2019, Volume 7, Issue 4, Pages: 696-704  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Comparative Analysis on Integrated Coal  
Transport Models in South Sumatra  
1*  
1
1
2
P. Pradono , Ibnu Syabri , Shanty Y. R. , M. Fathoni  
1
Lecturer at the Department of Regional & City Planning, Institut Teknologi Bandung  
2
Office of Local Planning Board, Musi Rawas Regency, South Sumatra  
Received: 27/07/2019  
Accepted: 29/08/2019  
Published: 03/09/2019  
Abstract  
Among the implementation of sustainable development in Indonesia is the effort to achieve an efficient transportation system for  
freight. Coal is the most valuable commodity for economic activity in South Sumatra Province and become one of the biggest coal  
producers in Indonesia. Coal transport activity from the production site to port before being exported are mostly using land transport  
via highway in South Sumatra. They have various negative impacts such as traffic jam, fatal traffic accident and also pollution. This  
paper attempts to compare some possible coal transport systems in South Sumatra Province combining the available transport  
networks namely highways, railways and waterways transport. Those possible integrated transport system model will be compared  
using cost calculation and technical aspect comparison analysis to measure the most system that supportive to sustainable  
development. The result shows that transporting coal by integrated railways and river to mother vessel transhipment has the  
advantage of aspects of traffic disruption and damage to the environment for short term period. Meanwhile, the coal transport of coal  
by railways directly to coal massive terminal servicing mother vessel transhipment has the advantage for long term period. This result  
can be used as the basis for policy making on how to utilize the potential waterways (river) as alternative freight transport system.  
Keywords: Sustainable Development, Integrated Coal Transport, Comparative Analysis, South Sumatera.  
1
transportation, road contour, amount of coal reserves,  
1
Introduction  
investment costs, production capacity and open pit unit costs  
19).  
In South Sumatra, coal is one of the valuable  
Coal is one of the potential mining commodities in  
(
Indonesia. This can be seen from the potential of new stones  
scattered in several islands in Indonesia, especially covering  
the islands of Sumatra and the island of Borneo. New stone is  
also one of Indonesia's export commodities to several  
countries such as Japan, Taiwan, the United States and others.  
The amount of coal exports continues to increase every year.  
In 2002 total coal exports reached 73,124,900 tons and  
increased in 2015 to 336,970,400 tons (15). Increasing the  
amount of coal production, there is also an increase in the  
flow of coal transportation movements. In Indonesia coal  
transportation is generally carried out using land, train, and  
sea or river transportation modes. The choice of  
transportation mode is very dependent on the characteristics  
of the location and availability of modes. In addition, the  
choice of coal transportation modes must also consider the  
cost parameters and technical aspects. The existence of  
several alternative modes of transportation can provide an  
option for the coal mining industry to choose the most  
efficient and effective mode of transportation. The choice of  
coal transportation mode is influenced by the distance of  
commodities for economic development. Based on statistical  
data on coal reserves in South Sumatra Province it reached  
2
2,240 million tons (15). Coal mining in South Sumatra,  
which continues to increase, also has an impact on the  
increase in transportation traffic both on road and river  
transportation. Coal transportation generally uses trucks as a  
means of transport from the mine site to the Coal Terminal.  
Coal transport by truck in South Sumatra is often complained  
by the community along the route. Some issues emerges are  
road damage, traffic jam, traffic accident and other  
environmental impacts. Meanwhile, South Sumatra has  
railways and river waterways which can be used for coal  
transport. Since each transport modes has some  
disadvantages, it is important to consider some integrated  
transport models using the possible transport modes. This  
paper reviews some literatures to explore the latest theoretical  
perspectives and to compare some possible coal transport  
systems in South Sumatra Province combining the available  
transport network namely highways, railways and waterways  
transport. The results of this study are expected to enrich the  
sustainable transport application in various areas with similar  
characteristics to Indonesia. Firstly, this paper introduces the  
Corresponding author: P. Pradono, Lecturer at the  
Department of Regional & City Planning, Institut Teknologi  
Bandung. Email: pradono@pl.itb.ac.id.  
696  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 697-704  
existing river transport characteristics in Indonesia. Second  
part will analyse and discuss the appropriate sustainable  
transport indicators for the rural river transport in Indonesia.  
The concluding remarks will be the final part of this paper to  
promote the application of sustainable transport as a part of  
inclusive transport development.  
used as coal transportation in river flows. .Barge  
transportation systems are influenced by river flow, flow  
characteristics, weather and market conditions (4). In the  
amount of carrying capacity, sticks have a greater carrying  
capacity compared to trains and trucks. Big sticks can carry  
the amount of coal equivalent to 15 carriages or 58 truckloads  
(
4). Therefore, sticks can be said to be one of the most  
effective modes of transportation compared to other modes,  
of course, if supported by available infrastructure and  
network systems.  
2
Literature Review  
2
.1 Coal Transport  
In some coal-producing countries and have large coal  
reserves, they use several modes of transportation of  
transportation such as trains, barges, trucks and coal mud  
pipelines. The choice of mode is related to the efficiency and  
effectiveness of transport with low costs and large transport  
volumes. Then the various alternative modes have their  
respective competitiveness related to coal transportation.  
2
.2 Sustainable Transport  
Transportation systems that support the flow of goods  
and services, create jobs and encourage economic growth,  
and produce negative impacts on the environment and society  
(
7, 20). Transportation has a critical effect on the  
sustainability aspect, because vehicles on the highway are the  
main source of pollution (9, 13, 26). This then encouraged the  
development of a sustainable transportation system.  
2
.1.1 Rail Transport  
The mode of railway transportation is one of the modes  
Sustainability is a concept that integrates economic,  
environmental and social dimensions (6, 8, 26). Sustainable  
transportation is a system of mobility of economic and social  
activities with resource management and environmental  
protection to maintain current and future needs (23).  
According to Litman (2007) sustainable transportation is  
affordable transportation considering aspects of human health  
and ecosystems, operating efficiently, low in emissions and  
waste, and minimizing consumption of non-renewable  
resources.  
The issue of sustainable transportation in the coal mining  
sector is one of the important issues in reducing  
environmental quality. Increasing the amount of coal demand  
also increases coal transportation traffic, this will have an  
impact on the environment and society such as pollution and  
congestion (see also 24). Coal mining companies must be  
able to apply sustainable transportation in the coal  
transportation system. The challenge of companies in  
sustainable transportation is not yet able to understand and  
define the objectives of sustainable transport practices and  
measure and determine their efficiency (20). The main  
problem faced by the coal transportation system is the lack of  
availability of appropriate transportation modes and road  
connectivity, especially in remote areas (9).  
The coal shipping system is generally a complex and  
integrated shipping system by several modes. The alternative  
sorting of coal transportation modes must consider social,  
economic and environmental parameters, so that a sustainable  
transportation system can be realized. The development of  
coal transportation systems is directed at environmental  
protection, speed of delivery, minimum transportation costs,  
and increased traffic safety (9). On the other hand the use of  
sustainable transportation not only provides benefits to the  
community and the environment but to the company itself.  
The establishment of a sustainable transportation system  
helps companies to increase the utilization of company assets,  
increase capacity, reduce labour costs, and minimize fuel  
costs (26).  
of coal transportation that is widely used in several countries  
such as the United States, Australia, China and India. More  
than 1 billion tons of coal per year are transported by  
railroads in many coal producing and user countries in the  
world (32). In United States, rail transportation plays an  
important role in the coal transportation system. About 95%  
of coal transported by rail in the United States moves in  
highly productive train units and operates within 24 hours  
(
4). This shows the dominant use of railroad transportation as  
a mode of coal transportation in the United States. The  
dominance of the railroad as the main carrier is expected to  
continue in the future (4). This also happens in Australia, that  
trains are the dominant mode of coal transportation. One of  
the main railway lines in the coal transportation system in  
Australia is Aurizon Rail, which is one of the largest railroad  
transporters in the world from mine to port for export markets  
(
4).  
2
.1.2 Truck  
Trucks are one of the modes of transportation that are  
often used in coal transportation. Usually trucks are used in  
areas that have not been reached by trains or water  
transportation. In addition, trucks are usually used to  
transport coal from the station before coal is sent to the final  
destination. Although more flexible cruising roaming of coal  
using trucks is more limited in volume compared to the  
amount of coal transportation using trains or sticks in one go.  
Due to route flexibility and low capital investment, trucks can  
economically move coal around 100 miles per trip in a  
relatively small amount of transportation (4). In the study  
conducted by (19) found that trucks are superior in coal  
transportation.  
2
.1.3 Transport by Barge and Ship: Water Transport  
Sticks are an alternative way of transporting coal,  
especially in watersheds. About 10% of total coal shipments  
in the Americas are carried out using barges (31). In several  
other countries in the world also use barges as coal  
transportation such as in China and Indonesia. In Indonesia  
the use of barges as a mode of coal transportation such as  
those found on the islands of Borneo and Sumatra, which are  
697  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 697-704  
2
.3 Road Cargo Transport Problems  
The current population growth is getting higher. The  
The impact of this freight is contrasted with the  
expectation that in the transportation sector it is also applied  
the concept of sustainable development which has actually  
been raised since 1987 by World Commission on  
Environment and Development (2). From these facts, efforts  
to realize sustainable transportation can be done, among  
others, by combining the river transport network and road  
transport in the form of intermodal transportation. It is  
expected to maintain the advantages of river transportation  
mode and reduce the various externalities of road transport  
mode. On the other hand, various land uses related to the  
economic activities of the community are expected to survive  
and interact with the integration between the river transport  
network and the road transport, especially for freight  
activities.  
current world population is estimated at 7.6 billion, and is  
expected to increase to 11.2 billion by 2100 (30). This will  
cause the increased potential of the movement of people and  
goods in the future. Therefore infrastructure, facilities and  
modes of movement of people and goods need to be prepared  
to meet needs in the future. But not only that, the negative  
impact of various modes of transportation needs to be  
considered so that it does not have a massive impact on the  
environment.  
One of the traffic problems on the road is the transport of  
goods where at the metropolitan area level in developing  
countries, on average 40% - 50% of the volume of goods  
transported from commercial vehicles moving to the city  
center, 20% - 25% move out of center, and the rest of 25% -  
4
0% move within urban areas (3). At the same time, freight  
2.4 River Transport Characteristics  
traffic, especially in urban areas, can cause problems such as  
congestion and delays where in most cities the average  
freight vehicle uses at least 20% - 40% of the road space  
causing congestion (5). This is because the road infrastructure  
system in urban areas is not able to accommodate the burden  
of road users not only for the activities of urban communities  
but also for freight activities.  
Goods transport vehicles which generally have large  
capacity can make traffic speeds hampered. Excessive freight  
loads also tend to slow down the flow of traffic, especially if  
the occurrence of damage and vehicle accidents or slowdown  
in the area of the hill and segment with a perforated road and  
if loading and unloading activities are not organized  
efficiently, the use of road space will not be optimal (12).  
Other issues of freight transport are air pollution and  
energy consumption where freight transport accounts for 20%  
Meanwhile, In some watery countries such as Indonesia,  
roads sometimes could not reach rural areas so that the role of  
river or inland water transport has become so important to  
serve the accessibility of passengers and goods in remote  
areas (21). Meanwhile, river transport in Indonesia is also  
relatively neglected with a lot of problems. The number of  
river vessels and the length of navigable rivers are  
continuously declined. In Palembang, the model share for  
river transport is only 3.75 % and the Musi River has a large  
tidal range so that it is not navigable for all times (29). In  
other locations, some river channels have been eroded due to  
the movement of the ship (28) and experience severe  
sedimentation problem (17).  
River transport has almost similar characteristics to  
railways transport since it can only serve catchment area  
along the river channel. Usually, river transport activity is  
managed traditionally without fixed route and regular  
schedule while advanced river transport surely can serve  
fixed route and regular schedule. River transport ship is  
generally constructed from wood with various types (14).  
Technically, river transport has some potential  
advantages compared to other modes. Commercial modern  
water transport could reliably serve passengers and goods  
with low pollution and scheduled activity (22). From  
environmental perspective, river transport actually supports  
the sustainable transport from ecological and economic  
aspect since it is efficient on fuel consumption (25) and  
environmental friendly (11).  
-
40% of CO2 emissions and is a significant source for NOx  
and SO2 (5). Diesel-engine vehicles also contribute 50% of  
particulate emissions as a cause of respiratory illness and can  
damage historical buildings and other cultural assets (3). On  
the other hand, freight transport, especially in urban areas  
including heavy vehicle travel, also involves 31% of energy  
use (3).  
In addition, trucks and pick-up trucks are also sources of  
noise / vibration pollution, where studies show that the  
adverse effects of noise on health and quality of life are very  
serious, such as stress and increased blood pressure  
(hypertension) and reduced concentration residents in  
carrying out their activities. The vibration pollution from  
freight transport can adversely affect various buildings either  
public or public buildings, especially in historic buildings  
whose construction is vulnerable to age (12).  
In areas with naturally available rivers for transportation,  
it is not necessary to build new infrastructure except quays  
and navigation signs. In India, for same transport path length,  
the cost of developing river transport is only about 5% to  
10% compared to the cost of developing a 4-lane highway or  
a railway network. River infrastructure only needs to be  
maintained at a low cost since for the same transport path  
length, river transport maintenance costs only about 20% of  
the road maintenance cost (1). River transport is also a  
transport mode with some characteristics which corresponds  
to the concept of sustainable transportation where it is  
environmental friendly and efficient in energy consumption  
(11).  
Another important thing is that heavy truck vehicles  
increase the potential for damage to road infrastructure  
especially when there is overload and poor technical  
condition or roadworthiness, thus exacerbating the extent of  
road damage and shortening road service life (5), which  
averages 52% of trucks in Indonesia is over 45% over the  
allowed load limit. From the safety aspect, in many places,  
public transport does not use special roads, so it is mixed  
with passenger vehicles, motorcycles, pedestrians or cyclists  
that can lead to an increased risk of accidents and physical  
injuries (12).  
Development of river transport is also important for the  
preservation of cultural and tourist development because  
698  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 697-704  
many cities in Southeast Asia region were built closed to  
river in early civilization, such as Ho Chi Minh City or  
Bangkok as waterborne city (10). River transport mode in  
Indonesia is quite still prospective because it can load large  
quantities of goods with relatively small environmental  
impact (29). River transport can also exist as an alternative  
solution for traffic congestion and road damage problem (14).  
Jukung ships to transport goods and speedboats for  
transporting passengers. The Musi River has quite dense  
shipping conditions with cargo throughput of goods in 2013  
reaching 8,776,633 tons (27). This shows that the Musi River  
is an alternative mode of transportation that is widely used by  
the community, industry and mining companies in South  
Sulawesi Province.  
The existence of major Bom Baru Port on Musi river in  
Palembang City make the river has a vital role as a hub port  
for marine transportation, including for export and import of  
goods. In addition, this port is also used for shipping various  
industrial commodities such as cement, coal, oil and gas and  
from several piers in Palembang City and surrounding areas.  
Ships that can sail on the river Musi up and around  
Palembang are vessels with maximum size of 181 meters  
LOA with a maximum draft of about 7 meters.  
Ship traffic in Bom Baru Port, Palembang in 2013  
decreased by 19.16%, both from overseas and domestic.  
Overseas shipping visits fell from 692 units in 2012 to 674  
units in 2013. Meanwhile, shipping flow in the country  
dropped from 2,231 units in 2012 to 1,689 units in 2013.  
Foreign trade activities both imports and exports are  
carried out in Bom Baru Port increased 187.63%. Imports  
decreased from 615 343 metric tons in 2012 to 577 685  
metric tons. Export cargo activity increased from 1,507,455  
metric tons in 2012 to 5,528,055 metric tons in 2013.  
Loading and unloading activities for the benefit of domestic  
trade at Bom Baru port increased by 65.07%, where the  
loading increased from 1,779,173 metric tons in 2012 to  
3
Methodology/Materials  
This study tries to compare integrated transportation  
system models through cost calculation and comparative  
analysis of technical aspects with the aim of measuring the  
transportation system model that best supports sustainable  
development. Therefore, in this study using a mixed approach  
method that is quantitative and qualitative methods. The  
qualitative approach is used to calculate the financing  
analysis of transportation modes, while for the qualitative  
approach in the form of qualitative descriptive analysis to  
describe comparisons of technical aspects. In financing  
analysis, the calculation uses 3 scenarios, first using land  
routes (trucks to Palembang then from Palembang using  
barges to Tanjung Carat); second, using the mode of railroad  
transportation to Tanjung Carat; and third through the land  
route to Palembang then using barges to STS. This research  
was conducted on coal transportation systems in the South  
Sumatra Province. Data collection is done using secondary  
and primary data collection techniques. Secondary data  
collection in the form of data related to information on coal  
shipping systems and their financing. While collecting  
primary data to confirm financing and field observations  
related to the coal transportation system.  
2
,483,534 metric tons in 2013. The unloading activities rose  
from 3,968,691 metric tons to 7,004,429 metric tons.  
Cumulative foreign trade activities and domestic conducted at  
the Bom Baru port is an increase of 98.12%, which rose from  
4
Results and Findings  
7
2
,870,662 metric tons in 2012 to 15,593,703 metric tons in  
013.  
4
.1 Musi River Characteristics  
Musi River is one of the rivers located in South Sumatra  
Province and is the longest river on the island of Sumatra.  
This river divides Palembang City into two parts, namely  
across the ilir in the north and opposite the Ulu in the south.  
The river spring is sourced from the Kepahiang area, in  
Bengkulu Province. This river is the estuary of nine major  
tributaries, namely Komering River, Rawas River, Batanghari  
River, Leko River, Lakitan River, Kelingi River, Lamatang  
River, Semangus River, and Ogan River. The existence of the  
Musi River is very important for the community because  
besides being used for water resources, it is also used as an  
alternative means of transportation.  
Musi River long ago been used by the local community  
and visitors as a means of transportation. There is a type of  
transportation used as shuttles at Musi River that for  
passenger and freight transport. The role of transport in the  
region Musi River shipping channel is quite an important role  
in serving the needs of the movement of people, especially to  
support the needs of the movement of passengers and goods.  
In addition to being used by the community as a means of  
transportation, the Musi River is also used by several  
industries as a means of transportation for industrial goods  
transportation.  
4
.2 Coal Transport in South Sumatra  
The mining sector in South Sumatra is quite good with  
the production of petroleum, natural gas and coal. The  
dominant is coal where in 2014 its production amounted to  
2
7,004 million ton. This figure increased from 24 million  
tons in 2013. The coal reserves in South Sumatra are  
estimated to reach 22.24 billion tons. The mining sector in  
South Sumatra is quite good with the production of  
petroleum, natural gas and coal. The dominant is coal where  
in 2014 its production amounted to 27,004 million ton. This  
figure increased from 24 million tons in 2013. The coal  
reserves in South Sumatra are estimated to reach 22.24 billion  
tons.  
Based on data obtained from the Directorate General of  
Mineral and Coal in 2015 data on coal traffic through Bom  
Baru port, Crude Palm Oil (CPO) data from Indonesia Oil  
Palm Statistics 2014 through Bom Baru port, container traffic  
data from IPC 2015 through Bom Baru port and vehicle  
traffic from Polri 2015 through Bom Baru Port as described  
in the previous description, the loading and unloading of  
goods consisting of Coal, CPO, Container, and the vehicle is  
planned to be placed at Tanjung Carat Terminal, taking into  
consideration the depth at Terminal Tanjung Api that do not  
meet the technical requirements. The condition of coal  
Musi River shipping channel of river transport this airport  
to transport passengers and goods. Different types of ships  
sailing in the Musi River shipping channel downstream i.e.  
699  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 697-704  
transport network in South Sumatera Province at present is  
very diverse because of the transportation of coal in various  
ways and various tools. At present coal transportation uses  
truck, railways, barge and vessel. How to transport in various  
ways can be done collaboration or arguably interrelated.  
From quarry, coal is generally transported by trucking by  
road across the provincial road to several loading point  
terminals along the Musi River such as Muara Lematang and  
in Gandus. In addition to using roads, a small portion of coal  
transportation uses Railway line from Muara Enim to  
Kertapati Station and then transported by barge with a  
maximum size of 7,500 DWT (with LOA: 91.4m, B: 24.4m,  
and maximum draft: 4.3m) or other barges measuring 5,000  
and 2,000 DWT, downstream of the Musi River. Downstream  
of the Musi River is then transferred through the ship to ship  
transhipment (STS) directly from barge to large bulk carrier  
vessels to be exported to destination countries such as China,  
India and the countries others in Southeast Asia. Coal Cargo  
to be served by Port of Tanjung Carat is fully planned to  
come from hinterland in South Sumatera like Tanjung Enim,  
by using river transportation through Musi River.  
Figure 1: Loading and unloading of coal in South Sumatra (in million  
tons) (Source: PT Indonesia Pelabuhan Company II)  
Figure 2: Coal Transport Network in South Sumatra (Source: Office of Local Planning Board, South Sumatra Province, 2017)  
700  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 696-704  
The use of this means of river transportation, assumes an  
increase in the Lematang River and Musi River in the form of  
navigation signs, dredging and widening of river bodies, and  
other improvements. With the transportation of coal through  
the river by using barges, in the dry bulk terminal area of  
course also needed anchorage to accommodate the barge - the  
barge is there. Coal transport flow is a coal distribution  
channel using various methods such as truck, conveyor / belt  
conveyor, barge and vessel. The use of ways in the  
distribution of coal adjusts to conditions and locations so that  
the coal process of each company is different. Mine  
distribution is carried out for the transport of coal in domestic  
loading and export loading. The following is a coal transport  
flow scheme  
4.3.1 Truck and Barge Scenario to Mother Vessel  
Transhipment / STS  
The analysis of the financing of coal freight with  
scenarios using trucking up to coal terminal then using barge  
to Tanjung Carat for mother vessel transhipment / STS cost  
calculation is as follows. The analysis results of  
transportation financing for the cost of trucks and barges for  
aircraft carrier transhipment / STS shows that the total cost  
for Banyuasin Quarry Site is IDR 576,638 / ton, with detailed  
costs for land travel with a distance of 318 Km is IDR  
338,000 / ton and for waterway with a distance of 61.5 Nm at  
a cost of IDR 47,859 / ton. While other additional costs are  
coal surveyors IDR 3,371 / ton and the transhipment cost is  
IDR 107,882 / ton. In Lahat Quarry Site the calculation of the  
cost is IDR 103,599 / ton with detailed costs, namely for the  
cost of sea travel with a distance of 17 Nm is IDR 38,618 per  
ton, coal surveyor cost is IDR 3,371 / ton and the  
transhipment cost is IDR 53,936 / ton.  
4
.3 Cost Analysis of Coal Transport in South Sumatra  
Calculation of financing from coal transportation is  
carried out based on 3 scenarios, the first using the land route  
i.e. trucks up to Palembang next from Palembang by barge to  
Tanjung Carat, the second scenario using rail transport mode  
to Tanjung Carat, and the third by land until Palembang and  
then use barge up to STS. Here is a cost calculation of the  
first scenario cost.  
4.3.2 Railways and Barge Scenario to Mother Vessel  
Transhipment / STS  
The analysis of the financing of coal freight with  
scenarios using railways up to coal terminal then using barge  
to Tanjung Carat for mother vessel transhipment / STS cost  
calculation is as follows (Table 2).  
Figure 3: South Sumatra Coal Transport Scheme  
Table 1: Cost Calculation of Truck + Barge Cost Requirement to Mother Vessel Transhipment / STS  
Banyuasin Quarry Site  
Item  
Unit  
318  
61,5  
1
Formula  
Cost (Rp/ton)  
338.000  
47.859  
3.371  
107.872  
Road distance (km)  
Waterways distance (Nm)  
Coal Surveyor Cost  
Transhipment Cost  
Total+Insurance (16%) (Rp/ton)  
Lahat Quarry Site  
(1000*km)+20000  
(207.65*Nm)+35088.06  
3371  
2
53936  
IDR 576.638  
Item  
Unit  
0
17  
1
Formula  
Biaya (Rp/ton)  
-
38.618  
3.371  
Road distance (km)  
Waterways distance (Nm)  
Coal Surveyor Cost  
Transhipment Cost  
Total+Insurance (16%) (Rp/ton)  
(1000*km)+20000  
(207.65*Nm)+35088.06  
3371  
1
53936  
53.936  
IDR 103.599  
701  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 697-704  
Table 2: Cost Calculation of Railways + Barge Cost Requirement to Mother Vessel Transhipment / STS  
Banyuasin Quarry Site  
Item  
Unit  
Formula  
Cost (Rp/ton)  
Railway distance (km)  
Waterways distance (Nm)  
Coal Surveyor Cost  
318  
(1000*km)+20000  
38.000  
59  
(207.65*Nm)+35088.06  
7.339  
1
3371  
3.371  
Transhipment Cost  
2
53936  
107.872  
Total+Insurance (16%) (Rp/ton)  
Lahat Quarry Site  
IDR 576.036  
Item  
Unit  
Formula  
Biaya (Rp/ton)  
Railway distance (km)  
Waterways distance (Nm)  
Coal Surveyor Cost  
0
(1000*km)+20000  
(207.65*Nm)+35088.06  
3371  
-
34,7  
2.294  
3.371  
53.936  
1
Transhipment Cost  
1
53936  
Total+Insurance (16%) (Rp/ton)  
IDR 107.569  
Table 3: Cost Calculation of Railways to Future Coal Terminal Transhipment  
Banyuasin Quarry Site  
Item  
Unit  
Formula  
Cost (Rp/ton)  
Railway distance (km)  
Coal Surveyor Cost  
Transhipment Cost  
Total+Insurance (16%) (Rp/ton)  
Lahat Quarry Site  
318  
(1000*km)+20000  
3371  
38.000  
3.371  
1
1
53936  
53.936  
IDR 489.923  
Item  
Unit  
Formula  
Biaya (Rp/ton)  
38.618  
Railway distance (km)  
Coal Surveyor Cost  
Transhipment Cost  
Total+Insurance (16%) (Rp/ton)  
17  
(207.65*Nm)+35088.06  
1
3371  
3.371  
1
53936  
53.936  
IDR 103.599  
In the second scenario analysis using the train to the coal  
terminal then the barge to Tanjung Carat shows that the total  
cost required for the Banyuasin Quarry Site is IDR 576,036 /  
ton with the fee for the cost of using the train is IDR. 38,000 /  
ton, use of barges of IDR 7,339 / ton, coal surveyor costs of  
IDR 3,371 / ton and for transhipment costs IDR 107,882 /  
ton. In the same scenario, the total cost for the Lahat Quarry  
Site is IDR 107,569 with detailed costs for water use using  
IDR 2,294 / ton, coal surveyor costs IDR 3,371 / ton and  
transhipment costs IDR 53,936 / ton.  
In the third scenario cost analysis the total cost for  
Banyuasin Quarry Site is IDR 489,923 / ton, with details, for  
the cost of using the railway line reaching IDR 38,000 / ton,  
the coal surveyor cost is IDR 3,371 / ton, and the  
transhipment cost is IDR 53,936 / ton, whereas for Quarry  
Site land the total cost is IDR 103,599 / ton, with the use of  
the IDR 38,618 / ton railroad track, coal surveyor costs are  
IDR 3,371 / ton and the transhipment cost is IDR 53,936 /  
ton.  
Based on the results of the analysis of financing  
comparisons for the three scenarios, it shows that in the first  
scenario the total cost reached IDR 576,638 / ton for  
Banyuasin Quarry Site and IDR 103,599 / ton for Lahat  
Quarry Site. In the second scenario the total cost reached IDR  
576,036 / ton for Banyuasin Quarry Site and IDR 107,569 /  
ton for Lahat Quarry Site. In the third scenario the total cost  
reaches IDR 489,923 / ton for Banyuasin Quarry Site and  
4
.3.3 Railways to Future Coal Terminal Transhipment  
The analysis of the financing of coal freight with  
scenarios using railways up to coal terminal then using barge  
to Tanjung Carat for Future Coal Terminal Transhipment cost  
calculation is as follows (Table 3).  
702  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 697-704  
IDR 103,599 / ton for Lahat Quarry Site. This comparison  
shows that in the third scenario the total cost for Banyuasin  
Quarry Site and Lahat Quarry Site has the lowest cost.  
Therefore, based on cost analysis, railroad usage scenarios to  
coal terminals then using barges to Tanjung Carat for Future  
Coal Terminal Transhipment is the best choice of the three  
coal transportation systems.  
The main obstacles of STS are the issue of supervision,  
monitoring of environmental aspects to prevent pollution  
from coal (spills etc), and legal aspect of STS activity. In  
addition, if there is bad weather. If rainfall is high, loading  
and unloading times can deviate 25 hours, and if the wave  
deviation is about 6 hours.  
Integrated coal mooring port at major ships weighing  
about 50,000 to 100,000 DWT. The port is quite large and  
deep, which can be on land or at sea (STS). It is necessary to  
evaluate the advantages and disadvantages of both types of  
ports. Considering the site in the case study, long-term ship to  
ship transhipment is not recommended, this is related to  
several limitations and disadvantages such as potential  
retarding, potential environmental pollution from coal spills,  
and low control in the transport system. Some of the points  
above are not in line with the principle of sustainable  
transportation, as it is known that efficiency, effectiveness of  
transportation and protection of the environment are the basic  
principles of a sustainable transportation system (9, 18).  
4
.3.4 Discussion  
Integrated coal mains terminal are used for docking large  
vessels (mother vessels) that load coal from the piling or  
transfer field from several barges to the vessel. The size of  
the mother vessel is so large that it needs a large port water  
depth. If a conventional port is ground-based, a large dock is  
required. If using wharf type, then the construction will be  
quite heavy because of the large depth. When using a jetty, it  
takes a very long jetty for the jetty tip to be at the depth  
required for a leaning ship.  
To anticipate this, the loading of coal from barge to  
mother vessel is done in the middle of the sea. Ship loading  
activities are known as ship to ship transfer (STS). STS has  
the main facilities of the cruise line / DLKr and DLKp,  
transhipment point, floating conveyor, and floating crane.  
Supporting facilities include floating office, radar monitors,  
AIS (Automatic Identification System), radio monitors, mess  
employees, canteen, health room, places of worship, showers  
and toilets, as well as SBNP facilities.  
5
Conclusion  
This study has conducted  
a comparison of coal  
transportation model in South Sumatra using truck - barge -  
mother vessel, train - barge - mother vessel and train - mother  
vessel. Comparison is done by using cost analysis and  
technical aspect analysis. Based on these considerations, the  
transport model by train - barge - mother vessel is the best for  
the short term. Meanwhile, the train - mother vessel is the  
best transportation model for the long term. The key findings  
of this study are expected to be useful for assessing the  
possibility of integration of coal transportation modes that  
have been quite varied in various regions. In addition, the  
findings are expected to be input for the Government and  
mining companies in the effort to develop an integrated coal  
transportation system. For the more optimal and efficient  
implementation of coal transportation, it is necessary to study  
more comprehensively the various other related aspects such  
as environmental, social and regulatory and institutional  
aspects.  
Figure 3: Coal Transport Ship to Ship Transhipment in South  
Sumatra (Taken September, 2017)  
Acknowledgements  
This research was supported and funded by Institute  
Teknologi Bandung through P3MI ITB 2017 Research  
Funding. We would also like to show our gratitude to  
Ministry of Transportation, Palembang Harbour Master,  
Indonesian Port Company and South Sumatra Transportation  
Office for sharing data and information.  
Coal was taken by barge from Palembang (about 60  
nautical miles) at a speed of 3 knots (travel time about 20  
hours). There are also 10 other shipper from different regions  
(
Gandus, Keramasan, S Lilin and Muara Enim / PALI). The  
loading and unloading costs in STS are around Rp 13,751 /  
ton. In August 2017, there were 20 mother vessel arrivals  
with an average weight of 50,000 DWT (range from 30,000  
to 60,000 DWT). The vessel gets a coal transfer from 7  
barges with a load of about 7,000 tons. Mother vessel is  
tethered by anchors at a depth of 22 meters.  
The purpose of mother vessel is export to China (40%),  
India (20%), Vietnam (20%), and the rest to Thailand,  
Cambodia. Export to Malaysia using barge. Loading and  
unloading is done by loading and unloading company with  
ship crane and floating crane. One mother vessel loads coal  
from the barge on the right and left, with loading time of  
about 20 hours / barge.  
References  
1. Akanda A. Inland Water Transport Development in India : The  
Role of ADB. Chennai: SUMINFRA: Summit on Integrated  
Infrastructure Development in Southern Region. 2003.  
2
.
Black WR. Sustainable transportation: a US perspective. Journal  
of Transport Geography. 1996;4(3): 151-159.  
doi:https://doi.org/10.1016/0966-6923(96)00020-8  
3
4
.
.
Dablanc L. Freight transport for development toolkit : urban  
freight (English). Washington, DC. 2009.  
Ekmann JM, Le PH. Coal Storage and Transportation☆  
Reference Module in Earth Systems and Environmental  
Sciences: Elsevier. 2014.  
703  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 697-704  
5
.
Fabian B. Freight and its impact on air pollution, greenhouse gas  
emissions, and fuel consumption in Asia. Paper presented at the  
Expert Group Meeting on Sustainable Transport Development:  
Eco-efficiency in Freight Transportation and  
Logistics, Bangkok. 2010.  
Farley HM, Smith ZA. Sustainability: If it’s everything, is it  
nothing? 2013.  
Faulin J, Grasman SE, Juan AA, Hirsch P. Chapter 1 -  
Sustainable Transportation: Concepts and Current Practices. In J.  
Faulin, S. E. Grasman, A. A. Juan, & P. Hirsch (Eds.),  
Sustainable Transportation and Smart Logistics (pp. 3-23):  
Elsevier. 2019.  
Gunasekaran A, Spalanzani A. Sustainability of manufacturing  
and services: Investigations for research and applications.  
19. Mizrak Özfirat P, Özfırat M, Malli T. Selection of coal  
transportation mode from the open pit mine to the thermic power  
plant using Fuzzy Analytic Hierarchy Process (Vol. 33). 2017.  
20. Naganathan H, Chong WK. Evaluation of state sustainable  
transportation performances (SSTP) using sustainable indicators.  
21. Parikesit D. Development of a Dynamic Model for Investigating  
the Interaction between Rural Transport and Development: A  
Case of Southeast Sulawesi, Indonesia. 2005.  
22. Park D, Nam D. Strategies Enhancing Water Transportation  
using Econometric Model Approach. Journal of the Eastern Asia  
Society for Transportation Studies, 2005;6: 825-827.  
23. Ponrahono Z, Bachok S, Ibrahim M. Exploring The Concept and  
Definition of Sustainable Transportation System. 2013.  
6
7
.
.
8
9
.
.
4
24. Rioux B, Galkin P, Murphy F, Pierru A. Economic impacts of  
debottlenecking congestion in the Chinese coal supply chain.  
Gupta P, Mehlawat MK, Aggarwal U, Charles V. An integrated  
AHP-DEA multi-objective optimization model for sustainable  
387-399.  
25. Sarma KGS. India's National Waterway : A Log way to Go.  
RITES Journal, July 2010: 2301-2316.  
26. Shi Y, Arthanari T, Liu X, Yang B. (). Sustainable transportation  
management: Integrated modeling and support. Journal of  
1
1
0. Hanh VTH. Canal-side highway in Ho Chi Minh City (HCMC),  
Vietnam  Issues of urban cultural conservation and tourism  
development. GeoJournal, 2006;66: 165186.  
1. Hendrickx C, Breemersch T. The effect of climate change on  
inland waterway transport. Procedia - Social and Behavioral  
Sciences, 2012;48: 1837-1847.  
2. Herzog BO. Angkutan Barang Perkotaan di Kota-Kota Negara  
Berkembang S. Dominik & B. Stefan (Eds.), 2010.  
3. IEA. CO  
4. Indonesia Ministry of Trasnport. Studi Penyusunan Rencana  
Transportasi Perairan Regional Sulawesi. Jakarta: Direktorat  
Jenderal Perhubungan Darat. 2007.  
1381-1395.  
27. Shohibah, W. A., Hadi, F., & Yunianto, I. T. (2014). Analisis  
Dampak Pendalaman Alur Pada Biaya Transportasi (Studi  
Kasus : Sungai Musi)  
28. Sugeng, S. (2010). DAMPAK PELAYARAN KAPAL LAUT  
DI ALUR SUNGAI MUSI. GEMA TEKNOLOGI, Vol. 16 No.  
1 Periode April 2010 Oktober 2010, 49-56.  
29. Susantono, B. (2013). Transportasi dan Investasi : Tantangan  
dan Perspektif Multidimensi (Pertama ed.). Jakarta: Kompas.  
30. United Nations. (2017). World Population Prospects: The 2017  
1
1
2
Emissions from Fuel Combustion. Retrieved from  
1
1
1
5. Indonesia Statistic. Ekspor Batu Bara: Indonesia Statistik,. 2017.  
6. Indonesia Statistic. Besarnya Sumber Daya dan Cadangan Batu  
Bara di Provinsi Sumatera Selatan: Statistic South Sumatera  
Provinsi. 2018.  
7. Kusdian D. Potensi Revitalisasi Transportasi Sungai di Provinsi  
Lampung. Jurnal Transportasi, 2011;11(2): 143-152.  
8. Litman T. Developing Indicators for Comprehensive and  
Sustainable Transport Planning. Transportation Research  
Record, 2007;2017(1): 10-15. doi:10.3141/2017-02  
32. Zonailo, G. W. (2013). 21 - Transportation by rail and sea in the  
coal industry. In D. Osborne (Ed.), The Coal Handbook:  
Towards Cleaner Production (Vol. 1, pp. 705-730): Woodhead  
Publishing.  
1
1
704