted  
Acknowledgment  
This study was based on the grant on University of  
Zabol Grant number: 9618-15. We are grateful to  
University of Zabol for financial support.  
Conflicts of interest  
There are no conflicts of interest.  
References  
2
-arylbenzimidazoles in water using ZrOCl 2· nH 2 O on  
1
.
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The  
physiological, biochemical, and molecular roles of zinc  
transporters in zinc homeostasis and metabolism.  
Physiological reviews. 2015;95(3):749-84.  
montmorillonite K10 as catalyst. Monatshefte für Chemie-  
Chemical Monthly. 2009;140(5):547-52.  
1
8. Rostamizadeh S, Amani AM, Mahdavinia GH, Shadjou N.  
Silica supported ammonium dihydrogen phosphate  
2
3
.
.
Prasad AS. Discovery of human zinc deficiency: its impact  
on human health and disease. Advances in nutrition.  
(NH4H2PO4/SiO2): A mild, reusable and highly efficient  
heterogeneous catalyst for the synthesis of 14-aryl-14-H-  
dibenzo [a, j] xanthenes. Chinese Chemical Letters.  
2
013;4(2):176-90.  
Jung SK, Kim M-K, Lee Y-H, Shin DH, Shin M-H, Chun B-  
Y, et al. Lower zinc bioavailability may be related to higher  
risk of subclinical atherosclerosis in Korean adults. PLoS  
One. 2013;8(11):e80115.  
2
009;20(7):779-83.  
1
2
9. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. Aqueous  
NaHSO 4 catalyzed regioselective and versatile synthesis of  
2
-thiazolamines.  
Monatshefte  
für Chemie/Chemical  
4
5
.
.
Doboszewska U, Szewczyk B, Sowa-Kućma M, Noworyta-  
Sokołowska K, Misztak P, Gołębiowska J, et al. Alterations  
of bio-elements, oxidative, and inflammatory status in the  
zinc deficiency model in rats. Neurotoxicity research.  
Monthly. 2008;139(10):1241-5.  
0. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. An  
efficient onepot procedure for the preparation of 1, 3, 4‐  
thiadiazoles in ionic liquid [bmim] BF4 as dual solvent and  
catalyst. Heteroatom Chemistry: An International Journal of  
Main Group Elements. 2008;19(3):320-4.  
1. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. Solvent‐  
free chemoselective synthesis of some novel substituted 2‐  
arylbenzimidazoles using amino acidbased prolinium nitrate  
ionic liquid as catalyst. Journal of Heterocyclic Chemistry.  
2
016;29(1):143-54.  
Salari Z, Ameri A, Forootanfar H, Adeli-Sardou M, Jafari M,  
Mehrabani M, et al. Microwave-assisted biosynthesis of zinc  
nanoparticles and their cytotoxic and antioxidant activity.  
Journal of Trace Elements in Medicine and Biology.  
2
2
017;39:116-23.  
2
009;46(1):74-8.  
368  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 364-369  
2
2. Rostamizadeh S, Aryan R, Reza Ghaieni H, Mohammad  
Amani A. Efficient synthesis of 1, 3, 4thiadiazoles using  
hydrogen bond donor (thio) urea derivatives as  
organocatalysts. J Heterocycl Chem. 2010;47(3):616-23.  
3. Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, Beigi V,  
Mousavi SM, Hashemi SAR, et al. Polyethylenimine-based  
nanocarriers in co-delivery of drug and gene: a developing  
horizon. Nano reviews & experiments. 2018;9(1):1488497.  
4. Mohammad Amin Jadidi Kouhbanani † a NBa, Pourya  
32. Muthukumar H, Pichiah S, Leong KH, Devi SA, Manickam  
M. Facile biosynthesis of ZnO and iron doped ZnO nano-  
catalyst: physicochemical traits and multifunctional  
applications. Journal of Bionanoscience. 2017;11(2):114-22.  
33. Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, et  
al. Zinc oxide nanoparticles exhibit cytotoxicity and  
genotoxicity through oxidative stress responses in human  
lung fibroblasts and Drosophila melanogaster. International  
journal of nanomedicine. 2017;12:1621.  
2
2
Nasirmoghadas  
b
,
Samira Yazdanpanah  
c
,
Kamiar  
34. Das D, Nath BC, Phukon P, Dolui SK. Synthesis of ZnO  
nanoparticles and evaluation of antioxidant and cytotoxic  
activity. Colloids and Surfaces B: Biointerfaces.  
2013;111:556-60.  
35. Nagajyothi P, Sreekanth T, Tettey CO, Jun YI, Mook SH.  
Characterization, antibacterial, antioxidant, and cytotoxic  
activities of ZnO nanoparticles using Coptidis Rhizoma.  
Bioorganic & medicinal chemistry letters. 2014;24(17):4298-  
303.  
36. Shoae-Hagh P, Rahimifard M, Navaei-Nigjeh M, Baeeri M,  
Gholami M, Mohammadirad A, et al. Zinc oxide  
nanoparticles reduce apoptosis and oxidative stress values in  
isolated rat pancreatic islets. Biological trace element  
research. 2014;162(1-3):262-9.  
37. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani  
A. Biomarkers of oxidative damage in human disease.  
Clinical chemistry. 2006;52(4):601-23.  
38. Pandurangan M, Kim DH. ZnO nanoparticles augment ALT,  
AST, ALP and LDH expressions in C2C12 cells. Saudi  
journal of biological sciences. 2015;22(6):679-84.  
39. Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J, et al. Zinc  
oxide nanoparticles cause nephrotoxicity and kidney  
metabolism alterations in rats. Journal of Environmental  
Science and Health, Part A. 2012;47(4):577-88.  
40. Weemhoff JL, Woolbright BL, Jenkins RE, McGill MR,  
Sharpe MR, Olson JC, et al. Plasma biomarkers to study  
mechanisms of liver injury in patients with hypoxic hepatitis.  
Liver International. 2017;37(3):377-84.  
Zomorodianc, Saeed Taghizadeh d, Ali Mohammad Amani.  
Green Synthesis of Spherical Silver Nanoparticles Using  
Ducrosia Anethifolia Aqueous Extract and Its Antibacterial  
Activity. Journal of Environmental Treatment Techniques  
(JETT). 2019,;7(3):461-6.  
2
5. Mousavi SM, Hashemi SA, Amani AM, Saed H, Jahandideh  
S, Mojoudi F. Polyethylene terephthalate/acryl butadiene  
styrene copolymer incorporated with oak shell, potassium  
sorbate and egg shell nanoparticles for food packaging  
applications: control of bacteria growth, physical and  
mechanical properties. Polymers from Renewable Resources.  
2
017;8(4):177-96.  
2
2
6. 6Kim SW, Nguyen TK, Van Thuan D, Dang DK, Hur SH,  
Kim EJ, et al. Polyol-mediated synthesis of ZnO  
nanoparticle-assembled hollow spheres/nanorods and their  
photoanode performances. Korean Journal of Chemical  
Engineering. 2017;34(2):495-9.  
7. Huang C-C, Aronstam RS, Chen D-R, Huang Y-W.  
Oxidative stress, calcium homeostasis, and altered gene  
expression in human lung epithelial cells exposed to ZnO  
nanoparticles. Toxicology in vitro. 2010;24(1):45-55.  
8. Amani A. Synthesis, characterization and antibacterial and  
antifungal evaluation of some para-quinone derivatives. Drug  
Res. 2014;64(08):420-3.  
2
2
3
9. Pisoschi AM, Pop A. The role of antioxidants in the  
chemistry of oxidative stress: A review. European journal of  
medicinal chemistry. 2015;97:55-74.  
0. Abdel-Wahhab MA, Aljawish A, El-Nekeety AA, Abdel-  
Aziem SH, Hassan NS. Chitosan nanoparticles plus quercetin  
suppress the oxidative stress, modulate DNA fragmentation  
and gene expression in the kidney of rats fed ochratoxin A-  
contaminated diet. Food and Chemical Toxicology.  
41. Coca S, Yalavarthy R, Concato J, Parikh C. Biomarkers for  
the diagnosis and risk stratification of acute kidney injury: a  
systematic review. Kidney international. 2008;73(9):1008-  
16.  
42. Wang D, Li H, Liu Z, Zhou J, Zhang T. Acute toxicological  
effects of zinc oxide nanoparticles in mice after intratracheal  
instillation. International journal of occupational and  
environmental health. 2017;23(1):11-9.  
2
017;99:209-21.  
3
1. Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade  
JM. Zinc complexed chitosan/TPP nanoparticles: a promising  
micronutrient nanocarrier suited for foliar application.  
Carbohydrate polymers. 2017;165:394-401.  
369