2019, Volume 7, Issue 4, Pages: 623-630  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Agrobiological Characteristics of Aftermath  
Ability and Shoot Structure in Cultivation of  
Fodder Sorghum  
Nikolai M. Belous, Sergei A. Belchenko, Alexander V. Dronov*, Vladimir V. Dyachenko,  
Vladimir E. Torikov  
Federal State Budget Educational Institution of Higher Education “Bryansk State Agrarian University” 243365, Russia, Bryansk  
region, Vygonichsky district, selo Kokino (village), Sovetskaya str., 2a  
Received: 12/06/2019  
Accepted: 1/09/2019  
Published: 03/09/2019  
Abstract  
The article presents long-term results of the study of the aftergrowth mechanism depending on the morphobiological parameters of  
the structure and development of fodder sorghum plants, the time of cutting, cutting height, application of mineral fertilizers and other  
technologies of sorghum crops cultivation. The aim of the research was to study the agrobiological characteristics of aftergrowth and  
the shoot structure of crops of sugar sorghum, Sudan grass and sorghum-Sudan hybrids in conditions of gray forest soils of the south-  
western part of the Central region of Russia (Bryansk region). Research methods include field, laboratory and statistical methods. Four  
types of aftergrowth have been identified: 1) - formation of new shoots from the buds of the tillering node (mesocorm); 2) - formation  
of new shoots from the uncut first (lower) internodes in the leaf axils; 3) - growth of shoots whose apical point was untouched during  
cutting (from uncut short shoots); 4) - from the meristem tissue of cut shoots through their reproduction. According to the aftergrowth  
ability, a group of grass sorghum with good aftermathability and sugar sorghum with slight aftergrowth of the shoots can be singled  
out. The magnitude and differences in the aftermath yields are associated with the phytomeric structure of the sorghum plant shoots  
that grow and develop their primordia due to the activity of the apical meristem. Prevalent in the pastures of the studied genotypes of  
sorghum were generative, elongated vegetative and lateral aerial shoots with a complete and incomplete development cycle. The  
formation of a greater number of lateral aerial shoots (with branching) and shortened shoots was observed in plants on fertilized  
variants, especially those treated with nitrogen supplements. Prevalent in the aftergrass pastures of Sudan grass and a sorghum-Sudan  
hybrid were elongated vegetative shoots with a high proportion of leaves from 45 to 57%. When cut at1012 cm, a more intense  
aftergrowth of grass sorghum was observed. The yield of the aftermath of the sorghum and sorghum-Sudan hybrid was on average  
14.322.7% higher than by a low cut (56 cm). The maximum yield of dry matter of more than 15.0 t/ha was obtained using the  
aftermath of Sudan grass.  
Keywords: Fodder sorghum, Phytomer, Mineral fertilizers, Cutting height, Aftermath  
1
encompasses Sudan grass, sorghum-Sudan hybrids (SSH) and  
sugar sorghum, which are widely represented in Russia from  
its western regions to the Far East (1, 6, 9, 14, 18, 19, 20, 24).  
Currently, scientists at the All-Russian Research and  
Development Institute of Cereal Crops named after I.G.  
Kalinenko, All-Russian Research Institute of Sorghum and  
Soybean “Slavyanskoe pole”, Russian Research and Design  
Institute of Sorghum and Corn, Stavropol Research Institute of  
Agriculture, OOO Agroplasma and other research institutions  
are doing extensive and fruitful work on selection, seed  
production and development of agricultural technology in  
Russia. Today, when characterizing modern varieties and  
hybrids of sorghum, particular importance is attached to its  
1
Introduction  
Expanding the species diversity of agrocenoses using  
sorghum fodder crops, which are characterized by high  
plasticity, neutral response to day length, stable yield, intense  
growth and the possibility of obtaining 2-3 aftermaths or  
grazing cycles, resistance to stress factors of the abiotic  
environment, is an innovative trend in production of high-  
quality fodder in many regions of Russia. The expansion of the  
range of distribution and use of fodder sorghum is promoted  
by new achievements in selection for the creation of thermo-  
and photoneutral genotypes characterized by rapid early  
growth, resistance to cold, ability to form high and stable  
fodder yields. The name "fodder sorghum" usually  
Corresponding author: Alexander V. Dronov, Federal State Budget Educational Institution of Higher Education “Bryansk State  
Agrarian University” 243365, Russia, Bryansk region, Vygonichsky district, selo Kokino (village), Sovetskaya str., 2a. E-mail:  
dronov.bsgha@yandex.ru.  
6
23  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 623-630  
aftergrowth. Sorghum aftermath as a fodder crop is a positive  
feature that allows collecting two or more full-scale yield of  
the top weight and makes it possible to rationally regulate the  
period of use and collect green weight for forage or for  
ensilaging in late autumn. To maximize the productive  
potential of fodder sorghum, it is necessary to make wider use  
of the biological ability of plants for aftergrowth. This is also  
explained by the fact that the formation of a aftergrowth is  
significantly influenced by such factors as the timing and  
height of the first cutting, tillering intensity, the ability of  
sorghum plants to grow in different ways, the amount of  
nutrients in the soil, weather and other conditions (2, 4, 13, 15).  
The results of many years of research by scientists of the  
Bryansk State Agrarian University on practical introduction of  
sorghum crops in the field fodder production made it possible  
to suggest multivariate technologies of their cultivation in the  
southwestern part of the Central Region. It should be noted that  
in the conditions of the Bryansk region, for the first time in  
Russia, a new technology was developed for the creation and  
use of a commercial sorghum pasture, which was implemented  
in the Kistersky agricultural production cooperative of the  
Pogarskiy district of the Bryansk region (3, 8, 10, 11, 22, 23).  
The formation of aftermath in grass sorghum (Sudan grass,  
sorghum-Sudan hybrids) is sufficiently studied, whereas the  
aftermath has not been taken into account in revealing the full  
productivity of sugar sorghum for various reasons (due to  
alkaloidness of young plants, low aftermath ability of the  
culture, etc.). In this case, we should express our point of view  
and support the opinion of reputable scientists and researchers  
of the Don, Kuban, and Volga regions, who propose changes  
to the Methodology of the State Commission for the Sorghum  
Variety Trial Testing (1989), since it can not ensure accurate  
account of aftermath of modern varieties and hybrids. In their  
studies, the harvesting of the main crop of the above-ground  
mass and aftermath of fodder sorghum was carried out using  
single-cut and two-cut patterns. However, the afterbirth  
formation features related to the phytomeric structure of  
sorghum stems, the height and frequency of cutting, mineral  
nutrition conditions and harvest time were not fully revealed.  
Therefore, a study of the mechanism of aftergrowth depending  
on the agrobiological characteristics of sugar and grass  
sorghum, is interesting both from scientific and industrial  
points of view.  
2.63 mEq. per 100 g of soil. The soil is characterized by a low  
content of labile phosphorus and exchange potassium.  
The research methods included field, laboratory and  
statistical methods.  
The objects of research were viable sorghum-Sudan  
hybrids selected at the All-Russian Research Institute of  
Sorghum and Soybean “Slavyanskoe pole”, (Rostov region,  
Zernograd): Slavyanskoe pole 15, Slavyanskoe pole 18 and  
Priusadebnyy; hybrids selected at the All-Russian Research  
and Development Institute of Cereal Crops named after I.G.  
1
Kalinenko (Rostov region): Intensive F and sugar sorghum –  
Zersil F ; Sudan grass  Kinelskaya 100 variety (originator -  
1
Volga Volga Research Institute of Selection and Seed Farming  
named after P.N. Konstantinov). The predecessor cultures  
were soybean, winter triticale and annual grasses. Agricultural  
technologies used were common in the region for forage crops.  
The research was performed in accordane to widely accepted  
methods (7, 16, 17).  
The mineral fertilizers in the form of azofoska –  
60  
background 1 (N60P K60) and borofoska  background 2  
60) were applied during pre-seeding treatment with the  
(P60K  
combined unit RVK-3.6, and nitrogen fertilizers in the form of  
ammonium nitrate (top dressing): doses  N30, N60 and the N90  
 during the beginning of the tillering phase on these  
backgrounds. Each genotype (variety, hybrid) was sown using  
a SN-16 seeder in 4 rows with 60 cm between them; the plot  
length was 70 m; the experiment was replicated four times; the  
2
test plot area was 10m ; the variants were placed  
systematically. During the growing season of the studied  
genotypes of fodder sorghum, phenological monitoring of  
growth and development was carried out, and plant height,  
number of shoots, parameters of leaves and panicles were  
determined according to The Broad Unified CMEA Classiffier  
of Cultivated Species of the Genus Sorghum Moench (25).  
Assessment of above-ground mass was performed using the  
cut-sample method by weighing - during the late stem  
elongation stage and early heading stage (fodder variant, two-  
cut pattern) and the milk-wax stage of ripeness of the grain  
(hay-silage variant, single-cut). To perform a structural  
analysis, sheaves of the green mass yield of 1 kg were sampled.  
Laboratory analysis was performed in the scientific training  
laboratory of field fodder production and the Center for  
collective use of instrument and scientific equipment of the  
Bryansk State Agrarian University.  
Farm testing of scientific developments was carried out in  
several farms in the Bryansk, Vygonichsky, Zhiryatinsky,  
Pochepsky, Pogarsky, Trubchevsky and Novozybkovsky  
districts of the Bryansk region. For more than ten years, the  
base farms have been the Kokino instructional farm, LLC  
Bryansk Meat Company, the Okhotno Agroholding, the  
agricultural production cooperative Agrofirm Kultura, the  
Kistersky agricultural production cooperative, and the  
experimental fields of the Novozybkovskaya agricultural  
experimental station in the zone of radioactive contamination  
as result of the accident at the Chernobyl nuclear power plant.  
In view of this, the study of the production process of  
aftergrowth of fodder sorghum depending on growth and  
cultivation conditions has become the basis of this research.  
The main task was to assess the agrobiological characteristics  
of aftermath formation and the shoot structure of crops of  
sugar sorghum, Sudan grass, and sorghum-Sudan hybrids on  
gray forest soils in the southwest of the Central region of  
Russia.  
2
Material and methods  
Field experiments were conducted during 20072018 at  
the permanent study area of the experimental field of Bryansk  
State Agrarian University. The soil is agrogray forest of  
medium loamy granulometric composition. The structure of  
the soil is lumpy and granular, turning lumpy and silty in the  
upper layer and capable of crust formation after rains. The  
thickness of the humus horizon is 2050 cm, the humus  
content is 3.84.0% (according to Tyurin). The reaction of the  
soil solution is at a pH of 5.65.8; hydrolytic acidity (Hg) is  
3 Results and discussion  
According to the data of the meteorological station of the  
Bryansk State Agrarian University, the climatic conditions of  
vegetation seasons during the years of research were  
characterized by a significant variation in both the average  
daily air temperature and the amount of precipitation.  
6
24  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 623-630  
However, in general, it should be noted that the weather  
conditions were favorable for the formation of sufficiently  
high yields of fodder mass of varieties and sorghum hybrids in  
atypical agro-climatic conditions of the south-western part of  
the Central region of Russia. According to the meteorological  
station of the Bryansk State Agrarian University, the climatic  
conditions of vegetation periods during the years of research  
were characterized by a significant variation in both the  
average daily air temperature and the amount of precipitation.  
However, in general, it should be noted that the weather  
conditions were favorable for the formation of sufficiently  
high yields of forage mass of varieties and sorghum hybrids in  
non-traditional agro-climatic conditions of the south-western  
part of the Central region of Russia. The results of field  
experiments showed that the application of mineral fertilizers  
contributed to an increase in the height of plants and the  
intensity of shoot formation of sorghum fodder crops. A  
general trend was observed that fertilized crops were  
characterized by taller shoots and more intense tillering. On  
the unfertilized variants full-scale lateral tillering shoots  
almost did not form. The plants on the control plots were  
almost of the same height of 140165 cm. The shoot apical  
growth was significant, especially during stem elongation and  
heading stage when mineral fertilizers were used. Plant height  
was over 200 cm, tillering energy increased, and partial  
branching of the upper nodes of the main shoots was observed,  
which resulted in unequal stem height and prolonged growing  
season.  
Analyzing the structure of the crop above-ground mass of  
fodder sorghum, the variability of this indicator should be  
emphasized, which characterized the parameters of shoot  
formation and branching. Sudan grass and sorghum-Sudan  
hybrids were noted to show some differences in the nature of  
the formation of stem nodes of elongated phytomers of  
apogeotropic shoots (elongated vegetative and generative).  
Typical for sorghum-Sudan hybrids was the formation of  
intravaginal lateral shoots (in the prefloral zone of the  
elongated shoot. Elongated vegetative and latently  
regenerative shoots branch after the flower initiation or apex  
removal, and lateral aerial structures are formed acropetally,  
after differentiation of the apical bud, without “its own” root  
system. In this regard, it should be noted that the scattered  
branching of apogeotropic shoots of sorghum is a positive  
fodder quality.  
vegetative and lateral aerial shoots with a complete and  
incomplete development cycle. The formation of a large  
number of lateral aerial shoots (with branching) and shortened  
shoots was observed in plants on fertilized plots, especially  
with nitrogen top dressing. Of great importance is  
identification of leaves and stems ratio and the various organs  
proportion, which indicates the use peculiarities and quality of  
the fodder. According to our data, the leaves and stems ratio  
of grass sorghum varied slightly  leaves accounted for 42.1–  
50.2% of the harvest, stems  for 42.450.0%, panicles  6.4–  
7.9 % Thus, the analysis of the harvest structure showed that  
the ratio of various types of shoots and their elements was  
greatly influenced by introduction of mineral fertilizers,  
especially nitrogen top dressing.  
As a result of the experiments conducted on the gray forest  
soils of the Bryansk high plains during the cultivation of  
sorghum crops for fodder production, we found four types of  
aftergrowth: the first is due to the formation of new shoots  
from the buds of the tillering node (mesocorm); the second is  
the formation of new shoots from the uncut first (lower)  
internodes in the leaf axils; the third growth of shoots whose  
apical point was untouched during cutting (from uncut short  
shoots); 4) the third  from the meristem tissue of cut shoots  
through their reproduction. And, as a result of different forms  
(types of mechanism) of aftergrowth, its aftermath ability and  
the number of shoots of different origin are not the same (Table  
1).  
The results of our experiments show that among the  
studied species, the weak growth was observed in plants of  
sugar sorghum, and the fastest and most intense was observed  
in grass sorghum. On average, the aftermath was formed as  
follows: 83.4% from tillering node buds, 12.4% from lower  
internodes, 3.2%  from the buds of uncut (shortened) stems  
and 1.0%  from apical (growing) buds of elongated shoots.  
Consequently, considering these data, it should be noted  
that the aftermath formation in the process of aftergrowth  
occurred through regeneration of cut shoots if they retained  
their apex, as well as due to the formation of new shoots from  
dormant vegetative buds that were below the level of cutting.  
The results obtained on this issue are consistent with previous  
studies (5, 12, 13) in the conventional zones of sorghum  
plantation. In our opinion, the ability of sorghum plants for  
intense growth depends on biological characteristics and  
properties, first of all, tillering, which does not weaken during  
the entire vegetation period.  
Thus, our research confirmed that prevalent in the grass  
stands of the studied hybrids were generative, elongated  
Table 1: Types of aftermath mechanism of sorghum cultures  
Growth from:  
buds of lower stem  
internodes  
Culture  
tillering node  
buds  
meristem tissue of cut  
shoots  
short shoots  
+
Sugar sorghum  
Sudan grass  
+++  
++  
-
++++  
+++  
+++  
++  
++  
+
Sorghum-Sudan hybrid  
++++  
+
6
25  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 623-630  
In addition, the formation of shoots, their growth and  
number are influenced by the phytomeric structure of the  
shoot, the scattered branching of the elongated (apogeotropic)  
shoots and the applied agricultural technology (fertilizers,  
cutting height, cutting frequency etc.).  
(N30-90) after the first cutting in Sudan grass and sorghum-  
Sudan hybrid than in sugar sorghum, which affected the yield  
of the second cutting.  
The data obtained indicate that in the southwestern part of  
the Central region of Russia, two full-scale green mass yields  
of fodder sorghum can be obtained within a single vegetation  
period (cutting phase  early heading stage). The period  
between cuts was 4756 days. The height of sorghum plants at  
the second cut was between 60.1115.3 cm. It was  
characteristic that the tilling capacity of the aftermath plants  
increased more than twice. On average, over four years, the  
Different aftermath yield of fodder sorghum is associated  
with the phytomeric structure of the shoot that grow and  
develop their primordia due to the activity of the apical  
meristem. Russian and foreign scientists (5, 21, 26, 27, 28)  
define "phytomers" as independent segments of the shoot,  
formed in the form of leaf primordia or leaf-bearing shoots.  
The number of phytomers in the studied assortment of sugar  
sorghum and sorghum-Sudan hybrids was 1013, depending  
on the height of the variety or hybrid, in Sudan grass  46.  
We noted that sorghum plants showed some differences in the  
nature of the formation of stem nodes of elongated phytomers  
of apogeotropic shoots (elongated vegetative and generative).  
Like corn, sorghum crops formed distinct stem nodes with  
visible lignification of the lower internodes. In the aerial  
sorghum stem nodes at the internode, a lateral bud with clearly  
marked leaf and root primordia forming a one-level ring on the  
outer side at the level of the bud can be seen under the leaf  
sheath (roots primordia are most typical for lower phytomers).  
Measurements of the lateral buds length revealed a general  
tendency: starting from the lower to the upper metamers, the  
length of the resting bud increases from 1.63.7 to 6.47.2 cm  
and more; this trend was particularly prominent in generative  
shoots of grass sorghum.  
The aftermath green mass yield largely depended on the  
cutting height of the first cut. Different cutting height also had  
a certain influence on the growth rate of plants and the  
intensity of their aftergrowth. In all cases, when the buds on  
the apical point were not cut, the shoots grew much faster than  
from the buds of the tillering node. Faster plant growth by a  
high cut (1012 cm) can be explained by the fact that shoots  
growing from tillering node buds feed, like the main shoots,  
from old roots. By a low cut (56 cm), growth occurs mainly  
occurs from dormant buds located in the axils of the lower  
internodes, new roots are formed, and shoots that grow from  
the tillering node feed only partially from old roots. For  
1
plantations of the hybrid of sugar sorghum Zersil F formed a  
small aftermath yield (6.488.38 t/ha, fertilized variant, with  
almost twice less than that on control plots). Regardless of the  
cutting height of the main cut, the aftermath of Sudan grass  
was 18.2318.64 t/ha, whereas the different cutting height of  
the above-ground mass of the sorghum-Sudan hybrid in the  
first cut significantly affected the aftermath ability of plants,  
the formation of the leaf surface and the aftermath yield. When  
cut at 1012 cm, intense aftergrowth was observed, and the  
aftermath yield was on average 19.74 t/ha, which is 14.3%  
higher than by a low cut (16.91 t/ha). Prevalent in the structure  
of the grass stands of Sudan grass and sorghum-Sudan hybrid  
were vegetative elongated shoots with a high proportion of  
leaves of 4557%.  
In terms of aftergrowth ability, a group of grass sorghum  
with good aftermath and sugar sorghum with weak  
aftergrowth of the above-ground mass should be singled out.  
A characteristic feature of aftergrowth was vegetative buds of  
the mesocorm, elongated and shortened phytomers located  
below the cutting level. The magnitude and differences in the  
aftermath yields are associated with the phytomeric structure  
of the sorghum plant shoots that grow and develop their  
primordia due to the activity of the apical meristem.  
Consequently, the aftermath ability of sorghum crops is  
one of the important agrobiological characteristics in  
increasing their productivity potential. The formation and  
yield of fodder sorghum aftermath largely depends on the  
morphobiological characteristics of the structure and  
development of plants, the time of cutting, the cutting height,  
application of nitrogen top dressing and other elements of  
cultivation.  
Thus, in the cultivation of sorghum crops for fodder  
production, four types of the aftergrowth mechanism have  
been established. The yield and the formation of full-scale  
aftermath of fodder sorghum depended on the time and height  
of the first cut, the introduction of nitrogen fertilizers in the  
subcortex, shoot development ability of plants, and other  
growth factors. When cut at 1012 cm, more intense  
aftergrowth of grass sorghum was observed, and the yield of  
sugar sorghum and the sorghum-Sudan hybrid was on average  
14.322.7% higher than by a low cut (56 cm).  
1
example, the Sorghum-Sudan hybrid Intensive F showed a  
faster aftermath formation by a high cut, whereas by a low cut,  
the formation of new shoots in the aftermath mainly occurred  
from the tillering node buds. The total height of aftermath and  
the yield turned out to be somewhat lower compared to higher  
cuts. Aftermath yield formation depending on the height of the  
sorghum first cutting is shown in Table 2. It was established  
that along with the buds of the tillering zone renewal, a great  
role in the formation of the fodder sorghum aftermath was  
played by lateral buds of elongated phytomers, and a minor  
role by apical buds of the shortened shoots. It should be noted  
that, regardless of the cutting height, shoots grew most quickly  
and intensively on variants treated with nitrogen top dressing  
Table 2: Effect of the first cutting height on the aftermath yield of fodder sorghum, (20122015)  
Green mass yield, t/ha  
First cutting height, cm  
Sugar sorghumZersil F  
1
Sudan grass Kinelskaya 100  
Sorghum-Sudan hybrid Intensive F  
1
5
1
6  
012  
6.48  
8.38  
18.23  
18.64  
16.91  
19.74  
6
26  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 623-630  
green mass yield of sorghum-Sudan hybrids  
dry matter yield of sorghum-Sudan hybrids  
green mass yield of Sudan grass  
dry matter yield of Sudan grass  
4
4
3
3
2
2
1
1
500  
000  
500  
000  
500  
000  
500  
000  
3
2
820  
848  
3
2
659.5  
980.6  
3
270.9  
2796.4  
2
497.2  
793.5  
1
1
512  
1635.4  
1
1
524.1  
061.1  
1
356  
1134.9  
1
227.5  
5
80.7  
2
51.9  
95.2  
4 weeks  
5
00  
0
771  
1
346.1  
3
stem elongation  
heading  
blossom  
grain formation  
Stage of development  
Figure 1: Dynamics of grass sorghum above-ground mass formation (average for 20162018)  
Regardless of the height of the first cut of Sudan grass, the  
aftermath green mass yield was 18.3218.64 t/ha. When  
justifying the use of multicut grass sorghum, it is important to  
establish the optimal timing and frequency of cutting that  
ensure a normal aftermath formation. In view of this, the  
experimental work that we conducted in in 20162018 allowed  
us to establish the pattern of the above-ground mass  
accumulation of grass sorghum during the main stages of  
maximum yield of green mass of Sudan grass Kinelskaya 100  
variety was observed during the full blossom stage  2980.6  
2
g/m , while the maximum yield of the dry matter  during the  
2
milk-wax stage of ripeness of the grain  1227.5 g/m .  
Consequently, after the flowering, Sudan grass did not show  
any green mass growth, although the dry matter continued to  
accumulate. Intensive  
F
1
sorghum hybrid showed  
accumulation of both green mass and dry matter until the end  
of the growing season. Comparing the dynamics, it should be  
noted that the Sorghum-Sudan hybrid Intensive F showed  
1
1
development of the sorghum-Sudan hybrid Intensive F and  
Sudan grass Kinelskaya 100 (Fig. 1).  
At the beginning of their development, the sorghum  
cultures grew very slowly, since at that time the root system  
was actively developing, and the yield of the above-ground  
mass during the tillering stage was insignificant. However,  
already in the stem elongation stage, the plant height was 40–  
faster rates of formation of above-ground mass, as well as a  
rather high productivity potential (over 35 t/ha of green mass  
and 15 t/ha of dry matter). Sudan grass formed the above-  
ground mass much slower, being significantly lower in  
productivity than the sorghum-Sudan hybrid. Modern fodder  
production imposes certain requirements on the raw materials  
in terms of the content of dry matter for the preparation of  
high-quality grass forage. This indicator serves as an important  
criterion for assessing the suitability of the culture above-  
ground mass for the production of certain types of forage.  
Figure 2 shows a graph illustrating the change in the dry matter  
content in the above-ground mass of grass sorghum by growth  
and development stages.  
5
0 cm, and the yield of the green mass was 1512.01134.9  
2
2
g/m , and that of the dry matter  195.2251.9 g/m . It should  
be noted that the sorghum-Sudan hybrid was characterized by  
a faster initial biomass formation. Above-ground mass formed  
at the fastest rates after the plants entered stem elongation  
stage. Daily growth of Sudan grass was 2530 g/m of dry  
matter and 7080 g/m of green mass, of sorghum-Sudan  
2
2
2
2
hybrid  4045 g/m and 120130 g/m , respectively. The  
6
27  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 623-630  
Sudan grass  
Sorghum-Sudan hybrids  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
4
3.1  
3
3
5.6  
2
8.0  
35.7  
1.6  
1
1
9.3  
7.3  
1
1
7.2  
5.5  
24.9  
Tillering  
Stem elongation  
Heading  
Blossoming  
Milk-wax ripeness  
of the grain  
Stage of development  
Figure 2: Dynamics of the dry matter content in the above-ground mass of grass sorghum, %  
During the stem elongation stage, the above-ground mass  
was characterized by high sappiness  the dry matter content  
does not exceed 20%, which is important for good palatability  
of green mass by animals. During the heading stage, the dry  
matter content reaches 2528%, and 3235%  by the full  
blossom stage. Therefore, silage from Sudan grass should be  
prepared during the initial blossom stage before it is over.  
During grain formation and filling, the above-ground mass  
contains approximately 43% of dry matter; such raw materials  
in their pure form are not suitable for ensilaging and should be  
mixed with the green mass of corn, lupine, fodder beans,  
clover.  
cutting. Variant 2 (two-cut)  the first cut is performed during  
the heading stage, the second  45-50 days after the first  
toward the end of the growing season. Variant 3 (single-cut) –  
single assessment during the full blossom stage at the  
beginning of the grain formation.  
Experimental data on the total amount of dry matter in  
Sudan grass plantations are presented in Table 3.  
The results show that in the agro-climatic conditions of the  
region, all the studied patterns of use of Sudan grass resulted  
in a fairly high yield of above-ground dry mass of 10.215.0  
t/ha or from 35.8 to 52.0 t/ha of green mass. The maximum  
yield of dry matter was obtained with two-cut use  15.2 t/ha.  
Considering that Sudan grass contains over 40% of dry  
matter by the phase of milk-wax stage of ripeness of the grain,  
the culture can be used to prepare grain hay (a promising type  
of forage prepared by harvesting the plants without threshing,  
their chopping during grain formation and filling when the  
content of moisture in the raw material is 4555% and  
conservation in a haylage-like manner).  
In an experiment designed to study the characteristics of  
aftergrowth of the Kinelskaya 100 variety of Sudan grass  
depending on the timing of the first cut and the intensity of  
cutting, the above-ground mass yield was assessed in  
accordance with the following variant (three use patterns).  
Variant 1 (three-cut) the first cut is performed during the stem  
elongation stage when the plant height is 70 cm, the second  
and third  taking into account the aftermath 3540 days after  
4
Conclusion  
When choosing the time for the main cutting and cutting  
height of fodder sorghum, the ability of plants or a variety  
(
hybrid) to grow after cutting should be taken into account in  
order to prepare the maximum amount of nutritious forage  
using the green and feed stock conveyor system. Therefore, we  
recommend that farms plant three or four varieties (hybrid) of  
fodder sorghum with different duration of the growing season,  
especially from the emergence to the heading stage, when up  
to 50% of the dry weight of the crop accumulates, as well as  
with different aftergrowth pace in order to obtain full-scale  
aftermath.  
Table 3: Yield of dry matter of Sudan grass by the use patterns, average for 20162018  
Yield of dry matter, t/ha  
Use pattern  
1
cut  
2 cut  
5.90  
7.49  
-
3 cut  
0.89  
-
-
Total  
10.25  
15.20  
12.39  
Three-cut  
Two-cut  
Single-cut  
3.46  
7.71  
12.39  
6
28  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 623-630  
1
1
3. Isakov I.I. Sorgo (Sorghum), Rosselkhozizdat, Moscow.  
References  
1
982;134.  
4. Kibalnik  
Khozyaystvennaya tsennost sorgo-sudankovykh  
1
.
Alabushev A.V., Shishova E.A., Romanyukin A.E., Ermolina  
G.M., Horpinichenko S.I. Proiskhozhdenie sorgo i razvitie ego  
selektsii (The origin of sorghum and the development of its  
selection) // Politematicheskiy setevoy elektronnyy nauchnyy  
zhurnal KubGAU (Polythematic Online Scientific Journal of  
Kuban State Agrarian University). 2017;27:281294.  
O.P.,  
Elkonin  
L.A.,  
Kozhemyakin  
V.V.  
i
sudanko-  
sorgovykh gibridov F  
and Sudan-sorghum F  
1
(The economic value of sorghum-Sudan  
hybrids) // Kormoproizvodstvo (Fodder  
1
production). 2011;3:2728.  
1
1
5. Malinovsky B.N. Sorgo na Severnom Kavkaze (Sorghum in the  
North Caucasus), Rostov State University, Rostov-on-Don,  
Russia. 1992;208.  
2
3
.
.
Belous N.M., Torikov V.E., Dronov A.V., Dyachenko V.V.  
Kukuruza i sorgo: biologiya i tekhnologiya vozdelyvaniya (Corn  
and sorghum: biology and cultivation technology), Bryansk State  
Agricultural Academy, Bryansk, Russia. 2010; 128.  
Belchenko S.A., Dronov A.V., Torikov V.E., Belous I.N.  
Sorgovye kormovye kultury v organizatsii zelenogo i syryevogo  
konveyerov v Bryanskoy oblasti (Sorghum fodder crops in the  
organization of green and feed stock conveyor system in the  
Bryansk region) // Kormoproizvodstvo (Fodder production).  
6. Metodika  
gosudarstvennogo  
sortoispytaniya  
selskokhozyaystvennykh kultur. Vypusk 2 (Methods of state  
variety trial of agricultural crops. Issue 2), State Commission for  
the variety trial of crops, Moscow. 1989;197.  
1
1
1
7. Metodicheskie ukazaniya po provedeniyu polevykh opytov s  
kormovymi kulturami (Guidelines for conducting field  
experiments on fodder crops), All-Russia Fodder Research  
Institute named after V.P. Williams, Moscow, Russia. 1997;156.  
8. Naumova T.V., Emelnov A.N. O semenovodstve sudanskoy travy  
i sorgo sakharnogo v Primorskom krae (On seed production of  
Sudan grass and sugar sorghum in Primorsky Krai) //  
Kormoproizvodstvo (Fodder production). 2013;6:2728.  
2
016;12:1720.  
4
5
6
.
.
.
Belchenko S.A., Dronov A.V., Shapovalov V.F. Produktivnost  
sortimenta kormovogo sorgo v zavisimosti ot fona mineralnogo  
pitaniya (Productivity of sorghum silage assortment depending on  
the mineral nutrient status) // Vestnik Ulyanovskoy  
gosudarstvennoy selskokhozyaystvennoy akademii (Bulletin of  
Ulyanovsk State Agricultural Academy). 2018;2(42):3844.  
Beluchenko I.S. Tropicheskie mnogoletnie kormovye zlaki  
9. Pigarev I.Ya., Stepkina I.I., Saltyk I.P. Effektivnost  
vyrashchivaniya sorgo na korm v usloviyakh lesostepi Rossii  
(Efficiency of sorghum cultivation for fodder production in forest-  
(osobennosti biologii i introduktsii): dissertatsiya…doktora  
steppe conditions of Russia) // Materialy XIV Mezhdunarodnoy  
nauchnoy konferentsii: Agroekologicheskie aspekty ustoychivogo  
razvitiya APK (Proceedings of the XIV International Scientific  
Conference: Agro-environmental aspects of sustainable  
development of the agro-industrial complex), Bryansk State  
Agrarian University, Bryansk, Russia. 2017;512515.  
biologicheskikh nauk: 03.00.05 (Tropical perennial fodder  
cereals (peculiarities of biology and introduction): dissertation ...  
Doctor of biological sciences: 03.00.05), The main botanical  
garden of the USSR Academy of Sciences, Moscow. 1984.  
Gorpinichenko S.I., Metlina G.V., Vasilchenko S.A., Kovtunova  
N.A.  
Produktivnost  
i
energeticheskaya  
effektivnost  
sorgo-  
2
0. Romanova O.I., Kurtseva O.I., Matveeva G.V., Malinovsky B.N.  
Rol genofonda prosa, grechikhi, sorgo i kukuruzy v razvitii  
biologicheskoy nauki i selektsii na krupyanye kachestva (The role  
of the gene pool of panicum, buckwheat, sorghum and maize in  
the development of biological science and selection for cereal  
quality) // Trudy po prikladnoy botanike, genetiki i selektsii  
vozdelyvaniya novykh sortov sudanskoy travy  
i
sudankovykh gibridov (Productivity and energy efficiency of  
cultivation of new varieties of Sudan grass and sorghum-  
sudangrass hybrids) // Zernovoe khozyaystvo Rossii (Grain  
farming of Russia). 2016;5:3741.  
7
8
.
.
Dospekhov B.A. Metodika polevogo opyta (s osnovami  
statisticheskoy obrabotki rezul'tatov issledovaniy) (Methods of  
field experiment (with the basics of statistical processing of  
research results)). Kolos, Moscow. 1985;352.  
Dronov A.V. Agrobiologicheskoe obosnovanie introduktsii  
sorgovykh kultur v yugo-zapadnyy region Nechernozemya Rossii:  
dissertatsiya … doktora sel'skokhozyaystvennykh nauk: 06.01.09  
(Works on applied botany, genetics and selection), v. 164,  
N.I.Vavilov Research Institute of Plant Industry, Saint-  
Petersburg, Russia. 2007;142153.  
2
2
1. Fedotov  
V.F.,  
Kolomeichenko  
V.V.,  
Durnev  
G.I.  
Rastenievodstvo: praktikum (Crop growing: a practical course),  
Voronezh State University, Voronezh, Russia. 1996;392.  
2. Chirkov E.P., Dronov A.V., Laretin N.A. Innovatsionnye  
(Agrobiological grounds of introduction of sorghum crops in the  
napravleniya  
v
tekhnologiyakh zagotovki  
i
khraneniya  
south-western region of the non-black soil region of Russia:  
dissertation ... doctor of agricultural sciences: 06.01.09), Bryansk  
State Agricultural Academy, Bryansk, 2007;404.  
obyomistykh kormov (Innovative approaches in technologies of  
harvesting and storage of bulky feed) // Ekonomika  
selskokhozyaystvennykh i pererabatyvayushchikh predpriyatiy  
9
.
Duborezov V.M., Vinogradov V.N., Duborezov I.V., Altunina  
M.E. Vozdelyvanie sorgo sakharnogo na silos v usloviyakh  
Nechernozemya (Cultivation of sugar sorghum for fodder  
production in conditions of the non-black soil region) //  
Dostizheniya nauki i tekhniki APK (Achievements of science and  
technology of the agro-industrial complex). 2012;3:3334.  
(Economics of agricultural and processing enterprises).  
2
013;1:1013.  
2
3. Shapovalov V.F., Belous N.M., Belous I.N., Ivanov Yu.N.  
Produktivnost i kachestvo odnovidovykh i smeshannykh posevov  
kormovykh kultur v usloviyakh radioaktivnogo zagryazneniya  
(Efficiency and quality of single-species and mixed plantations of  
1
1
0. Dyachenko V.V. Sudanskaya trava v polevom kormoproizvodstve  
Nechernozemya (Sudan grass in field fodder production of the  
non-black soil region), Bryansk State Agricultural Academy,  
Bryansk, Russia. 2009;230.  
forage crops in conditions of radioactive contamination) //  
Agrokhimicheskiy vestnik (Agrochemical Bulletin). 2015;5:29–  
3
1.  
4. Shishova E.A., Gorpinichenko S.I., Romanyukin A.E., Ermolina  
G.M. Osnovnye napravleniya rezultaty selektsii sorgo  
2
2
1. Dyachenko V.V., Dronov A.V., Dyachenko O.Yu. Formirovanie  
i
urozhaya  
sovmestnykh posevov sudanskoy travy  
i
travyanistogo (The main lines and results of selection of grass  
sorghum) // Zernovoe khozyaystvo Rossii (Grain farming of  
Russia). 2016;5:5155.  
zernobobovykh kultur na serykh lesnykh pochvakh  
Nechernozemya (Formation of the harvest of mixed plantations of  
Sudan grass and leguminous crops on gray forest soils of the non-  
black soil region) // Vestnik Bryanskoy gosudarstvennoy  
selskokhozyaystvennoy akademii (Bulletin of the Bryansk State  
Agricultural Academy). 2013;4:310.  
5. Yakushevsky E.S., Varadinov V.A., Korneychuk, Banyai L.  
Shirokiy unifitsirovannyy klassifikator SEV i mezhdunarodnyy  
klassifikator SEV vozdelyvaemykh vidov roda Sorghum Moench  
(The broad unified CMEA classiffier and the international CMEA  
1
2. Zvolinsky V.P., Kostyrenko E.N., Kuznetsov N.V. Sorgovye  
kultury. Vysokie tekhnologii v agrarnom komplekse Prikaspiya  
classifier of cultivated species of the genus Sorghum Moench),  
N.I.Vavilov Research Institute of Plant Industry, Leningrad.  
(
Sorghum cultures. High technologies in the Caspian agrarian  
complex). Sovremennye tetrad Publ., Moscow, Russia. 2002;212–  
51.  
1
982;36.  
2
6. Fujii A., Nakamura S., Goto Y. Relation between stem growth  
2
6
29  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 623-630  
processes and internode length patterns in sorghum cultivar  
Kazetachi” // Plant Product. Sc. 2014;17(2):185-193.  
2
2
7. Fujii A., Nakamura S., Goto Y. Analysis of stem based on pattern  
of internode characteristics in sweet sorghum // Japan. J. Crop Sc.  
2
014;83(2):112-117.  
8. Fujii A., Nakamura S., Nabeya K. Estimation of the starting time  
of stem elongation based on internode length pattern and number  
of expanded leaves in sweet sorghum // Japan. J. Crop Sc.  
2
015;84(2):209-212.  
6
30