Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 522-530  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Production Capacities of Russian Agricultural  
Organizations: Assessment and Forecast  
1
2
3
4
Rafik M. Sagatgareev , Evgenii N. Mazhara , Elena A. Fomina , Oleg A. Zykov , Andrei N.  
Chernov5  
1Candidate of Economics, Banking and Finance Department, e-mail: rafik-sagatgareev@yandex.ru  
Financial University under the Government of the Russian Federation, (Ufa branch),  
Candidate of Economics, Banking and Finance Department, Financial University under the Government of the Russian Federation  
2
3
(
Ufa branch), e-mail: maschara102@mail.ru  
Candidate of Economics, Banking and Finance Department, Financial University under the Government of the Russian Federation  
Ufa branch), e-mail: kaffba@list.ru  
(
4
Candidate of Economics, Department of Economics, Management, and Marketing, Financial University under the Government of  
the Russian Federation (Ufa branch), e-mail: OLEG-Zykov@mail.ru  
Candidate of Economics, Department of Economics, Management, and Marketing, Financial University under the Government of  
the Russian Federation (Ufa branch), e-mail: dru175@rambler.ru Financial University under the Government of the Russian  
Federation (Ufa branch), 69/1, M. Karima St., Ufa 450015, Republic of Bashkortostan, Russian Federation  
5
Received: 05/04/2019  
Accepted: 22/08/2019  
Published: 29/08/2019  
Abstract  
Russia currentlyleads in individual branches of the industry(in particular,in 2016, it was the world's third-largestwheat producer).  
However, in essential food products (like meat, meat products, milk, dairy products, or fruits) Russia fails to meet even threshold  
requirementsaccording to the Russian Federation Food Security Doctrine, and their production levels are lower than that of the USSR.  
Anti-Russia sanctions restricting imports of agricultural products into Russia make things worse and pose a certain threat to national  
food security. This article reviews the body of literature on the topic, refines the key factors of intensification of production growth of  
agricultural products in Russia, develops an economic and mathematical model for assessment and making predictions of production  
capacity (the monetary volume of agricultural output) of agricultural organizations (the core category of agricultural producers) in the  
Russian Federation. A correlation and regression analysis revealed that the resultant indicator is formed mainly by two factors: (1)  
productivity of grains and grain legumes, and (2) the average monthly nominal job compensation at agricultural organizations. Factor  
(
2) has a much greaterimpact on the output of agriculturalorganizations in Russia. If the tendency of the factors' changing is maintained  
in 20182021, in the medium term horizon, they are expected to grow. And this, in turn, should increase the resultantindicator. Despite  
the optimistic forecasts, Russian agricultural producers still have significant potential of increasing agricultural production output. It  
should be noted that agricultural economic growth in Russia is impossible without solving social problems.  
Keywords: Economic and mathematical model, correlation and regression analysis, agriculturalproduce, agricultural organizations of  
Russia, production capacity, assessment, growth factors, forecast, trend extrapolation, multiple regression.  
1
according to A. G. Aganbegyan, a member of the Academy of  
1
Introduction  
Sciences, Russian agricultural organizations cannot fully meet  
the needs of the Russian population in milk, beef, oil, and  
fruits. At the same time, the actual current self-sufficiency in  
milk, dairy products, meat, and meat products in Russia is  
significantly below not only the threshold requirements set by  
the RussianFederation Food Security Doctrine, but also below  
that of the USSR (1). Therefore, the issue of food security in  
Russia still remains pressing.  
In 2016, wheat production in Russia had grown to record-  
breaking 73.3 million tonnes (the year-to-year increase of  
8.6%). That year, Russia was ahead of the US and ranked 3rd  
in the world after China and India (18). However, research  
performed by leading Russian scholars revealed that Russian  
agricultural producers currently do not fully meet public  
demand for certain essential food products (21). For example,  
1
Corresponding author: Rafik M. Sagatgareev, Candidate of Economics, Banking and Finance Department, E-mail: rafik-  
5
22  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 522-530  
Figure 1: Structure of agricultural produce by categories of entities in the Russian Federation.  
The situation (the solution to the problem of ensuring the  
country's food security) is exacerbatedby the fact that the USA  
and EU member states initiatedand imposed sanctions against  
Russia restricting the import of foreign agricultural products  
into Russia (5). Therefore, the Russian authorities face the  
challenge of increasing the volume of agricultural output,  
primarily by agricultural organizations. The structure of  
agriculturalproduce by categories of entitiesin Russia (Fig. 1)  
shows that, since 2011, it is mainly produced by agricultural  
organizations. At the same time, over the past three years,  
agriculturalorganizations have been producing more than 50%  
of the total agricultural output in the Russian Federation. The  
steady growth trend in the share of agricultural organizations  
in the agricultural output in Russia in 20132017 is also worth  
pointing out. This trend was due to the outperforming growth  
of agricultural output produced by Russian agricultural  
organizations as compared with the other categories of entities.  
In our opinion, the faster growth of agricultural output  
produced by Russian agriculturalorganizations was a response  
to external pressure on the Russian agricultural sector (in the  
form of restricted import of foreign agricultural products from  
the EU into Russia).  
economic and mathematical model, we reviewed the body of  
literature on the topic.  
2
Literature review; materials and methods  
Despite the Doctrine establishes the official definition of  
national food security, there is no generally accepted  
interpretation of this concept even among the leading Russian  
researches. Therefore, we will begin the literature review by  
clarifying the concept of national food security. Our view on  
this matter is closest to the opinion of Ya. Sh. Pappe,  
N. S. Antonenko, and D. A. Polzikov, who believe, from the  
economic standpoint, that the concept of food security “is  
equivalent to physical and economic availability of food for  
people and should not a priori include other conditions” (15).  
Developing the idea, the authors made a number of rightful  
important conclusions:  
1
. The need for food independence (or self-sufficiency)  
requires justification, whatever definition is used.  
. The successful development of Russian internal  
2
agricultural production is not always the necessary and  
sufficient condition for ensuring the physical and economic  
availability of food.  
In view of the above, the purpose of the study was to  
addressthe increasinglyurgent issueof improving the tools for  
assessingand forecasting production capacity, above all, of the  
Russian agricultural organizations. Before developing the  
3
. The successful agricultural industry is neither sufficient  
nor necessary condition for national self-sufficiency in  
agricultural products (15).  
The above does not mean that the government should step  
back and not support domestic agricultural producers.  
5
23  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 522-530  
However, not all issuesare relatedto the national food security  
policy, indeed. For example, the work toward a developed  
agricultural industry and protection of agricultural producers  
from current and potential threats are not related to food  
security but rather agrarian policy within the general national  
industrial policy. And the issue of sustainable development of  
rural areas in Russia should be handled as part of the national  
social policy.  
Further, the literature review allowed to identify the  
leading obstacles to the intensive growth of the national  
agricultural output, including by subsectors. After that, we will  
briefly describe economic and mathematical models for  
accurate assessment and forecasting the production  
capabilities under study.  
In our opinion, one of the leading problems of Russian  
agriculture is labor productivity considerably lagging behind  
countries like Denmark, Germany, Norway, Poland, and  
Sweden, whose climatic conditions are almost equivalent with  
Russia's (11). In turn, this is due to the relatively unfavorable  
situation in the availability of technology and relatively low  
labor quality in the Russian agricultural sector. For example,  
according to the long-term average annual data (20102016),  
Russian farmers have significantly higher yield losses  
compared to a number of countries (18% versus 2.3% in  
Germany, 1.6% in Denmark, and 3.52% in Sweden), higher  
losses of cattle (18% versus almost none in Germany and  
Denmark, 0.63% in Sweden), while the share of elite cultivars  
is considerably lower (9.5% versus 95.6% in Germany, 98.1 in  
Denmark, and 95.27% in Sweden), and elite livestock breeds  
sphere available for them, and improving the environmental  
situation in the Russian rural areas. Such closely related  
challenges cannot be solved without a systematic country-  
specific approach.  
In the context of the study, rather interesting is the work  
by  
O. A. Cherednichenko,  
N. A. Dovgot'ko,  
and  
N. N. Yashalova, who further defined national priorities and  
guidelines for sustainable development of the national agri-  
food sector through systematization of key problems in the  
industry in Russia (27). For example, authors believe it  
possible to solve a wide arrayof goals of the Russianagri-food  
sector through achieving 14 closely related goals of the global  
agenda (in line with the UN Sustainable Development Goals):  
1) No poverty; 2) Zero hunger and sustainable agriculture; 3)  
Good healthand well-being;4) gender equality; 5) Clean water  
and sanitation;6) Affordable and clean energy; 7) Decent work  
and economic growth; 8) Industry, innovation and  
infrastructure; 9) Reduced inequalities; 10) Sustainable cities  
and communities; 11) Responsible consumption and  
production; 12) Climate action; 13) Conservation of marine  
ecosystems; and 14) conservation of terrestrial ecosystems.  
Based on these goals (to achieve them), the authors  
consider it expedient to propose and solve 78 objectives,  
making a fair point that no goal can be achieved in isolation  
from the other ones, and all the goals are related to the  
proposed objectives. At the same time, ensuring the balance  
and interrelation between different dimensions of sustainable  
development is reflected not only at the level of goals, but also  
at the level of objectives (27). For example, “doubling of  
agricultural performance and the income of small food  
producers by 2030 can be achieved through a substantial  
increase in productivity of crops by a more extensive use of  
methods to increase fertility, including biological methods,  
and the introduction of better performing agricultural  
technologies and equipment” (27).  
(
8% versus 98.5% in Germany, 99.5 in Denmark, and 94.47%  
in Sweden) (11). The seizure of land from producers for  
construction of housing and industrial facilities also are not  
conducive to increasing agricultural output. For instance, in  
19952016, the seizure of agricultural land in Russia  
amounted to about 17% (10).  
In view of the trend of depopulation of the country's rural  
areas (by 4.5% among people below working age and 15.7%  
among working age people by 2040) (4), the labor productivity  
in the industryand, above all, in the depressedRussian regions  
of the North-West, the center of the European part, and the Far  
East can be increased through active adoption of digital,  
intelligent and robotic technologies. E. A. Skvortsov,  
E. G. Skvortsova, E. S. Sandu, and G. A. Iovlev (22) assessed  
the current dynamics in implementation of robotic  
technologies and robotization density in Russia from the mid-  
It should be noted that while a number of important  
national agricultural subsectors are dominated by foreign  
producers (about 60% of milk processing, 70% of juices  
production, 80% and 90% of frozen and canned vegetables and  
fruits respectively), in the meat subsector, Russian producers  
provide the bulk of the agricultural output (29, 30). In our  
opinion, foreign investors are unwilling to invest in the  
production of meat and meat products in Russia, among other  
reasons, because of the lack of national legislation on holding  
companies (the most common form of business in this  
agricultural subsector both in Russia and worldwide) (16).  
Based on findings of an empirical research, E. V. Rodionova  
concluded that the activity of integrated forms of Russia meat  
subsector is a good demonstration of the advantages of large-  
scale production and agricultural and industrial integration (in  
particular, increasing agricultural performance and financial  
resources for purchasingmodern technologies and equipment).  
However, it has negative social and economic impacts (e.g.  
market monopolization and reduced competition, lower  
development opportunities and ousting small and medium-  
sized businesses, barriers to entry to the market). Therefore,  
the author suggests vectors of further development of the  
integration processes for the government, business, industry  
associations and the scientific community should focus their  
action on (in particular, ensuring the effective entry of  
2000s to 2016 inclusive. Based on the assessment, the authors  
developed an effective mechanism of transition of the Russian  
agricultural sector (considering its specific features) to  
robotics. In addition to increasing labor productivity, the  
authors believe, robotization of Russian agriculture will also:  
(
1) improve safety and working conditions of agriculture  
employees, (2) improve thequalityof agriculturalproducts, (3)  
create more jobs in adjacent sectors, and (4) lead to work  
enrichment in the agricultural sector.  
The Strategy of Sustainable Development of Rural Areas  
of the Russian Federation through to 2030 (23) lists an  
intensive growth of Russian agricultural output as only one of  
the core goals. Other equally important goals include  
improving the quality and standard of living of the Russian  
rural population, making the services of organizations in the  
5
24  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 522-530  
integrated structures to the international agri-food market and  
creating a national regulatory framework for property and  
administrative relations between members of such structures)  
and by industry. The work by N. V. Suvorov, in our opinion,  
deserves special attention: the author developed and tested the  
alternative method of linear regression (AMLR) on the data of  
industrystatistics of the USSR and Russia. The method allows  
accurate calculation of the dynamic parameters of the Cobb–  
Douglas production function (24, 25, 26). In addition to the  
high accuracy of verification of the model’s parameters  
(calculations are carried out on growth rates of the variables,  
i.e. on small numbers), his method guarantees their positive  
economic outcome under all the factors. Of equal interest, in  
our opinion, is the joint study by V. K. Gorbunov and  
A. K. Lvov that presents an authorial method of assessing the  
value of effective funds (formed in the process of utilization of  
business investments) and simultaneously creating capital  
production function (8). The researchers achieved the high  
accuracy of economic and mathematical modeling of the  
object's production capacity through using a special variation  
of the parameter continuation method, a known effective  
method of solving systems of nonlinear equations. At the same  
time, case studies suggest that not all attempts to develop the  
(
16, 31).  
Another key agricultural subsector in Russia, dairy cattle  
breeding, still faces the problems of low profitability, growing  
production costs, shortage of proprietory funds, the annual  
reduction in cow numbers and milk production, unbalanced  
ration, shortage of forage and its poor quality, and other  
negative trends. One of the leading causes of the current  
situation in the subsector, according to K. A. Zadumkin, A. N.  
Anishchenko, V. V. Vakhrusheva, and N. Yu. Konovalov, and  
we share their opinion, is an unsatisfactory condition of the  
forage resources (12).  
Another team of authors that included A. A. Kuzina,  
N. A. Medvedeva, K. A. Zadumkina, and V. V. Vakhrusheva  
concluded from their empirical study that the effective  
development of the Russian dairy industry is only possible  
through balanced measures of public policy that would take  
into consideration both the challenges facing the industry and  
internationalexperience (13, 32). The authors analyzed the use  
of the best available techniques (BAT) and proposed a model  
for creating the concept of development of the subsector using  
such techniques. In our opinion, of practical interest are  
suggested scenarios of development of the Russian dairy  
industry and the conclusion that the public policy for its  
development should be based on an innovative scenario  
involving its systemic modernization to ensure the national  
food and environmental safety, and on exporting dairy  
products.  
method were successful. For example,  
a number of  
publications incorrectly applied the method of spatial  
regression for creating a universal investment production  
function of any Russian region based on regional statistical  
data for one year or more. V. K. Gorbunov and  
V. G. Derevenskii published a critical analysis of such studies  
and refuted the validity of using the method for such purposes  
(7).  
Let's proceed to the methodological aspect of the study.  
The study employed a number of methods of economic and  
mathematical analysis (graphical, tabular, comparisons  
analysis, etc.) The key role was played by well-known  
methods of economic and mathematical modeling, namely:  
correlation and regression analysis and trend extrapolation  
method.  
Concluding the literature review, we will briefly describe  
the known economic-mathematical models thatcan be used for  
estimating and forecasting production capacity with the  
necessary degree of accuracy.  
Up to now, an effective assessment tool for production  
capacities of the country, region, industry sector (including  
agriculture), and enterprise, both in Russia and abroad, have  
been the CobbDouglas production function (14). The classic  
version of this function allows to estimate and forecast the  
output depending on two factors (labor and capital) (28):  
Based on the literature review on the topic, the objective  
was set for this study to develop an economic and  
mathematical model that would allow assessment and  
forecasting the agricultural output of Russian agricultural  
organizations with the required accuracy.  
,
3
Results and discussion  
In this study, the modeling was carried out through the  
Y  A K  L  
(1)  
correlation and regression analysis that allows not only to  
deepen the factor analysis of the effective indicator but also to  
realize the forecast function. The multifactor correlation and  
regression model is created through a number of steps (3): (1)  
a-priori study of the economic problem, (2) listing factors,  
their logical analysis, 3) collection of initial data and their  
original processing, (4) specification of the regression  
equation, (5) assessment of the regression equation, (6)  
selection of the main factors, (7) verification of the model  
vaildity, (8) economic interpretation, and (9) forecasting of  
unknown values of the dependent variable. Table 1 shows the  
initialdata for the economic and mathematical modeling of the  
agricultural output of Russian agricultural organizations over  
the last 12 years.  
where A  production coefficient; L, K  production  
factors, labor (average number of employees) and capital  
average fixed assets value for the period) respectively; α, β —  
output elasticity coefficients by capital and labor.  
The development of economic and mathematicalmodeling  
of the production capacity is currently actively researched,  
precisely on the basis of the CobbDouglas production  
function. In our view, they can be categorized into two groups:  
(
1
) modification of functional specification by including (apart  
from the classic factors) a number of alternative independent  
variables; 2) development of authorial econometric methods  
allowing to correctly determine both static (unchanging over  
time) and dynamic (varying by periods) parameters of the  
CobbDouglas production function. Most interesting are  
studies of the second variety, as they are generally intended to  
improve the accuracy of assessment and forecasting of  
production capacities at the macro-, meso-, and microlevel,  
This information, in turn, was obtained from the Russian  
state statistical monitoring agency (17). In our case, the  
resultant indicator (dependent variable) is the monetary  
5
25  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 522-530  
agricultural output of agriculturalorganizations (actual prices)  
in billion rubles. Previously, on the basis of the system  
analysis, a set of 7 factors (independent variables) was  
obtained that, according to the author, play the biggest role in  
the resultant indicator. They included variables that describe  
key indicators of the lines of business of agricultural  
organizations (crop farming and animal husbandry), assess the  
condition of infrastructure and facilities, utilization efficiency  
of the basic resources (labor and capital), and the level of job  
compensation in Russian agricultural sector.  
Table 1: Initial data for the economic and mathematical modeling of the agricultural output of Russian agricultural organizations, 20062017.  
Indicator  
Agricultural  
output  
2006  
2007  
2008  
2009  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
of  
agricultural  
organizations  
(
(
actual prices)  
Y), billion  
rubles.  
704.5  
918.5  
1183.7  
1141.5  
1150.0  
1540.6  
1600.8  
1756.0  
2139.0  
2657.1  
2890.4  
2978.0  
Cultivation  
areas of grains  
and  
grain  
legumes crops  
belonging  
to  
agricultural  
organizations  
(
X
1
), thousand  
hectares  
33,632  
33,754  
35,363  
35,713  
32,048  
32,114  
32,120  
32,644  
32,147  
32,052  
31,933  
31,618  
Productivity of  
grains and grain  
legumes  
in  
agricultural  
organizations  
(
X
2
),  
metric  
per  
centners  
hectare  
of  
harvested area  
Сattle numbers  
in agricultural  
organizations  
19.2  
20.5  
24.6  
23.6  
19.0  
23.3  
19.3  
23.1  
25.4  
25.0  
27.6  
31.0  
(
X
3
), thousand 10,840. 10,456. 10,079. 9,709.  
9,405.  
8
9,210.  
8
9,112.  
6
8,930.  
3
8,661.  
5
8,485.  
2
8,401.  
8
8,304.  
0
heads  
4
4
9
3
Milk yield per  
cow  
in  
agricultural  
organizations  
(
X
4
), kilograms  
3,564  
187  
3,758  
197  
3,892  
210  
4,089  
226  
4,189  
236  
4,306  
247  
4,521  
258  
4,519  
274  
4,841  
290  
5,140  
307  
5,370  
318  
5,660  
327  
Load of land per  
tractor  
agricultural  
organizations  
(
in  
X
5
), hectare  
Combine  
harvesters per  
thousand  
hectares  
of  
planted areas of  
crops  
in  
agricultural  
organizations  
(
X
6
), pcs  
4
3
3
3
3
3
3
3
2
2
2
2
Average  
monthly  
nominal  
job  
compensation of  
agricultural  
organizations  
7
employees (X ),  
RUB  
4,569  
6,144  
8,475  
9,619  
10,668  
12,464  
14,129  
15,724  
17,724  
19,721  
21,445  
25,156  
Source: the author's compilation.  
5
26  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 522-530  
Table 2: Matrix of Pearson's paired correlation coefficients.  
Indicator  
Y
X
1
X
2
X
3
X
4
X
5
X
6
X
7
Y
1
X
X
2
X
3
X
4
1
-0.633  
0.822  
-0.918  
0.986  
1
-0.21  
0.69  
-0.67  
1
-0.67  
0.79  
1
-0.95  
1
X
5
0.977  
-0.69  
0.75  
-0.97  
0.99  
1
X
X
7
6
-0.942  
0.980  
0.57  
-0.67  
-0.78  
0.79  
0.91  
-0.96  
-0.94  
0.99  
-0.94  
0.99  
1
-0.93  
1
Source: the author's compilation.  
The factors for the model were selected based on the  
calculation and analysis of Pearson's paired correlation  
coefficients (see Table 2). The formula for calculating such  
coefficients on the example of the resultantor any other factor  
is below (3):  
1 2  
where X and X  Factors 2 and 7, respectively, of the  
initial set of indicators.  
Table 3: Results of verification of the initial data for consistency and  
compliance with the normal distribution law  
Indicator  
Y
X
1
X
2
푖ꢁ1  
푖 푖  
̅
[(푥 −푥)(푦 − 푦ꢀ )]  
Arithmetic mean  
Mean-square deviation  
1721.7  
745.8  
23.5  
3.5  
13,820  
6,075  
푥푦  
=
2,  
(2)  
푖ꢁ1  
)2  
(푦 푦ꢀ )  
푖ꢁ1  
(푥−푥  
̅
Variation coefficient  
Skewness  
0.433  
0.54  
0.148  
0.55  
0.440  
0.29  
where x  
and resultant indicator; ꢂ  
and resultant indicators. The pairedcorrelation coefficients for  
any combination of factors is calculated in the same manner.  
The decision to includea factor in the model is taken according  
to a number of rules (19). According to Table 2, Factors 2, 3,  
i
, y  
i
 empirical value, respectively, of any factor  
, ꢃꢀ  arithmetic mean of the factor  
̅
Skewness error  
The ratio of skewness to its error  
Kurtosis  
0.71  
0.77  
-1.06  
0.71  
0.78  
0.14  
0.71  
0.40  
-0.79  
Kurtosis error  
1.41  
1.41  
0.10  
1.41  
The ratio of kurtosis to its error  
Source: the author's compilation.  
-0.75  
-0.56  
4
, 5, and 7 (3 and 6) have a direct/inversestrong impact on the  
resultant indicator. The moderate relationship was found  
between the dependent variable and Factor 1. There is also a  
strong relationship between certain factors. In view of the  
calculation, analysis and the above rules, it was decided that  
only two factors (Factor 2 and 7) should be included in the  
model. First, both factors have a direct strong impact on the  
resultant indicator. Secondly, they are loosely bound with one  
another. Such indicators will hereinafter be referred to as  
Factors 1 and 2. After that, the initial data are verified (in  
terms of the indicators included in the model) for consistency  
and compliance with the normal distribution law based on  
calculation and analysis of the following indicators: the  
variation coefficient and the ratio of skewness/kurtosisto their  
error (see Table 3). The calculations are carried out according  
to the formulas given in (19). The calculation and analysis of  
the variation coefficient show that while Factor 1 is  
characterized by a medium variation, for other indicators it is  
considerable. However, in this case, it is inexpedient to  
exclude atypical observations to reduce the variation  
coefficient of the resultant indicator and Factor 2, as it would  
adversely affect the adequacy of the model. Therefore, we will  
assume the initialdata to be conditionally consistent. The ratio  
of skewness/kurtosisto their error is significantly lower than 3  
in absolute terms. This means that skewness and kurtosis are  
insignificant, and therefore the initial data complies with the  
normal distribution law. Therefore, the data can be used for the  
correlation and regression analysis. The specification of the  
model was determined through the regression analysis:  
The above regression equation suggests that both factors  
have a direct impact on the resultantindicator. This means that  
an increase in both productivity of grains and grain legumes in  
agricultural organizations and the average monthly job  
compensation of their employees increases agricultural output  
of Russian economic entities. The key step of the correlation  
and regression analysis is verifying the model's adequacy (its  
main findings are shown in Table 4). Such verification is  
carried out according to the method given in (3) and (6). Table  
4
preliminarily suggests that the model is adequate and,  
therefore, the results of correlation and regression analysis can  
be used in practical work. To determine the impact of each of  
the factors on the resultant indicator, we calculated another  
special indicator: elasticity.  
푋ꢀ ꢀꢀꢋ  
ЭХ = 퐴 ꢌꢀ  
,
(4)  
where  
A
i
previously determined coefficients  
(
parameters) of the regression equation under each factor. In  
our case, the elasticity was 0.36 and 0.87, respectively for  
factors 1 and 2. This means that while a 1% increase in the  
productivity of grains and grain legumes in agricultural  
organizations increases the resultant indicator only by 0.36%,  
increasing the average nominal monthly pay for their  
employees increases the resultant indicator by 0.87%.  
Therefore, the calculation and analysis of the elasticityfor each  
factor suggest that the greatest potential for growth of  
agricultural output of Russian agricultural organizations rests  
with increasing the level of job compensation for employees.  
푌 = ꢄ39ꢅ.3 + ꢆ6.3ꢇ + 0.ꢅ08ꢇ ,  
(3)  
푖  
5
27  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 522-530  
An equally important marker of the model's adequacy is the  
average approximation error:  
Table 4: Assessment of the model's adequacy.  
Indicator’s value  
Tabulated  
Hypothesis (indicator)  
Note  
Calculated  
(standard)  
-
1 for A  
for A , and 8.66  
for A  
0
; 1.2  
1
2
. Hypothesis of the statistical significance of the  
regression coefficients (Student's t-test)  
Only A  
2
is a significant coefficient of the  
regression equation  
1
2.2622*  
2
. Hypothesis of the statistical significance of the  
1
25.18  
4.26*  
The regression equation is significant  
regression equation (the FischerSnedecor F-test)  
. Coefficient of determination  
. Adjusted coefficient of determination  
3
0.965  
0.958  
0.80.9**  
0.80.9**  
The model allows to carry out an accurate  
assessment of the phenomenon under study  
4
Note: * and **  data obtained from (9) and (6), respectively  
Source: the author's compilation.  
−푦푖т  
푖  
ꢊꢎꢈ  
5). As Table 5 shows, if the trend of the two factors changing  
over time is maintained (annual growth since 2017), the  
resultant indicator is expected to grow in the medium-term  
horizon.  
퐸 =  
|
| ꢅ00%,  
(5)  
where y  
empirical and obtained through the modeling, respectively; n  
the number of observations. In this case, the approximation  
i
and y  values of the resultant indicator,  
error was 7.3%. Given that in economic calculations the  
permissible error is within 58% (19), the following  
conclusion can be made: the regression equation describes the  
dependencies under study with sufficient accuracy.  
Therefore, the model's adequacy test indicates that the  
above resultsof correlation and regressionanalysis can be used  
in practice, namely not only for calculatinggrowth potential of  
the resultant indicator but also for forecasting it. The factors  
are forecasted through the trend extrapolationmethod (see Fig.  
2
and 3).  
2
Figure 3: Changes in X over time  
Table 5: Resultant and factorial indicators forecast  
Forecasting period  
Time  
13  
X
1пр  
X
2пр  
Y
пр  
2
2
018  
019  
31.6  
33.7  
35.9  
38.2  
26,642  
29,062  
31,577  
34,189  
3,324.9  
3,640.5  
3,970.8  
4,315.8  
14  
2
2
,020  
,021  
15  
16  
Source: the author's compilation.  
The forecast for the core indicator (monetary agricultural  
output) indicates an optimistic scenario for Russian  
agricultural organizations for 20182021. Despite this  
forecast, Russian agricultural organizations currently have  
significant growth potential in agricultural output. Among  
other things, this is shown by the analysis of job compensation  
level at Russian agricultural organizations over the past 12  
years (Table 6).  
1
Figure 2: Changes in X over time  
The trend type (changes over time) is selected through the  
analysis of the coefficient of determination. In our case, the  
trend is considered to be detected if the above indicator  
exceeds 0.9. In order to fulfill this condition, a number of  
atypical observations were excluded from the time series for  
factor 1. Figures 2 and 3 show that the change over time in  
each of the two factors is described by a polynomial trendline.  
This allows to generate a forecast of the resultant and  
factor indicators for the mid-term perspective (4 years) (Table  
Despite in 20132017 the job compensation was steadily  
growing for employees of agriculturalorganizations in Russia,  
the average salary of Russian agricultural employees was  
35.7% lower than overall in Russian economy. In our opinion,  
5
28  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 522-530  
this problem cannot be solved without the development and  
implementationof a strategyto increasethe income of the rural  
population.  
identify growth potential for the resultant indicator but also to  
make forecasts of it.  
References  
Aganbegyan AG, Porfir'ev BN. Zameshchenie importa  
1
.
Table 6: Analysis of job compensation level at agricultural  
organizations in Russia  
prodovol'stviya  
strategicheskie otvety na antirossiiskie sektoral'nye sanktsii  
Substibution of Food Imports and Development of Green  
Agricultural Economy as Strategic Responses to Anti-Russian  
i
razvitie «zelenoi» agroekonomiki kak  
[
Average monthly nominal job  
compensation of organizations'  
employees by industry, RUB  
Job  
compensation  
in agriculture,  
%
Sectoral Sactions] Ekonomika sel'skokhozyaistvennykh  
pererabatyvayushchikh predpriyatii. 2015;2.  
i
Year  
Overall  
2. Akhmetov VYa, Gataullin RF, Galikeev RN. Problemy  
i
throughout  
Agriculture  
perspektivy organizatsii regional'nogo agropromyshlennogo  
nauchno-proizvodstvennogo klastera v Respublike Bashkortostan  
the economy  
[
Problems and Prospects of Organization of Regional Agricultural  
Research and Manufacturing Cluster in the Republic of  
Bashkortostan]. Ekonomika: vchera, segodnya, zavtra.  
017;7(5A):2744.  
Berezhnaya EV, Berezhnoi VI. Matematicheskie metody  
modelirovaniya ekonomicheskikh sistem [Mathematical  
2
2
2
2
2
2
2
2
2
2
2
2
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
10,634  
13,593  
17,290  
18,638  
20,952  
23,369  
26,629  
29,792  
32,495  
34,030  
36,746  
39,144  
4,569  
6,144  
43.0  
45.2  
49.0  
51.6  
50.9  
53.3  
53.1  
52.8  
54.5  
58.0  
58.4  
64.3  
2
8,475  
3
4
.
.
9,619  
Modelling Methods for Economic Systems]. Moscow. Finansy i  
Statistika Publ., 2006; 432 pp.  
Blinova TV, Bylina SG. Stsenarnyi prognoz chislennosti  
sel'skogo naseleniya Rossii na srednesrochnuyu perspektivu  
10,668  
12,464  
14,129  
15,724  
17,724  
19,721  
21,445  
25,156  
[Scenario Forecast of Rural Population in Russia in the Mid-Term  
Horizon]. Ekonomika Regiona. 2014;4: 298308.  
5. Garipov FN, Gizatullin KhN, Garipova ZF. Osnovnye  
napravleniya preodoleniya vyzovov XXI veka v agrosfere [The  
Main Vectors of Overcoming the Challenges of the 21st Century  
in Agriculture] Ekonomika regiona. 2016;12(1): 105116.  
6
.
Gorbatkov SA, Polupanov DV, Farkhieva SA, Korotneva MV.  
Ekonometrika [Econometrics]. Ufa, RITs BashGU Publ.  
Source: the author's compilation.  
2
012;204 pp.  
Gorbunov VK, Derevenskii VG. Proizvodstvennye funktsii  
malogo predprinimatel'stva regionov Rossii. metode  
prostranstvennoi regressii” [Production Functions of Regional  
7
.
R. Sagatgareev proposes a set of measures to significantly  
O
increase the salaries of agricultural organizations' employees  
in Russia (20). The following important problems in  
agricultureare equallypressingin almost every Russianregion  
Small Business in Russia. On the “spatial regression” method ].  
Vestnik of Moscow University, 2015;1: 94109.  
(
2): high physical depreciation of fixed assets, lack of  
8. Gorbunov VK. L'vov A.G. Effektivnye proizvodstvennye fondy i  
proizvodstvennye funktsii malogo predprinimatel'stva [Effective  
Production Assets and Production Functions of Small Business].  
Ekonomika regiona, 2018;14(2): 502515.  
operating assets, low farming standards, and the return to  
primitive and low-performance techniques and organizational  
forms of business.  
9
.
Gromyko LG. Teoriya statistiki: praktikum. [The Theory of  
Statistics. Workshop] Moscow, INFRA-M Publ., 2003; 160 pp.  
4
Conclusion  
10. Denisov VI. Motivatsionnye mekhanizmy i predposylki rosta  
sel'skokhozyaistvennogo proizvodstva Rossii [Incentives  
v
Based on the body of literature on the topic, this study set  
Mechanisms and Prerequisites of Growth of Agricultural Output  
in Russia]. Ekonomika i matematicheskie metody, 2017;53(2):  
and solved the problem of assessment and forecasting the  
production capabilities of Russian agricultural organizations  
through economic and mathematical modeling, namely the  
correlation and regression analysis. The analysis found that the  
most impact on the agricultural output of Russian agricultural  
organizations was exerted by the level of job compensation of  
their employees, not the productivity of the leading crops.  
Given its relatively low value compared to the overall average  
salary in Russian organizations, the problem of raising the job  
compensation level in Russian agricultural organizations has  
become more urgent. In addition, Russian agricultural  
organizations have a number of other unresolved problems.  
The leading problems include highly depreciated fixed assets,  
deficiency of operating assets, etc. Therefore, the optimistic  
scenario (growth of agricultural output of agricultural  
organizations) is only possibleif the changing trend for the two  
leading factors is maintained. This, in turn, requires the  
solution of the above problems. This model allows not only to  
6
676.  
1
1
1. Denisov VI. Neispol'zuemye vozmozhnosti gosudarstvennoi  
podderzhki agrarnogo truda v Rossii [Unused Opportunities of  
Government Support of Agricultural Labor in Russia].  
Ekonomika regiona, 2018;14(3):10031013.  
2. Zadumkin KA, Anishchenko AN, Vakhrusheva VV, Konovalova  
NYu. Povyshenie effektivnosti proizvodstva moloka na osnove  
sovershenstvovaniya regional'noi sistemy kormoproizvodstva  
[
Improving the Performance of Milk Production through  
Improving the Regional System of Forage Production].  
Ekonomicheskie Sotsial'nye Peremeny: Fakty, Tendentsii,  
Prognoz. 2017;10(6): 170191.  
i
13. Kuzin AA, Medvedeva NA, Zadumkin KA, Vakhrusheva VV.  
Stsenarii razvitiya molochnoi promyshlennosti Rossii [Scenarios  
of Development of the Russian Dairy Industry]. Ekonomicheskie  
i Sotsial'nye Peremeny: Fakty, Tendentsii, Prognoz. 2018;11(6):  
7
388.  
1
4. Neganova VP, Dudnik AV. Sovershenstvovanie gosudarstvennoi  
podderzhki APK regiona [Improvement of Government Support  
5
29  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 3, Pages: 522-530  
for Regional Agricultural Sector]. Ekonomika regiona.  
30. El-Kader, S. M. A., & Al-Dahr, M. H. S. (2018). Inflammatory  
cytokines and immune system response weight reduction in obese  
patients with type 2 diabete, mellitus. European Journal of  
General Medicine, 15(1).  
31. Özer G, Ergün U, İnan LE. Headache in Multiple Sclerosis From  
a Different Perspective: A Prospective Study. J Clin Exp Invest.  
2018;9(1):9-13. https://doi.org/10.5799/jcei.413052.  
32. Akkuzova, A., Mankeyev, Z., Akkuzov, A., Kaiyrbekova, U., &  
Baiymbetova, R. (2018). Some features of the meaning “literary  
text” in the pragmalinguistic aspect. Opción, 34(85-2), 20-34.  
2
018;14(2): 651662.  
1
1
5. Pappe YaSh, Antonenko NS, Polzikov DA. Prodovol'stvennaya  
bezopasnost' Rossii: sovremennyi podkhod [Russia's Food  
Security: Modern Approach]. Problemy prognozirovaniya.  
2
017;3: 6274.  
6. Rodionova EV. Integratsionnye protsessy v myasoproduktovom  
podkomplekse APK Rossii: rezul'taty, osobennosti, napravleniya  
razvitiya [Integration Processes in the Meat Subsector of the  
Russian Agricultural Industry: Results, Special Characteristics,  
Vectors of Development]. Ekonomicheskie  
i Sotsial'nye  
Peremeny: Fakty, Tendentsii, Prognoz. 2018;11(2): 144159.  
7. Rossiya v tsifrakh. 2018: krat. stat. sb. [Russia in Numbers. 2018:  
Short Statistical Compilation]. Moscow, Rosstat Publ. 2018; 522  
pp.  
8. Rossiya i strany mira. 2018: statisticheskii sbornik [Russia and the  
World. 2018: Statistical Compilaiton]. Moscow, Rosstat Publ.  
1
1
2
018; 375 pp.  
1
2
9. Savitskaya GV. Ekonomicheskii analiz. [Economy Study].  
Moscow, Novoe Znanie Publ., 2003; 640 pp.  
0. Sagatgareev RM. Mekhanizm razrabotki i realizatsii strategii  
povysheniya dokhodov sel'skogo naseleniya [The Mechanism of  
Development and Implementation of the Strategy to Increase  
Incomes of Rural Population]. Ekonomika: vchera, segodnya,  
zavtra, 2017;7(5A): 90100.  
2
2
1. Samygin DYu, Baryshnikov NG, Mizyurkina LA. Proektnaya  
model' razvitiya agrarnoi ekonomiki: prodovol'stvennyi aspekt  
[Design Model of Development of Agrarian Economy: Food  
Aspect]. Ekonomika regiona, 2017;13(2): 591603.  
2. Skvortsov EA, Skvortsova EG, Sandu ES, Iovlev GA. Perekhod  
sel'skogo khozyaistva  
k
tsifrovym, intellektual'nym  
i
robotizirovannym tekhnologiyam [Transition of Agriculture to  
Digital, Intellectual and Robotic Rechnologies]. Ekonomika  
regiona. 2018;14(4):10141028.  
2
2
3. The Strategy of Sustainable Development of Rural Areas of the  
Russian Federation through to 2030: approved by the Executive  
Order of the Government of the Russian Federation No. 151-p,  
dated  
http://www.consultant.ru/document/cons_doc_LAW_174933.  
4. Suvorov NV. Aktual'nye napravleniya problemy  
sovershenstvovaniya model'nogo instrumentariya  
February  
2,  
2015.  
URL:  
i
makroekonomicheskogo analiza [Current Vectors and Problems  
of Improvement of Modelling Tools in Macroeconomic  
Analysis]. Problemy prognozirovaniya. 2005;5: 2529.  
2
2
5. Suvorov NV. Verifikatsiya ekonometricheskoi modeli s uchetom  
apriornykh ogranichenii na strukturnye parametry [Verification of  
the Econometric Model in View of A Priori Restrictions on  
Structural Parameters]. Voprosy statistiki, 2016;11:5366.  
6. Suvorov NV. Razvitie metodov issledovaniya statisticheskikh  
zavisimostei: regressionnye modeli s peremennymi strukturnymi  
parametrami [Development of Research Methods for Statistical  
Dependencies: Regression Models with Variable Structural  
Parameters]. Voprosy statistiki. 2018;6: 315.  
2
7. Cherednichenko OA, Dovgot'ko NA, Yashalova NN. Ustoichivoe  
razvitie agroprodovol'stvennogo sektora: rossiiskie prioritety i  
napravleniya adaptatsii Povestki dnya2030 [Sustainable  
Development of the Agri-Food Sector: Russian Priorities and  
Lines of Adaptation of the Agenda 2030]. Ekonomicheskie i  
Sotsial'nye Peremeny: Fakty, Tendentsii, Prognoz. 2018;11(6):  
8
9108.  
2
2
8. Cobb CW, Douglas PH. A Theory of Production. Supplement,  
Papers and Proceedings of the Fortieth Annual Meeting of the  
American Economic Association. The American Economic  
Review. 1928; 18(1): 139165.  
9. Osokina NV, Kazantseva EG. Strengthening of the Economic  
Power of the Dominating Entities in the Food Industry. Foods and  
Raw Materials. 2016; 4(2): 190200.  
5
30