Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 260-269  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Water Quality Index (WQI) Assessment along  
Inland Fresh Waters of Taylor Creek in  
Bayelsa State, Nigeria  
Ayobami Aigberua*, Timi Tarawou  
Department of Chemical Sciences, Faculty of Science, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria  
Received: 21/02/2019  
Accepted: 10/06/2019  
Published: 30/09/2019  
Abstract  
The overall water quality status of Taylor Creek was determined using water quality index. The river course was  
characterized by human activities such as artisanal dredging, fish farming, waste dumpsites and farmlands amongst other  
influences. Samples were collected in the dry season month of December 2018 at two points each across five stations. A  
total of ten surface water samples were analysed for physicochemical parameters using APHA standard procedures. The  
assessed water quality parameters depicted the ranges: 73.00  79.00 µs/cm EC, 40.20  43.65 mg/l TDS, 5.85  6.20 pH,  
7
.00  8.00 mg/l TA, 12.00  16.50 mg/l TH, 2.10 - 2.73 mg/l Ca, 0.58  1.07 mg/l Mg, 6.20  8.50 mg/l DO, 16.50  24.74  
-
-
mg/l Cl , 3.00  3.60 mg/l NO and 0.50  1.71 mg/l BOD . Only two water parameters depicted significant difference  
3
5
(
P<0.05) with the trend: Ca < BOD5 while significant variation (P<0.05) among sample locations revealed the trend:  
-
Ogboloma > Okolobiri > Obunagha = Koroama > Polaku. EC showed strong positive correlation with TDS while NO  
showed the most positive correlation; its positive correlations with pH, TA, Cl , DO and BOD depicts it as an important  
water quality indicator. Deterioration in water quality status depicted the trend: Koroama < Obunagha < Polaku < Ogboloma  
3
-
<
Okolobiri. WQI assessment showed that the water environment was of poor quality which may portend adverse health  
risks to members of the public who consume it. Consequently, the Creek should be monitored regularly to evaluate trends,  
establish baseline information and guide against pollution-encroaching activities.  
Keywords: Taylor creek, dissolved oxygen (DO), American Public Health Association (APHA), biochemical oxygen  
-
demand (BOD), nitrate (NO )  
3
1
pipelines [5-6]. Rivers are often recipients of municipal  
1
Introduction  
wastes, human sewage, abattoir effluent and industrial  
discharges. Streams and rivers most burdened by  
anthropogenic inputs are those which stretch across areas  
of notable human pressure which may include farmlands,  
industries, coastal and metropolitan areas [3, 7, 9]. Most  
often, rivers serve as fish farms and water source for  
indigenous residents. Hence, the direct or indirect  
contamination may be detrimental to the health of those  
who consume it [4, 27-28], or use it for farm irrigation  
and recreational (swimming) purposes.  
Across the globe, clean water remains a daily and  
indispensable requirement for everyone and for all  
communities. Provision of clean portable water for  
drinking, industrial applications and farm management  
has become a major source of worry for governments [3,  
Taylor Creek is a non-tidal fresh water environment  
located in Gbarain clan in Yenagoa Local Government  
area of Bayelsa State. The creek stretches 16 km north,  
north east (NNE) of the state capital (Yenagoa) [30]. The  
geographical coordinates lie within the latitudes 5° 01to  
5
° 03’ N and longitudes 006° 16 and 006° 20’ E and is  
bound by neighbouring settlements such as Polaku,  
Koroama, Obunagha, Okolobiri and Ogoloma amongst  
others. The Taylor Creek is an estuary of the Nun River  
which enters its course from Polaku community [11, 40]  
and is home to the Etelebou flow station and Gbarain-  
Ubie gas plant [14]. The inland creek also receives  
municipal and agricultural run-offs from waste dumps  
along the creek line and cultivated farmlands sloping  
downhill into the waterways.  
1
0, 34], while polluted environments have been observed  
Ecosystem continues to be ravaged by the numerous  
oil and gas related installations including flow stations,  
oil well heads, loading terminals, tank farms [20], and oil  
to portend deleterious effects on human health, fauna and  
flora species [8-10, 27, 36]. Developing countries are  
mostly affected by cases of child death resulting from  
water related diseases [18]. For instance, the potential of  
water resources in Nigeria is poorly developed and  
exploited, leading to shortage in clean water supply as  
against its enormous demand for multipurpose uses.  
Point sources of water pollution include wastes from  
human settlements, commercial (boat transport and local  
Corresponding author: Ayobami Aigberua, Department  
of Chemical Sciences, Faculty of Science, Niger Delta  
University, Wilberforce Island, Bayelsa State, Nigeria. E-  
mail:ozedee101@gmail.com.,  
032765181.  
Contact:  
+234  
8
2
60  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 260-269  
sand dredging), petroleum industry and precipitation of  
atmospheric pollutants while non-point sources of water  
pollution include run-off from agricultural lands treated  
with fertilizers and pesticides which cause nutrient  
enrichment and eutrophication of surface waters [22].  
Inter-community boat transport and local sand dredging  
activities were established at the Polaku jetty while the  
inland shores of the Creek stretching across the other  
communities showed patches of municipal dumpsites on  
one end with continuous agricultural farmlands across  
the creek line.  
Even though variations may exist from country to  
country; global water use pattern has been depicted as:  
irrigation 73%, industrial uses 21% and public use 6%.  
Water use is estimated at about 40% industrial use in  
developed countries while an overwhelming bulk of  
water is applied through irrigation in developing  
countries. Water is used in Nigeria for agricultural food  
supply (as irrigation medium amongst numerous other  
applications), industrial activities, health care,  
environmental sanitation, transportation and recreation.  
Whereas ground water sources are responsible for over  
2
Materials and Method  
2
.1 Study Area and Sample Collection  
The Taylor Creek is located in Yenagoa Local  
Government Area of Bayelsa State. Its climate is  
characterized by the dry and wet seasons with  
temperatures reaching about 35 C all through the year  
o
[30]. The vegetation consists of surrounding tropical  
swamp forests. Surface water samples were established  
to reflect the prevalent flow direction of water from  
upstream at the Polaku jetty towards downstream at  
Ogboloma community. The sampling rationale was  
aimed at capturing the possible flow of contaminants and  
its resultant effect on the quality status of the water body.  
Sampling was carried out in the month of December  
2
018 to represent the dry season. Each of the duplicate  
samples was collected at spatially different geo-  
referenced points across the five communities stretching  
the Taylor Creek. Each sample was collected separately  
into pre-washed  
1
litre plastic containers (for  
physicochemical parameters), 250 ml wide-mouth amber  
bottles (for Biochemical Oxygen Demand) and 100 ml  
sample vials acidified with nitric acid, HNO3 (for  
calcium and magnesium). In-situ measurements were  
taken on site and samples were stored in ice-packed  
coolers before been transported to the laboratory. Each  
sampling point was geo-referenced with a hand-held  
Garmin Etrex model GPS (Table 1).  
7
0% of water use in northern Nigeria, the relative  
proportion of water use in the southern parts has been  
estimated at about 40 to 50% ground to surface water  
[22].  
Consistent quantitative and qualitative evaluation of  
the physical and chemical parameters of surface water  
bodies is essential to identifying alterations in the quality  
of water, especially along inland creeks and rivers that  
receive municipal run-offs and industrial effluents.  
Adequate information on the physicochemical  
characteristics of the water body may aid in its  
management and conservation [7, 29]. Water quality  
parameters have been used to determine the overall  
quality of water across the globe [10, 16, 26, 37). These  
physicochemical parameters are compared with their  
respective regulatory standardization limits to generate a  
single value which depicts the quality status of a water  
source. Water quality index (WQI) calculation is  
preceded by the choice of physicochemical parameters,  
calculation of sub-indices, assignment of parametric  
weights and summation of sub-indices to determine an  
overall index [10, 16]. WQI serves the purpose of  
reflecting the combined influence of different water  
quality parameters for determining water quality status.  
Also, it is an indication of water quality wherein index  
numbers are used to represent overall water quality and  
its most suitable use. The application of this index is  
useful for identifying space and time dynamics in the  
quality of water; it also uses simple terms (such as:  
excellent, good, poor, very poor, etc) to classify water  
quality. The indices is one of the most simplified  
methods of communicating water quality classification to  
the general public or those in authority [10, 28, 33].  
2
.2 Statistical Analysis  
In order to determine the association and variation  
across physicochemical parameters of Taylor Creek  
water, descriptive statistical analysis was carried out  
using statistical package for social science (SPSS)  
version 20. Data was expressed as mean ± standard  
deviation. The range (minimum and maximum) of the  
values obtained across the sampling points was also  
presented. One way analysis of variance (ANOVA) was  
used to show significant variation at P<0.05. Where  
significant variation occurred, Waller-Duncan statistics  
was used to compare mean values of each test parameter  
under investigation. Hierarchical cluster analysis was  
carried out using Euclidean distance based on average  
linkage between groups. The cluster analysis was carried  
out for two variables (sample locations and  
physicochemical variables) across the Taylor Creek.  
Several authors have applied water quality index  
(WQI) in different water sources across the Niger Delta  
region of Nigeria. [12, 21, 24-25, 28, 31, 42] amongst  
others had previously evaluated the water quality status  
of different rivers across the Niger Delta region of  
Nigeria. Also, [1, 24, 41, 43] amongst others assessed  
underground water WQI in the region.  
This study is aimed at using water quality index  
(WQI) to identify the changes in water quality status of  
inland fresh waters of the Taylor creek as river flows  
downstream from Polaku jetty and cuts across other  
communities.  
Figure 1: The Polaku jetty front  
2
61  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 260-269  
-
2
.3 Procedure for physicochemical analysis of  
water  
Test procedures for the analysis of surface water  
and expressed as mg/l units. Nitrate (NO  
3
) was analysed  
using HACH DR 890 colorimeter. Firstly, turbid samples  
were filtered and eluted through column after been mixed  
with 75 ml of ammonium chloride-EDTA solution. A  
mixture of 50 ml sample and 2 ml colour reagent was  
read in mg/l units NO3 after 10 minutes at wavelength of  
43 nm using distilled water as blank reagent. Using hot  
samples are as described in Standard Methods for the  
Examination of Water and Wastewater [13]. The  
physicochemical parameters analysed were: electrical  
conductivity (EC), total dissolved solids (TDS), pH, total  
alkalinity (TA), total hardness (TH), calcium (Ca),  
magnesium (Mg), dissolved oxygen (DO), chloride (Cl ),  
nitrate (NO ) and biochemical oxygen demand (BOD ).  
Some physicochemical parameters were measured  
electrometrically using pH (Hanna HI 8314 model), EC  
-
5
plate, exactly 20 ml water was digested by adding 5 ml  
nitric acid (HNO ) and heating to slow boil until near-  
-
3
-
dryness. The filtered extracts were diluted with distilled  
water to 20 ml mark in a graduated measuring cylinder.  
The cationic contents (Ca and Mg) were determined  
using GBC Avanta PM A6600 type Flame Atomic  
Absorption Spectrometer (FAAS) via air-acetylene flame  
atomization, while concentrations of elements of interest  
were acquired subject upon prior calibration of the  
instrument with metal specific standard solutions  
3
5
(Hanna HI 98303 model), TDS (Hanna HI 98303model)  
and DO (Extech 407510A model) meters respectively on  
site (in-situ) according to standard procedures [19].  
Temperature, EC, pH and DO were recorded in situ  
while on field with the appropriate instruments. Samples  
for BOD5 were measured for DO after 5days of  
(
prepared from a stock solution of 1,000 mg/l  
o
AccuNoHaz standards for Ca and Mg). Elemental  
concentrations were analysed at wavelengths of 422.7  
and 285.2 (nm) for Ca and Mg respectively and  
concentration units expressed as mg/l. Reagent blank was  
also aspirated into the FAAS for quality assurance  
purposes. Water Quality Status (WQS) applied in this  
study was based on Water Quality Index (WQI)  
previously adopted by [17, 23, 31-32, 38].  
incubation at 20 C (using a Memmert UNB200 model  
incubator). The calculated difference: DO (Day 1 - Day  
5
) was reported as the concentration of BOD in mg/l  
5
-
units. TA, TH and Cl concentrations were determined  
using titrimetric methods. Total alkalinity (TA) was  
determined by the titration of 100 ml water sample with  
0
.1 M hydrochloric acid (HCl) to an orange-coloured  
end-point using methyl orange as indicator while total  
hardness (TH) was analysed by the titration of 100 ml  
water sample with 0.01 M EDTA using Eriochrome  
black T (ECBT) as indicator. An observed blue colour  
was used to denote end-point. The chloride (Cl ) content  
was determined by argentometric titration method. The  
sample was titrated with 0.01 N silver nitrate (AgNO3)  
2.4  
Quality assurance/Quality control  
protocol for Ca and Mg analysis  
-
The quality assurance and control protocols used  
during analysis include the use of reagent blanks, sample  
triplicate run and method of spike recovery. The reagent  
blank (digested acid reagent only) was analyzed after  
each metal run; this was applied for correcting  
background metal levels which may have resulted from  
reagent impurities.  
using potassium chromate (KCrO ) indicator. Sample  
was titrated to a pinkish yellow end-point. During each  
4
titration protocol  
containing distilled water and reagents) for quality  
assurance purposes. All concentrations were calculated  
a reagent blank was analysed  
(
Table1: Description of water sampling points and activities within the Taylor Creek  
Sample  
Location(s)  
Polaku  
River flow  
direction  
Upstream  
Sample  
Code(s)  
Possible sources of pollution  
Longitude  
Latitude  
Close proximity to gas flare Polaku1  
stack from nearby oil facility,  
boat transport, local sand  
dredging and nearby sloping  
farmlands  
N5  
1
׳
49.321
״  
E6  
16
׳
50.795
״  
Upstream  
Midstream A  
Nearby sloping farmlands  
Nearby municipal waste dump Koroama1  
and sloping farmlands  
Polaku2  
N5  
N5  
1
׳
52.709
״  
2
׳
22.728
״  
E6  
E6  
16
׳
43.728
״  
17
׳
45.785
״  
Koroama  
town  
Midstream A  
Midstream B  
Midstream B  
Boat transport and nearby Koroama2  
sloping farmlands  
Nearby municipal waste dump Obunagha1 N5  
and sloping farmlands  
Nearby municipal waste dump Obunagha2 N5  
and sloping farmlands, storm  
N5  
2
׳
18.702
״  
2
׳
1.933
״  
2
׳
3.655
״  
E6  
E6  
E6  
17
׳
47.579
״  
18
׳
32.621
״  
18
׳
43.877
״  
Obunagha  
town  
water channel from community  
Okolobiri  
town  
Midstream C  
Midstream C  
Nearby sloping farmlands  
Nearby municipal waste dump Okolobiri2  
and sloping farmlands  
Okolobiri1  
N5  
N5  
2
׳
9.522
״  
2
׳
19.404
״  
E6  
E6  
18
׳
57.773
״  
19
׳
10.765
״  
Ogboloma  
town  
Downstream  
Nearby multiple waste dumps Ogboloma1 N5  
and sloping farmlands,  
recreational use of water  
bathing, laundry and  
swimming)  
3
׳
13.212
״  
E6  
19
׳
58.717
״  
(
Downstream  
Nearby waste dumps and Ogboloma2 N5  
21
׳
59.958
״  
E6  
20
׳
11.557
״  
sloping farmlands  
2
62  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 260-269  
Table 2: Working conditions of the FAAS  
Flame Composition  
Concentration  
Characteristic of Check  
Air  
flow  
rate  
Nebulizer  
uptake  
rate  
Slit  
Wave  
length  
(nm)  
Lamp  
current  
(mA)  
Calibration Acetylene  
Metals width  
Noise  
range  
flow rate  
(L/min)  
concentration  
(mg/L)  
standard  
solution  
(nm)  
(µg/ml)  
(L/min)  
(ml/min)  
(
mg/L)  
Ca  
Mg  
0.50  
0.50  
1.0  
1.0  
422.7  
285.2  
5.00  
3.00  
0.01-4.0  
0.01-0.4  
2.00  
2.00  
10.00  
10.00  
5.0  
5.0  
0.001  
0.001  
0.5  
0.1  
The method of spike recovery was applied using  
standard solutions of elements prior to sample digestion  
and analysis. This was used for optimizing sample  
preparation protocol. The percentage spike recoveries of  
the different metals are listed in Table 3. The values  
obtained ranged from 94.03 98.80 % which is  
acceptable. The relative standard deviation between  
analyses was ± 3.7 %. The limits of detection and  
quantification (LODs and LOQs respectively) were  
evaluated on the basis of the noise obtained for the  
analysis of the blank samples (n=3). The LOD and LOQ  
were defined as the concentration of analyte that results  
in a signal-to-noise ratio of 3 and 10 respectively. The  
value of LOD and LOQ (in mg/kg) for each test metal is  
given in Table 3 below.  
Subsequently, calculation of WQI was carried out using  
the expression given in Equation (3).  
WQI = Σ Qi Wi / Σ Wi  
(3)  
th  
where, Qi is quality rating of i water quality parameter  
th  
and Wi is unit weight of i water quality parameter. The  
quality rating (Qi) is calculated using the expression  
given in Equation (4).  
Qi = [(Vi Vid) / (Si - Vid)] x 100  
(4)  
th  
where, Vi is estimated value of i water quality  
parameter at a given sample location, Vid is ideal value  
th  
for i parameter in pure water (note: Vid for pH = 7, DO  
=
14.6, and 0 for all other parameters) and Si is standard  
2
.5 Calculation of Water Quality Index (WQI)  
The Water Quality Index (WQI) was calculated  
th  
permissible value of i water quality parameter.  
through a series of steps. Firstly, the unit weight (Wi)  
was assigned to each parameter analyzed in the water  
samples. This was done in accordance to their relative  
importance in the overall quality of water. This was done  
in accordance to their relative importance in the overall  
quality of water as applied by [17, 23, 31-32, 38]. In this  
study, unit weights for each of the eleven (11) parameters  
been considered (EC, TDS, pH, TA, TH, Ca, Mg, DO,  
3 Result and Discussion  
Spatial variations of physicochemical parameters in  
surface waters of Taylor Creek are illustrated in Table 5.  
The calcium concentration ranged from 2.10 - 2.73 mg/l.  
Calcium showed no significant difference (p>0.05)  
except for Polaku community. This may be due to  
increased human activities such as artisanal dredging and  
boat sails which are dominant at the Polaku jetty when  
compared to other nearby settlement towns (Figure 1).  
-
-
Cl , NO and BOD ) were assigned using the formula:  
3
5
Wi = k/Si  
(1)  
BOD levels ranged from 0.50  1.71 mg/l (Table 5).  
5
Apart from Okolobiri and Ogboloma communities which  
th  
where, Si is standard permissible value of i water  
quality parameter and k is constant of proportionality and  
it is calculated by using the expression:  
depicted significant variation (p<0.05) for BOD across  
5
the Taylor Creek, all other sampling stations indicated  
similarities in activities responsible for oxygen demand.  
k = [1/ (Σ 1/ Si=1, 2,..i)]  
(2)  
Table 3: Spike recovery, limits of detection for Ca and Mg quantification  
Quantity Sample  
LOQ  
determined concentration recovery  
Percentage  
LOD  
mg/kg)  
Metals  
Quantity of standard added (mg/kg)  
(
(mg/kg)  
(
mg/kg)  
(mg/kg)  
(%)  
Ca  
Mg  
0.001  
0.001  
0.001  
0.001  
0.50  
0.10  
2.10  
0.63  
2.57  
0.67  
98.80  
94.03  
ꢉꢊꢄꢋꢌꢍꢀꢄꢎꢀꢏꢋꢆꢂꢀꢏꢆꢄꢐꢋꢃꢍꢀꢆꢂꢃꢄꢅꢂꢆꢂꢐꢀꢑꢒ  
ꢘꢙꢚꢚ  
ꢓꢊꢄꢋꢌꢍꢀꢄꢎꢀꢃꢆꢋꢐꢂꢀꢊꢉꢍꢂꢆꢔꢉꢕꢖꢀꢋꢖꢂꢐꢀꢑꢒꢗ  
ꢁꢂꢃꢄꢅꢂꢆꢇꢈ  
Table 4: WQI and its respective water quality status  
Water Quality Status  
Water Quality Index Level  
0
2
5
7
25  
Excellent water quality  
Good water quality  
Poor water quality  
Very poor water quality  
Unsuitable for drinking  
6 50  
1 75  
6 100  
>
100  
2
63  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 260-269  
The multiple dumpsites between Okolobiri and  
Ogboloma (midstream C and downstream locations of  
the river stretch), the flow direction of the river  
downstream, as well as recreational activities (bathing,  
swimming and laundry) (Table 1) may have been  
responsible for these significant variations. All other  
physicochemical variables that were evaluated showed  
no significant difference (p>0.05) across the stretch of  
the Taylor Creek. The parameters reportedly reflected the  
ranges: EC (73.00  79.00 µs/cm), TDS (40.20  43.65  
mg/l), pH (5.85 6.20), TA (7.00 8.00 mg/l), TH  
negative correlation with BOD (r=-0.470, p<0.05) while  
reflecting the most significant positive correlation with  
Ca (r=0.590, p<0.05). Ca revealed the most significant  
-
negative correlation with NO3 (r=-0.537, p<0.05) and  
depicted the most significant positive correlation with  
DO (r=0.372, p<0.05). Mg revealed the most significant  
negative (r=-0.225, p<0.05) and positive (r=0.360,  
-
p<0.05) correlation with Cl and DO respectively. DO  
-
showed the most significant negative correlation with Cl  
(r=-0.355, p<0.05) and reflected the most significant  
-
positive correlation with NO3 (r=0.264, p<0.05). Cl-  
(
8
3
12.00  16.50 mg/l), Mg (0.58  1.07 mg/l), DO (6.20 –  
showed negative (r=-0.145, p<0.05) a-nd positive  
-
-
.50 mg/l), Cl (16.50  24.74 mg/l) and NO (3.00 –  
(r=0.256, p<0.05) correlation with NO and BOD  
3
3
-
.60 mg/l). The significant difference between  
respectively. NO showed positive correlation with BOD  
3
physicochemical variables can be summarized as: Ca <  
BOD5 while the significant variation among sample  
locations were: Ogboloma > Okolobiri > Obunagha =  
Koroama > Polaku (Table 5).  
(r=0.175, p<0.05) (Table 5).  
Clustering techniques are used to isolate objects  
associated with a specific cluster; such objects should be  
quite similar. Physical and chemical variables of mutual  
dependence show similarity or closeness in  
characteristics (or association) while those of mutual  
EC showed the most significant negative correlation  
-
with Cl (r=-0.107, p<0.05) and depicted the most  
significant positive correlation with TDS (r=1.000,  
p<0.01). TDS showed the most significant negative  
independence  
reflect  
differing  
characteristics.  
Physicochemical parameters which were analysed in the  
fresh water environment of Taylor Creek revealed  
strongest mutual dependence for (EC and TDS), (TH and  
-
correlation with Cl (r=-0.107, p<0.05) and depicted the  
-
most significant positive correlation with NO3 (r=0.716,  
-
p<0.05). Water pH showed the most significant negative  
relationship with Ca (r=-0.551, p<0.05) and depicted the  
Cl ) (Figure 2). Consequently, these pairs of parameters  
are directly proportional one to another. Hence, an  
increase in one will lead to an increase in the other. EC  
and TDS have been reported to show strong linear  
correlation in natural waters [35, 39]. Also, [15] had  
shown Cl- to bear significant positive correlation with  
TH in Kosi river water.  
-
most significant positive correlation with NO3 (r=0.347,  
p<0.05). TA showed the most significant negative  
correlation with TH (r=-0.222, p<0.05) while depicting  
-
the most significant positive correlation with NO3  
(r=0.531, p<0.05). TH showed the most significant  
Table 5: Physicochemical analysis of surface water samples from Taylor Creek  
Parameters  
EC (µs/cm)  
TDS (mg/l)  
pH  
Polaku  
Koroama  
Obunagha  
76.00±7.07a  
42.05±4.17a  
6.00±0.00a  
8.00±0.00a  
16.50±4.95a  
2.73±0.37ab  
1.03±0.42a  
7.20±2.55a  
19.80±9.33a  
3.00±0.28a  
0.63±0.06a  
Okolobiri  
Ogboloma  
78.00±2.83a  
43.00±1.41a  
6.10±0.14a  
8.00±0.00a  
12.00±1.41a  
2.29±0.16ab  
0.98±0.28a  
6.80±1.13a  
24.74±2.33a  
3.55±0.21a  
1.71±0.65b  
79.00±9.90a  
43.65±5.16a  
6.20±0.14a  
8.00±0.00a  
12.50±3.54a  
2.10±0.09a  
1.07±0.33a  
7.20±0.28a  
16.50±4.66a  
3.60±0.28a  
0.50±0.29a  
75.50±3.54a  
41.60±1.98a  
6.10±0.00a  
7.00±1.41a  
16.50±2.21a  
2.40±0.05ab  
0.67±0.09a  
8.50±0.42a  
21.44±2.33a  
3.30±0.57a  
0.65±0.09a  
73.00±2.83a  
40.20±1.56a  
5.85±0.21a  
7.50±0.71a  
14.00±1.41a  
2.33±0.02ab  
0.58±0.12a  
6.20±1.13a  
19.80±9.33a  
3.15±0.21a  
1.13±0.18ab  
TA (mg/l)  
TH (mg/l)  
Ca (mg/l)  
Mg (mg/l)  
DO (mg/l)  
-
Cl (mg/l)  
-
NO3 (mg/l)  
BOD (mg/l)  
5
Data is expressed as mean ± standard deviation; Different letter along the column indicates significant difference (P<).05)  
according to Duncan statistic  
Table 6: Spearman's rho correlation of physicochemical parameters along the Taylor Creek  
Paramete  
rs  
EC  
TDS  
pH  
TA  
TH  
Ca  
Mg  
-
-
NO3  
EC  
1.000  
TDS  
pH  
TA  
TH  
Ca  
Mg  
DO  
Cl  
BOD  
**  
1.000  
1.000  
0.044  
0.456  
0.455  
0.036  
0.468  
0.569  
0.044  
0.456  
0.455  
0.036  
0.468  
0.569  
-0.107  
1.000  
0.014  
-0.383  
-0.551  
0.247  
0.121  
-0.206  
0.347  
-0.115  
1.000  
-0.222  
-0.121  
0.493  
0.074  
0.183  
0.531  
0.170  
1.000  
0.590  
-0.068  
0.594  
-0.103  
-0.131  
-0.470  
1.000  
0.030  
0.372  
0.175  
-0.537  
-0.239  
1.000  
DO  
0.360  
-0.225  
0.256  
-0.147  
1.000  
-
Cl  
-0.107  
-0.355  
0.264  
-0.166  
1.000  
-0.145  
0.256  
-
*
*
NO3  
0.716  
0.716  
-0.083  
1.000  
0.175  
BOD  
-0.083  
1.00  
*
*
*. Correlation is significant at the 0.01 level (2-tailed).  
. Correlation is significant at the 0.05 level (2-tailed).  
(
N=10).  
2
64  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 260-269  
They had also suggested that TH of water samples is  
and Ogboloma 1), and (Okolobiri 2 and Ogboloma 2).  
This may be due to the resemblance in the pollution  
sources and dominant activities within each of the paired  
settlements. In the same manner, the water environment  
tends to redistribute its mineral content and pollutants  
across the flow direction of Taylor Creek (from upstream  
at Polaku towards downstream at Ogboloma). Also,  
(Polaku 1) and (Obunagha 1) showed the strongest  
mutual independence. This may have resulted from the  
presence of municipal waste dumps at (Obunagha 1) and  
the relative absence of dumpsite leachate encroachments  
observed at (Polaku 1) community (Table 1).  
mainly due to the presence of the MgCl and NaCl. On  
2
the other hand, the strongest mutual independence was  
observed between TDS and Mg. Similarly, the content of  
Mg in Kosi water showed negative correlation with TDS  
and was only positively correlated with turbidity, pH, TH  
2
-
and sulphate (SO4 ).  
The settlements along the stretch of the Taylor Creek  
were assessed for points of close association (mutual  
dependence) (Figure 3). The following pairs of  
communities depicted mutual dependence and close  
characteristics: (Polaku 1 and Okolobiri 1), (Koroama 2  
Figure 2: Hierarchical dendograms of different physicochemical variables in Taylor Creek  
Figure 3: Hierarchical dendograms of different settlements within the Taylor Creek  
2
65  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 260-269  
Table 7: Calculated water quality index (WQI) for Polaku  
Observed  
value (Vi)  
Ideal  
value  
(Vid)  
Unit  
weight  
(Wi)  
Quality  
Rating  
(Qi)  
10.65  
9.82  
-34.78  
8.70  
14.29  
2.88  
5.68  
336.36  
7.07  
56.25  
5.26  
Standard  
value (Si)  
Recommending  
Agency for (Si)  
k
Parameters  
QiWi  
0.01917  
value  
(Upstream)  
EC  
TDS  
pH  
TA  
TH  
Ca  
79.0  
44.7  
6.2  
8.0  
900  
500  
8.5  
100  
100  
75  
WHO  
DPR  
DPR  
0
0
7
0
0
0
0
14.6  
0
0
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
0.0018  
0.0033  
0.1935  
0.0165  
0.0165  
0.0219  
0.0823  
0.3290  
0.0066  
0.1645  
0.1645  
ΣWi=1  
0.03241  
-6.72993  
0.14355  
0.23579  
0.06307  
0.46746  
110.66  
0.04666  
9.25313  
WHO  
WHO  
WHO  
WHO  
DPR  
WHO  
WHO  
DPR  
12.5  
2.101  
1.075  
7.2  
16.50  
3.6  
Mg  
DO  
20  
5.0  
250  
10  
-
Cl  
-
NO3  
BOD5  
0.500  
10  
0
0.86527  
ΣQiWi=115.07  
WQI = ΣQiWi / ΣWi = 115.07 (unsuitable for drinking)  
Table 8: Calculated water quality index (WQI) for Koroama  
Observed  
value (Vi)  
Ideal  
value  
Unit  
weight  
(Wi)  
Quality  
Rating  
(Qi)  
Standard  
value (Si)  
Recommending  
Agency for (Si)  
k
Parameters  
QiWi  
(Midstream  
value  
(Vid)  
A)  
EC  
TDS  
pH  
TA  
TH  
Ca  
75.5  
41.6  
6.1  
900  
500  
8.5  
100  
100  
75  
WHO  
DPR  
DPR  
0
0
7
0
0
0
0
14.6  
0
0
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
0.0018  
0.0033  
0.1935  
0.0165  
0.0165  
0.0219  
0.0823  
0.3290  
0.0066  
0.1645  
0.1645  
ΣWi=1  
9.16  
9.08  
-37.50  
7.53  
19.76  
3.31  
3.44  
174.29  
9.38  
49.25  
6.91  
0.01649  
0.02996  
-7.25625  
0.12425  
0.32604  
0.07249  
0.28311  
57.34  
7.0  
WHO  
WHO  
WHO  
WHO  
DPR  
WHO  
WHO  
DPR  
16.5  
2.402  
0.666  
8.5  
21.44  
3.3  
Mg  
DO  
20  
5.0  
250  
10  
-
Cl  
0.06191  
8.10163  
1.13670  
ΣQiWi=60.24  
-
NO3  
BOD5  
0.646  
10  
0
WQI = ΣQiWi / ΣWi = 60.24 (poor water quality)  
Table 9: Calculated water quality index (WQI) for Obunagha  
Observed  
value (Vi)  
Ideal  
value  
Unit  
weight  
(Wi)  
Quality  
Rating  
(Qi)  
Standard  
value (Si)  
Recommending  
Agency for (Si)  
k
Parameters  
QiWi  
(Midstream  
value  
(Vid)  
B)  
EC  
TDS  
pH  
TA  
TH  
Ca  
76.0  
42.1  
6.0  
900  
500  
8.5  
100  
100  
75  
WHO  
DPR  
DPR  
0
0
7
0
0
0
0
14.6  
0
0
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
0.0018  
0.0033  
0.1935  
0.0165  
0.0165  
0.0219  
0.0823  
0.3290  
0.0066  
0.1645  
0.1645  
ΣWi=1  
9.22  
9.19  
-40.00  
8.70  
19.76  
3.78  
5.41  
336.36  
8.60  
42.86  
6.67  
0.01660  
0.03033  
-7.74000  
0.14355  
0.32604  
0.08278  
0.44524  
110.66  
0.05676  
7.05047  
8.0  
WHO  
WHO  
WHO  
WHO  
DPR  
WHO  
WHO  
DPR  
16.5  
2.730  
1.026  
7.2  
19.80  
3.0  
Mg  
DO  
20  
5.0  
250  
10  
-
Cl  
-
NO3  
BOD5  
0.625  
10  
0
1.09722  
ΣQiWi=112.17  
WQI = ΣQiWi / ΣWi = 112.17 (unsuitable for drinking)  
2
66  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 260-269  
Table 10: Calculated water quality index (WQI) for Okolobiri  
Observed  
value (Vi)  
Ideal  
value  
Unit  
weight  
(Wi)  
Quality  
Rating  
(Qi)  
Standard  
value (Si)  
Recommending  
Agency for (Si)  
k
Parameters  
QiWi  
0.01589  
(Midstream  
value  
(Vid)  
C)  
EC  
TDS  
pH  
TA  
TH  
Ca  
73.0  
40.2  
5.9  
900  
500  
8.5  
100  
100  
75  
WHO  
DPR  
DPR  
0
0
7
0
0
0
0
14.6  
0
0
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
0.0018  
0.0033  
0.1935  
0.0165  
0.0165  
0.0219  
0.0823  
0.3290  
0.0066  
0.1645  
0.1645  
ΣWi=1  
8.83  
8.74  
-42.31  
8.11  
16.28  
3.21  
2.97  
700.00  
8.60  
47.06  
12.68  
0.02884  
-8.18699  
0.13382  
0.26862  
0.07030  
0.24443  
230.30  
0.05676  
7.74137  
7.5  
WHO  
WHO  
WHO  
WHO  
DPR  
WHO  
WHO  
DPR  
14.0  
2.333  
0.577  
6.2  
19.80  
3.2  
Mg  
DO  
20  
5.0  
250  
10  
-
Cl  
-
NO3  
BOD5  
1.125  
10  
0
2.08586  
ΣQiWi=232.76  
WQI = ΣQiWi / ΣWi = 232.76 (unsuitable for drinking)  
Table 11: Calculated water quality index (WQI) for Ogboloma  
Observed value  
(Vi)  
Ideal  
value  
(Vid)  
Unit  
weight  
(Wi)  
Quality  
Rating  
(Qi)  
Standard  
value (Si)  
Recommending  
Agency for (Si)  
k
Parameters  
QiWi  
value  
(Downstream)  
EC  
TDS  
pH  
TA  
TH  
Ca  
78.0  
43.0  
6.1  
8.0  
900  
500  
8.5  
100  
100  
75  
WHO  
DPR  
DPR  
0
0
7
0
0
0
0
14.6  
0
0
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
1.645  
0.0018  
0.0033  
0.1935  
0.0165  
0.0165  
0.0219  
0.0823  
0.3290  
0.0066  
0.1645  
0.1645  
ΣWi=1  
9.49  
9.41  
-37.50  
8.70  
13.64  
3.16  
0.01708  
0.03105  
-7.25625  
0.14355  
0.22506  
0.06920  
0.42385  
142.57  
0.07267  
9.25313  
WHO  
WHO  
WHO  
WHO  
DPR  
WHO  
WHO  
DPR  
12.0  
2.300  
0.980  
6.8  
24.80  
3.6  
Mg  
DO  
20  
5.15  
5.0  
250  
10  
433.33  
11.01  
56.25  
20.61  
-
Cl  
-
NO3  
BOD5  
1.709  
10  
0
3.39035  
ΣQiWi=148.94  
WQI = ΣQiWi / ΣWi = 148.94 (unsuitable for drinking)  
Communities of the Taylor Creek revealed  
similarities in trend. Nonetheless, the presence of nitrate  
depicted a water environment clearly unsuitable for  
drinking. Similarly, [12] had reported WQI of Otamiri  
and Oramiriukwu rivers in Rivers State to be very bad as  
it was calculated as 174.49. The quality of Ase River was  
observed to be bad while the degree of deterioration was  
higher downstream than at the upstream [31]. River  
Orashi depicted marginal level of pollution as about 50%  
of parameters considered failed to meet required standard  
[21, 24] had applied WQI assessment on six selected  
water bodies in Warri, Delta State and reported them to  
be poor and very unfit for human use. Also, Brass River  
in Bayelsa State was considered to be far from excellent  
[28]. On the other hand, Isiodu River in Niger Delta was  
not considered polluted even during the process of  
dredging [25]. From this study, deterioration in water  
quality status depicted the trend: Koroama < Obunagha <  
Polaku < Ogboloma < Okolobiri (Tables 7  11). The  
presence of multiple dumpsites throughout Okolobiri  
community may be responsible for the poor degradation  
in water quality. Consequently, water from the vicinity of  
the Taylor Creek is not fit for human consumption. Also,  
its use for recreational purposes (such as swimming)  
among settlement dwellers should be discouraged.  
(ranging between 3.0 and 3.6 mg/l) is an indication of the  
presence of anthropogenic activities (such as waste  
dumpsites at close proximity to the river and possible  
pesticide leaching from agricultural run-offs). Similar  
values of nitrate concentration were obtained at Nwaja  
creek in Port Harcourt, Nigeria [2]. All the examined  
water quality parameters were within WHO/DPR limit  
except for pH (5.9 - 6.2) which was observed below DPR  
limit and DO (6.2 8.5 mg/l) which exceeded the  
recommended daily minimum of 5.0 mg/l [19, 44]  
(Tables 7-11). The pH values reported for Taylor Creek  
was within the range reported for Kwale, Ashaka and  
Osemele rivers in Delta State, Nigeria (5.45 5.90)  
during the dry season month of December [31]. Contrary  
to the findings from this study, [28] had obtained near-  
neutral pH units for the Brass River in Bayelsa State,  
Nigeria. Also, [31] had reported DO values ranging from  
5
.45  12.00 in the Kwale, Ashaka and Osemele rivers  
thereby exceeding DPR daily minimum. From the  
foregoing, there is need for routine monitoring of the  
Taylor Creek because of its socio-economic importance  
to the people. More so, the result of the calculated water  
quality index (WQI) falls within the range of (60.24 –  
4
Conclusions  
Taylor creek depicts  
2
32.76) (Tables 7 - 11) which indicates water quality  
a slightly acidic water  
status tending from “poor water quality” to “unsuitable  
for drinking”. Apart from Koroama community which  
showed poor water quality, all other communities  
environment that contains nitrate loading mostly from  
leachates emanating from multiple dumpsites along the  
2
67  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 260-269  
stretch of the river. Even though its water quality  
parameters fall within stipulated regulatory limits with  
the exception of pH, the objectionable levels of colour  
and unsightly appearance of its waters especially at  
locations within the vicinity of waste dumps is a cause  
for concern for settlement dwellers who may rely on it  
for drinking and daily recreational activities. In addition,  
WQI assessment reflects water environment in a state of  
poor quality and generally unsuitable for public  
consumption. Expectedly, EC showed the most  
detector, Gas Chromatograph-Mass Selective Detector,  
amongst others. He has published several research  
articles in the area of oil spill pollution studies. He is  
currently working on the use of chemical fingerprinting  
techniques to identify sources of residual hydrocarbons  
in environments that are prone to anthropogenic  
influences.  
References  
1
.
Abraham, C. N., Udom, G. J. (2018).  
Characterization of Groundwater Quality Using  
Water Quality Index in Umuebulu IV Oyigbo, Rivers  
State. Journal of Geography, Environment and Earth  
Science International, 14(2): 1-16.  
-
significant positive correlation with TDS. However, NO3  
was the most positively correlating water quality  
parameter in the Taylor Creek; it positively correlated  
-
with pH, TA, Cl DO and BOD. Consequently, its  
presence in the environment may determine the levels at  
which other water quality variables are detected. The  
significant variation of Ca at Polaku may have been due  
to artisanal dredging at the jetty front area. Human  
activities like bathing, swimming and laundry may be  
responsible for observed significant variations in BOD  
level at Okolobiri and Ogboloma. Likewise, the position  
of both communities towards the downstream ends of the  
creek may have increased their susceptibility to the influx  
of transportable pollutants which may be responsible for  
varying dissolved oxygen levels. Cluster analysis  
2
.
Adesuyi, A. A., Nnodu, V. C., Njoku, K. L., Jolaoso,  
A. (2015). Nitrate and Phosphate Pollution in Surface  
Water of Nwaja Creek, Port Harcourt, Niger Delta,  
Nigeria. International Journal of Geology,  
Agriculture and Environmental Sciences, 3(5): 14-20.  
Adewoye, S. O. (2010). Effects of detergent effluent  
discharges on the aspect of water quality of Asa  
River, Ilorin, Nigeria. Agric. Biol. J. N. Am., 1(4); 73.  
Ahmad, A. K., Mushrifah, I., Shuhaimi-Othmann, M.  
3
4
.
.
(2009). Water quality and heavy metal concentrations  
in sediment of Sungai Kelantan, Kelantan, Malaysia:  
A baseline study. Sains Malaysiana, 38(4): 435-442.  
Aigberua, A. O., Ekubo, A. T., Inengite, A. K. and  
Izah, S. C. (2016a). Seasonal variation of nutrient  
composition in an oil spill contaminated soil: a case  
of Rumuolukwu, Eneka, Port Harcourt, Nigeria.  
Biotechnol Res, 2(4): 179-186.  
Aigberua, A. O., Ekubo, A. T., Inengite, A. K. and  
Izah, S. C. (2016b). Evaluation of Total Hydrocarbon  
Content and Polycyclic Aromatic Hydrocarbon in an  
Oil Spill Contaminated Soil in Rumuolukwu  
Community in Niger Delta. Journal of  
Environmental Treatment Techniques, 4(4): 130-142.  
-
revealed (EC/TDS) and (TH/Cl ) to be the water quality  
parameters of closest association. Spatially, Obunagha  
was the only community of mutual independence.  
Overall, WQI assessment revealed that water derived  
from the Taylor Creek is unsuitable for drinking as it  
may portend serious health risks. It is therefore necessary  
to regularly monitor the Creek in order to evaluate trends,  
establish baseline data and guide against pollution-  
encroaching activities.  
5
6
.
.
Acknowledgement  
The authors acknowledge the immense technical  
support of Anal Concept Laboratories, Port Harcourt,  
Nigeria.  
7. Aigberua, A., Moslen, M. (2017). Space and Time  
Dynamics of Surface Water Quality of an Estuarine  
creek in the Niger Delta in Nigeria. Current Studies  
in Comparative Education, Science and Technology,  
4(1): 141-155.  
8. Aigberua, A., Tarawou, T. (2017). Assessment of  
Heavy Metals in Muscle of Tilapia zilli from some  
Nun River Estuaries in the Niger Delta Region of  
Nigeria. Academic Journal of Chemistry, 2(9): 96-  
Competing interests  
The authors declare that there is no conflict of  
interest that would prejudice the impartiality of this  
scientific work.  
Authors’ contribution  
1
01.  
All authors of this study have  
a complete  
9
.
Aigberua, A., Tarawou, T., Abasi, C. (2017). Spatial  
and Seasonal Assessment of Heavy Metals in Surface  
Waters of the Middleton River in the Niger Delta,  
Nigeria. International Journal of Natural Resource  
Ecology and Management, 2(5): 94-98.  
contribution for sample collection. Corresponding author  
was responsible for data collection, data analyses and  
manuscript writing, while an in-depth review was carried  
out by the co-author.  
1
0. Akoteyon, I. S. (2013). Evaluation of groundwater  
quality using water quality indices in parts of Lagos –  
Nigeria. Journal of Environmental Geography, 6(1-  
Authors Profile  
Ayobami Omozemoje Aigberua is a Ph.D research  
student of Dr. Timi Tarawou, a senior lecturer in the  
department of chemical sciences in the Niger Delta  
University, Wilberforce Island, Amassoma, Bayelsa  
State, Nigeria. The corresponding author’s (Ayobami  
Omozemoje Aigberua) research interests extend across  
environmental topics that are relevant within sub-Saharan  
Africa, while partly sharing the passion to research food  
and herbal drugs toxicity. He is also an environmental  
laboratory expert, with over 12 years of experience  
carrying out operations and maintenance of specialized  
laboratory equipment such as Flame atomic absorption  
spectrophotometer, Gas chromatograph-flame ionization  
2
): 29-36.  
1
1
1. Alagoa, E. J. (2005). A History of the Niger Delta,  
Port Harcourt. Onyoma Research Publications. ISBN  
9
78-37314-5-9.  
2. Amadi, A. N., Olasehinde, E. A., Okosun., Yisa, J.  
2010). Assessment of Water Quality Index of  
(
Otamiri and Oramiriukwa Rivers. Physics  
International, 1(2): 102-109.  
3. American Public Health Association (APHA).  
1
(1998). Standard Methods for the examination of  
2
68  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 260-269  
water and wastewater, 20th ed. American Public  
Health Association, Inc. New York.  
Nigeria. International Journal of Environmental  
Science and Technology, 3(4): 381-389.  
1
1
4. “Bayelsa youths disrupt Shell operations”, The Tide,  
6 April 2008.  
5. Bhandari, N. S., Nayal, K. (2008). Correlation Study  
on Physicochemical Parameters and Quality  
Assessment of Kosi River Water, Uttarakhand. E-  
Journal of Chemistry, 5(2): 342-346.  
6. Bharti, N., Katyal, D. (2011). Water quality indices  
used for surface water vulnerability assessment.  
Inter. J Environ Sci, 2(1): 154-173.  
7. Chaterjee, C., Raziuddin, M. (2002). Determination  
of water quality index (WQI) of a degraded river in  
Asanol Industrial area, Raniganj, Burdwan, West  
Bengal. Nature Environment and Pollution  
Technology, 2: 181-189.  
8. Delleur, J. (1999). “The Handbook of Groundwater  
Engineering”. CRC Press LLC, USA.  
9. Department of Petroleum Resources (DPR) (2018).  
Environmental Guidelines and Standards for the  
Petroleum Industry in Nigeria, DPR, Lagos, Nigeria,  
Pg 22-23.  
31. Oshurhe, O., Origho, T., Ohwohere-Asuma, O.,  
1
Ewhuwhe-Ezo, J. (2014).  
A
Comparative  
Assessment of Water Quality Index (WQI) and  
Suitability of River Ase for Domestic Water Supply  
in Urban and Rural Communities in Southern  
Nigeria. International Journal of Humanities and  
Social Science, 4(1): 234-245.  
1
1
32. Qureshimatva, U. M., Maurya, R. R., Gamit, S. B.,  
Patel, R. D., Solanki, H. A. (2014). Determination of  
Physico-Chemical Parameters and Water Quality  
Index (Wqi) of Chandlohia Lake, Ahmadabad,  
Gujarat, India. J Environ Anal Toxicol, 5(4): 288.  
33. Rao, C. S., Rao, B. S., Hariharan, A. V. L. N. S. H.,  
Bharathi, N. M. (2010). Determination of water  
quality index of some areas in Guntur District,  
Andhra Pradesh. Inter. J. Applied Biology and  
Pharm.Tech., 1(1): 79-86.  
34. Rejith, P. G., Jeeva, S. P., Vijith, H., Sowmya, M.,  
Mohamed, A. A. H. (2009). Determination of  
Groundwater Quality Index of a Highland Village of  
Kerala (India) Using Geographical Information  
System. Journal of Environ Health, 71(10): 51-58.  
35. Rusydi, A. F. (2018). Correlation between  
conductivity and total dissolved solid in various type  
of water: A review. IOP Conf. Ser. Earth Environ.  
Sci., 118: 012019.  
36. Seiyaboh, E. I., Izah, S. C. (2017). Review of Impact  
of Anthropogenic activities in Surface Water  
Resources in the Niger Delta region of Nigeria: A  
case of Bayelsa state. International Journal of  
Ecotoxicology and Ecobiology, 2(1): 61-79.  
37. Seiyaboh, E. I., Izah, S. C., Oweibi, S. (2017).  
Assessment of Water quality from Sagbama Creek,  
Niger Delta, Nigeria. Biotechnol. Res., 3(1): 20-24.  
38. Thakor, F. J., Bhoi, D. K., Dabhi, H. R., Pandya, S.  
N., Chauhan, N. B. (2011). Water Quality Index  
(WQI) of Pariyej lake District Khada, Gujarat.  
Current World Environment, 6: 225-231.  
1
1
2
2
0. Emoyan, O. O., Akpoborie, I. A., Akporhonor, E. E.  
(2008). The oil and gas industry and the Niger Delta:  
implications for the environment. J. Appl. Sci.  
Environ. Manage., 12(3): 29-37.  
1. Ezeilo, F. E., Oba, K. M. (2016). Evaluation of Water  
Quality Index of Orashi River, Rivers State, Nigeria.  
International Journal of Environmental Issues, 12(1-  
2
): 60-75.  
2
2
2
2. Federal Ministry of Environment (FME) (2001).  
National Guidelines and Standards for Water Quality  
in Nigeria. Pg 25-26.  
3. Horton, R. K. (1965). An index number system for  
rating water quality. J Water Poll Cont Fed, 37(3):  
3
00306.  
4. Ibiam, N. A., Nwajei, G. E., Agbaire, P. O., Verla, A.  
W. (2018). Determination of Water Quality Index of  
Selected Water Bodies in Warri, Delta State, Nigeria.  
World News of Natural Sciences, 16: 42-52.  
2
2
2
5. Iyama, W. A. Edori, O. S. (2013). Water Quality  
Index Estimate for Isiodu River Water During  
Dredging in Niger Delta, Nigeria. Global Journal of  
Pure and Applied Sciences, 19:163-167.  
6. Izah, S. C., Srivastav, A. L. (2015). Level of arsenic  
in potable water sources in Nigeria and their potential  
health impacts: A review. J. Environ. Treat. Tech.,  
39. Thirumalini, S., Joseph, K. (2009). Correlation  
between Electrical Conductivity and Total Dissolved  
Solids in Natural Waters. Malaysian Journal of  
Science, 28(1): 55-61.  
40. Tuaweri, J. O. (2008). A Brief History of Gbarain  
Kingdom, Yenagoa. John Ark John Ltd ISBN 978  
978 079 934 2.  
41. Udom, G. J., Nwankoala, H. O., Daniel, T. E. (2016).  
Determination of Water Quality Index of Shallow  
Quaternary Aquifer Systems in Ogbia, Bayelsa State,  
Nigeria. British Journal of Earth Sciences Research,  
4(1): 23-27.  
3
(1): 15-24.  
7. Izah, S. C., Chakrabarty, N., Srivastav, A. L. (2016).  
A Review on Heavy Metal Concentration in Potable  
Water Sources in Nigeria: Human Health Effects and  
Mitigating Measures. Exposure and Health, 8: 285-  
3
04.  
8. Leizou, K. E., Nduka, J. O., Verla, A. W. (2017).  
Evaluation of Water Quality Index of the Brass  
42. Umunnakwe, J. E., Nnaji, A. O. (2015). Use of Water  
Pollution Index to Assess the Levels of Dissolved  
Organic and Inorganic Substances in Nworie River,  
Owerri, Imo State, Nigeria. Civil and Environmental  
Research, 7(4): 44-53.  
2
2
3
River, Bayelsa State, South-South, Nigeria”.  
International Journal of Research Granthaalayah,  
5
(8): 277-287.  
43. Woke, G. N., Bolaji, B. B. (2015). Assessment of  
Ground Water Quality in Emohua Lga, Rivers State,  
Nigeria. Journal of Natural Sciences Research,  
5(24): 8-14.  
9. Moslen, M., Daka, E. R., Ekeh, C. A. and Ekweozor,  
I. K. E. (2006). Physicochemical properties of two  
estuarine creeks in the Niger Delta in relation to  
urban/industrial activities. Niger Delta Biologia,  
44. World Health Organization (WHO) (2008).  
Guidelines for Drinking-water Quality. Incorporating  
5
(2): 115-122.  
st nd  
1 and 2 Addenda, vol. 1 Recommendations.  
0. Okafor, E. C., Opuene, K. (2006). Correlations,  
partitioning and bioaccumulation of trace metals  
between segments of Taylor Creek, Southern  
2
69