Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 802-807  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
Fabrication and Properties of Collagen and  
Polyurethane Polymeric Nanofibers Using  
Electrospinning Technique for Tissue Engineering  
Applications  
a
a  
a
Nasrin Beheshtkhoo , Mohammad Amin Jadidi Kouhbanani , Fatemeh sadat Dehghani ,  
b
a
c
a,d*  
Shahla abdollahii , Mohsen Alishahi , Vahid Razban , Ali Mohammad Amani  
a
Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran  
b
Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shahroud University of Medical Sciences,  
Shahroud, Iran  
c
Department of Molecular Medicine, School of Advanced Technologies in MedicineShiraz University of Medical Sciences  
d
Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran  
Abstract  
The present study introduces a nanofibers skin patch comprised of collagen and polyurethane polymers. Belonging to the family of  
biodegradable polymers, they can be mixed with various drugs, degraded at the wounded area, whereby the drug is gradually released  
into the wound. The characterization of nanofibers were identified using mechanisms such as SEM, FTIR, and tensile test. The results  
of SEM analysis indicated that all the fabricated nanofibers have a proper and uniform morphology. FTIR spectrum for collagen and  
TPU revealed various factor groups including N-H group with hydrogen bond, CH2 group, (C=O) carbonyl group, and carboxyl group  
(COO) for collagen. Furthermore TPU spectrum demonstrated a broad peak for N-H group, the symmetric and asymmetric stretching  
for CH2 group as well as carbonyl group (C=O) peak. In addition, a tensile test examined the mechanical properties of nanofibers with  
and without loaded natural honey, indicating that the use of natural honey in the structure of nanofibers decreases the maximum stress  
at break point.  
Keywords: Nanofiber; Electrospinning; Scaffold; Tissue engineering; Chitosan; Polyurethane  
1
The costs of daily injection may surpass those of topical drug  
delivery patch since in the former the drug should be  
purchased and injected every day, whereas topical patches  
incur less costs due to the continuity and control of drug  
delivery process.  
In comparison with topical drug delivery, injection drug  
delivery is more painful and causes more infectious problems.  
In recent years, the use of nanotechnology such as nanofibers  
has gained substantial popularity. Nanofibers have enormous  
applications in medical sciences including artificial organs,  
tissue engineering, medical prostheses, wound dressing, and  
drug delivery. Nanofibers are characterized by a unique  
ability in loading biological molecules, drugs, and  
nanoparticles.  
Capable of being fabricated from various substances such  
as ceramics and polymers, fibers are thin and long threads  
which have high length to diameter ratios. Fibers with  
diameters ranging from 1 to 1000 nanometers are called  
nanofibers which have different properties including high  
surface area to volume ratio, mechanical strength, and  
versatility, making them an ideal scaffold for various medical  
and engineering applications (1). With regard to medical uses,  
nanofibers have special properties such as their similarity to  
extracellular matrix (ECM) composed of 10 to over 100  
nanometer diameter protein fibers such as collagen. The  
1
Introduction  
Skin diseases have been an issue of considerable concern  
to the World Health Organization (WHO) such that an  
enormous number of studies thus far have been conducted to  
find new treatment ways, one of which is to develop an  
instrument to topically deliver the drug to the skin. The  
advantages of this drug delivery patch over the injection drug  
delivery include:  
Topical drug delivery to the wound allows the drug to remain  
in the injured area in large amounts, inducing less side effects  
than injection drug delivery does.  
Injection drug delivery has a regular daily basis, that is, the  
patient is to receive injection every day, while the topical drug  
delivery patch obviates the need for the patient’s presence to  
receive injection, making it possible for the patient to replace  
the patch after some days.  
Corresponding author: Nasrin Beheshtkhoo, Department of  
Medical Nanotechnology, School of Advanced Medical  
Sciences and Technologies, Shiraz University of Medical  
Sciences, Shiraz, Iran.  
These authors contributed equally to this work.  
8
02  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 802-807  
relationship between ECM and cells regulates various cell  
behaviors including reproduction and gene expression. The  
more the resemblance between the fabricated scaffold and  
ECM, the better the scaffold can involve in cellular  
interactions. Therefore, using nanometer diameter fibers  
makes it possible to obtain an appropriate mimic of ECM.  
This property turns nanofibers into a unique structure for  
medical applications, particularly in tissue engineering (2).  
There are various nanofibers fabrication techniques, the  
main one being electrospinning method due to its versatility,  
adaptability, simplicity and cost-efficiency. Another  
advantage of electrospinning technique is its capability in  
fabricating fibers from biomaterials such as biodegradable  
polymers. When mixed with drugs, polymer solutions turn  
into drug-incorporated nanofibers. With degradation of  
polymer in the wounded area, the drug is slowly released and  
penetrated into the wound (3). Nanofibers can be also utilized  
to achieve optimal release rate by controlling various factors  
effective on drug release in polymeric matrix structure. It  
should be noted that selection of polymer for nanofiber  
fabrication is one of the most significant factors (4) as the  
polymer should be biocompatible, biodegradable, and have  
appropriate physical properties. Depending on the kind of  
drug delivery process, releasing drug can be performed in  
various durations spanning from several hours to days. Thus,  
polymer selection should be in such a way that polymer  
degradation rate be proportional to the rate of drug release.  
Electrospinning device is made up of four main parts:  
collector, but as it approaches the collector, which is  
connected to the other end of voltage terminal, the charged jet  
whips across space between the needle tip and the collector in  
a spiraling way. It is worth noting that the interaction between  
various electrospinning parameters should be in a way that the  
charged jet maintain a continuous and steady whipping  
movement toward the collector.  
Fig. 1-1: Taylor cone and tip of needle during electrospinning  
Depending on the number of needles, electrospinning is  
divided into two uniaxial (single needle) and multiaxial  
(multiple needles) processes. In the former, polymeric  
solution and the drug are contained in the syringe and are  
expelled out toward the collector through a single needle,  
whereas in the latter there are two needles as core and shell  
and two syringe pumps are used to drive solutions into the  
needles (10, 11, 12, 13, 14). Even though electrospinning is a  
seemingly simple technique, all the parameters involved such  
as the solution, environmental factors, and their interactions  
make electrospinning a sensitive process. All in all, they  
should interact in such a way that the charged jet steadily  
moves toward the collector and that fiber diameters are  
consistent and in the expected ranges (15, 16, 17, 18, 19, 20).  
1
.
A power supply which provides the voltage needed for  
electromagnetic force between the needle tip and the  
collector.  
2
.
Syringe pump through which polymeric solution is  
pumped  
3
4
.
.
A needle tip connected to one voltage terminal.  
A collector connected to other voltage terminal and where  
fibers are fabricated  
To start electrospinning process, polymeric solution or  
melt should be prepared in advance. Then, the polymer  
solution is filled in a syringe and placed over the syringe  
pump such that a droplet of the polymer solution appears on  
the tip of the needle connected to one voltage terminal  
2
Materials and methods  
2
.1 Synthesis  
To prepare the solution, various percentages and methods  
were used and, in the end, the proper conditions for  
fabricating nanofibers without beads were achieved. The  
solution was prepared as follows: Thermoplastic polyurethane  
(usually negative pole) while the collector is connected to  
other terminal (usually positive pole). Given the appropriate  
distance between needle tip and the collector screen as well as  
the proper applied voltage, the process of nanofiber  
fabrication starts (5). After a voltage is applied by the power  
supply to the needle tip, this will become highly charged and  
the induced surface charges on the polymeric solution will be  
evenly distributed over its surface, making the droplet  
transform from a rounded (The reason for the rounded droplet  
shape is the fact that in the absence of any voltage applied to  
the droplet, it tends to form a shape with a less volume to  
surface area ratio) to a conical shape (6) also known as  
(0.2 gr) was mixed with collagen (0.05 gr) and, then, they  
were gradually added to 3.5 ml deionized water and 1.5 ml  
hexafluoro-2-propanol (HFIP) while being stirred using a  
magnetic mixer at room temperature. After 24 hours, they  
were completely dissolved, turning into a colorless, viscous,  
uniform and homogeneous solution (21).  
2
.2 Electrospinning setup and specification  
The electrospinning setup utilized in the present study was  
composed of: a power supply, syringe pump, uniaxial needle  
tip, syringe, and a rotating collector To produce the electric  
field, a high voltage direct current (DC) power supply was  
used. The power supply device (High Voltage 35 OC,  
Fanavaran Nano-Meghyas, Tehran, Iran) applied voltages  
ranging from 0 to 18 KV. The positive terminal was  
connected to the needle tip and the negative terminal to the  
rotating collector. Moreover, the syringe pump (model  
SP1000HOM, Fanavaran Nano-Meghyas, Tehran, Iran) was  
designed to use various kinds of syringes. Given the  
dimensions of the syringes, the pump syringe could expel out  
a certain amount of solution with the lowest and the highest  
Taylor cone, shown in Fig. 1-1. When higher voltages are  
applied, the solution is so electrified that it reaches the so  
called critical voltage. Consequently, the electric force  
overcomes the surface tension of the drop, leading to the  
formation of a charged jet which is expelled from the tip of  
Taylor cone towards the rotating collector surface where the  
fibers are deposited. This cycle continues as the solution in  
the syringe pump is charged to expel out more and more  
droplets to be changed into fibers (7-8-9).  
As the jet stretches out and turns into nanofibers on its  
way towards the collector, the solvent evaporates. At the  
beginning, the jet moves in a straight line towards the  
8
03  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 802-807  
speeds of 0.5 µl/h and 1000 ml/h, respectively. The internal  
diameter of the syringe was entered into the system using a  
keyword, according to which the device computed and  
applied the precise amount of solution release. The memory  
used in the device was of a permanent type and the last  
configurations from syringe size, solution release speed to the  
transformation time were recorded in the memory. Also, the  
uniaxial needle tip utilized to produce droplets was 0.8192  
mm in external diameter (Guage-21 specification). Moreover,  
a 5 mm syringe with a 12.5 mm internal diameter was used to  
pump the solution into the main syringe. With regard to the  
As mentioned before, to perform this tensile test, the fiber  
samples were sliced in the form of rectangles with dimensions  
of 6×1 cm. They were also placed in a vacuum oven 94 hours  
before trial at room temperature and humidity. For this test,  
the use was made of Machine Testing Universal Santam  
device as well as cell load with the weight of 1.4 kg and  
tensile speed of 1 mm/m. The analysis of stress-strain plot  
obtained from the device yielded Young’s modulus, tensile  
strength and elongation-to-break (24).  
2.6 Fourier-Transform Infrared Spectroscopy (FTIR)  
In order to identify and analyze the bonds between fibers  
and polymers utilized to fabricate nanofibers as well as to  
compare their structure, FTIR analysis was employed. FTIR  
analysis examines polymers existing in the sample material by  
assessing the degree of emission and rotation in bonds of the  
material. Given that any material has a certain infrared  
spectrum, FTIR is a proper method of confirming the presence  
of any bond and of identifying the kind of material being  
used. Accordingly, the present study utilized FTIR  
spectrometer model RX1 Spectrum manufactured by Elmer  
Perkin. To prepare the fibers, they were sliced into small  
parts, hence their being formed into tablets and ground along  
with potassium bromide (KBr), a neutral salt powder, in front  
of infrared radiation (25).  
2
collector, aluminum plates with the dimensions of 25×10 cm  
were employed on the roller as the collector and the distance  
between the needle tip and the collector was measured  
precisely before any trial.(22)  
2
.3 Analysis of Scanning Electron Microscope (SEM)  
To examine the morphology and microscopic structure of  
nanofibers as well as to determine their diameter, SEM  
analysis was conducted on the fibers. To prepare the fibers  
for SEM analysis, they were first sliced with dimensions of  
1
×1 cm2 and then mounted on an aluminum foil. In the  
present study, we used TESCAN VEGA electron microscope  
produced by the Czech Republic. Before imaging, the sliced  
sample fibers were covered with gold in 900  
angstrom thickness. During SEM analysis, we shine beams of  
electrons on the surface of the sample fibers and then the  
emissions are scanned while the image of the surface of  
samples are shown on a monitor. To better analyze the  
morphology of fibers, they were scanned in seven various  
zooms  
3
Results and discussion  
3
.1 Nanofiber fabrication results  
The present study made an attempt to fabricate  
thermoplastic polyurethane (TPU) nanofibers and collagen.  
To do so, various electrospinning parameters were initially  
evaluated and different concentrations of TPU were prepared  
with various injection rates. Afterwards, fiber morphology  
and diameter under different electrospinning conditions were  
examined via SEM imaging. Such electrospinning parameters  
2
.4 SEM analysis images  
In order to determine the diameter of nanofibers, images  
from SEM analysis of sample fibers were analyzed using  
ImageJ software. To this end, of each sample, a total of 40  
fibers were randomly selected and examined. To work by the  
software, first certain specified sizes were entered into the  
program so as to determine the zoom scale for the software.  
Then, the diameter of a fiber was computed by measuring the  
distance between the two ends of the fiber. The mean  
diameter of measured fibers was reported as the sample fiber  
diameter. (23)  
should be regulated in  
a way that the diameter and  
morphology as well as mechanical properties of fibers are  
optimized. The parameters for fabricating the optimized  
sample fibers were: needle gauge 21, electrospinning solution  
with 4% and 3% concentrations of poly-ethylene-oxide (PEO)  
and chitosan, respectively. Moreover, the optimal voltage and  
the distance between the needle tip and the collector were 10  
KV and 11 cm, respectively. The rotating speed of the  
collector was also set on 600 rpm along with optimal injection  
speed of 0.9 mm/m. Table 3-1- introduces samples fabricated  
in various injection rates and chitosan percentages.  
2
.5 Tensile test  
In order to assess the mechanical properties of samples,  
they were subjected to a tensile test in which sample fibers, in  
rectangular form, were stretched out to the point where they  
broke in half. In this tensile test, the ultimate plot was a stress-  
strain one such that strain was considered sample length per  
initial length and stress as force per sample cross section.  
Analysis of stress-strain plot gave way to three parameters:  
Elastic modulus or Young’s modulus (E), at the beginning of  
which there was the slope of stress-strain curve; Tensile  
strength also known as the maximum stress in stress-strain  
curve; and Elongation-to-break or the degree of strain at the  
end of stress-strain curve where the sample broke in halves.  
3
.2 SEM analysis  
To examine the morphology, microscopic structure and  
diameter of fibers, SEM analysis was performed. To find the  
optimal conditions for electrospinning, samples with various  
injection rates were analyzed. Fig. 3-1 depicts SEM images  
for all the four samples which were analyzed through ImageJ  
software so as to compute their mean diameter summarized in  
Table 3-2.  
Table 3-1: Parameters and amounts used in nanofiber fabrication  
Samples  
Parameters  
TPU (%)  
Collagen (%)  
Injection Rate (ml/h)  
Voltage (KV)  
Distance to Collector (cm)  
Sample 1  
Sample 2  
Sample 3  
Sample 4  
4
4
4
4
1
3
3
3
0.5  
0.5  
0.5  
0.9  
10  
10  
10  
10  
11  
11  
11  
11  
8
04  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 802-807  
Fig. 3-1: SEM images (from right to left: Sample 1 to Sample 4)  
SEM analyses revealed that all the samples had an  
appropriate and uniform morphology, according to which  
Sample 4, selected as the optimal one, proved to be the most  
useful for medical applications (26-27).  
elongation-to-break of samples are also depicted by Table 3-3.  
Given the results of stress plot on the basis of deformation  
percentage as well as the effect of the honey loaded on fibers,  
it was concluded that increase in the amounts of honey  
decreased maximum stress at break point.  
Table 3-2: Mean diameters from SEM images  
92  
90  
88  
86  
84  
82  
80  
Samples  
Sample 1  
Sample 2  
Sample 3  
Sample 4  
Mean Diameter  
800  
683  
917  
1003  
3
.3 FTIR results  
In this section of the study, various FTIR spectra for  
collagen, TPU and synthesized nanofibers were examined.  
Regarding collagen FTIR spectrum in peaks 3426, 2940,  
660, and 1541, N-H group with hydrogen bond, CH2  
1
3950 3450 2950 2450 1950 1450 950 450  
asymmetric stretching, (C=O) carbonyl group stretching,  
hydrogen bond coupled with carboxyl (COO), and finally N-  
H bending vibration along with C-N stretching vibration were  
witnessed. Furthermore, with regard to TPU spectrum, a  
broad peak for N-H group was seen in peak 3333, the  
symmetric and asymmetric stretching for CH2 group were  
respectively witnessed in peaks 2861, and 2934. Also,  
carbonyl group (C=O) was witness at peak 1726 with a strong  
shoulder near 1700 which was associated with carbonyl  
resonance stretching along with urethane-based hydrogen  
bonds. Moreover, in areas 1528, and 1100, peaks for N-H  
group stretching as well as COC group peak were seen.  
According to the comparison of collagen infrared spectra and  
TPU, shown by Fig. 3.2 , it was concluded that in the  
synthesized nanofiber spectra, all the peaks for collagen and  
TPU were witnessed although with a little replacement due to  
interactions, suggesting that nanofibers were favorably  
synthesized (28, 29, 30, 31) .  
Fig. 3-2: FTIR Plot for Synthesized nanofibers  
5
4.5  
4
3
2
1
.5  
3
.5  
2
.5  
1
0.5  
0
0
10 20 30 40 50 60 70 80 90 100110120130140150  
En  
Fig. 3-3: Plot of stress on the basis of nanofiber elongation change  
3
.4 Tensile test  
The present study performed a tensile test on sample  
fibers so as to examine the effect of loaded drug on the  
mechanical properties of fibers. The samples consisted of  
optimally electrospun pure fibers composed of natural honey.  
The conditions were as follows:  
The applied voltage and the distance between needle tip and  
the collector were 10 KV and 11 cm, respectively. The stress  
plot of the fibers on the basis of samples deformation  
percentage is shown by Figs. 3-3 and 3-4. Also, the stress and  
8
05  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 802-807  
4
Conclusion  
Sseveral studies have been carried out on syntheses of  
3
2
1
0
.5  
3
nanoparticles (4150). The present study was carried out with  
the aim of examining the fabrication and properties of  
collagen and polyurethane polymeric nanofibers using  
electrospinning technique. SEM technique was employed to  
investigate the morphology, microscopic structure as well as  
diameter of nanofibers, as a result of which the best nanofiber  
for medical applications was selected. Afterwards, the optimal  
nanofiber was chosen using FTIR analysis. To do so, a  
comparison of IR spectrum of raw material and the product  
helped us come to the conclusion that the nanofiber was  
favorably synthesized. In the end, we used tensile test to  
examine mechanical properties of the selected nanofiber  
loaded with natural honey as the delivered drug, suggesting  
that the nanofiber had optimal tensile properties. Also, it was  
found that using natural honey in the structure of nanofiber  
decreased the maximum stress at break point.  
.5  
2
.5  
1
.5  
0
0
10 20 30 40 50 60 70 80 9010 01 1 01 2 01 3 01 4 01 5 01 60  
En  
Fig. 3-4: Plot of stress on the basis of honey-loaded nanofiber  
elongation change  
Table 3-3: Mechanical properties of nanofibers with various concentrations of loaded drug  
Sample  
Stress at break point  
Elongation-to-break  
142.04  
Nanofibers without natural honey  
Nanofibers with natural honey  
4.70  
3.01  
153.07  
Nanotechnology 17.14 (2006): R89.
‏  
References  
1
1
3. Ding, Bin, and Jianyong Yu, eds. Electrospun nanofibers for  
energy and environmental applications. Springer Berlin  
Heidelberg, 2014.
‏  
4. Sambaer, Wannes, Martin Zatloukal, and Dusan Kimmer. "3D  
modeling of filtration process via polyurethane nanofiber  
based nonwoven filters prepared by electrospinning process."  
Chemical Engineering Science 66.4 (2011): 613-623.
‏  
5. Thompson, C. J., et al. "Effects of parameters on nanofiber  
diameter determined from electrospinning model." Polymer  
1
.
Sencadas V, Correia DM, Areias A, Botelho G, Fonseca AM,  
Neves IC, et al. Determination of the parameters affecting  
electrospun chitosan fiber size distribution and morphology.  
Carbohydr Polym. 2012;87(2):1295301.  
2
3
4
.
.
.
Teo W, He W, Ramakrishna S. Electrospun scaffold tailored  
for tissuespecific extracellular matrix. Biotechnol J Healthc  
Nutr Technol. 2006;1(9):91829.  
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and  
nanofibers for topical drug delivery. J Control Release.  
1
1
1
4
8.23 (2007): 6913-6922.
‏  
2
016;240:7792.  
6. Tan, See-Han, et al. "Systematic parameter study for ultra-fine  
fiber fabrication via electrospinning process." Polymer 46.16  
Neo YP, Ray S, Easteal AJ, Nikolaidis MG, Quek SY.  
Influence of solution and processing parameters towards the  
fabrication of electrospun zein fibers with sub-micron  
diameter. J Food Eng. 2012;109(4):64551.  
Beachley V, Wen X. Polymer nanofibrous structures:  
Fabrication, biofunctionalization, and cell interactions. Prog  
Polym Sci. 2010;35(7):86892.  
Carlson BM. Stem Cell Anthology: From Stem Cell Biology,  
Tissue Engineering, Cloning, Regenerative Medicine and  
Biology. Academic Press; 2009.  
(2005): 6128-6134.
‏  
7. Jalili, Rouhollah, Mohammad Morshed, and Seyed  
Abdolkarim Hosseini Ravandi. "Fundamental parameters  
affecting electrospinning of PAN nanofibers as uniaxially  
aligned fibers." Journal of applied polymer science 101.6  
5
6
7
.
.
(2006): 4350-4357.
‏  
1
1
8.
Beachley, Vince, and Xuejun Wen. "Effect of electrospinning  
parameters on the nanofiber diameter and length." Materials  
Science and Engineering: C 29.3 (2009): 663-668.
‏  
9. Theron, S. A., E. Zussman, and A. L. Yarin. "Experimental  
investigation of the governing parameters in the  
electrospinning of polymer solutions." Polymer 45.6 (2004):  
. Dasdemir, Mehmet, Mehmet Topalbekiroglu, and Ali Demir.  
Electrospinning of thermoplastic polyurethane microfibers  
"
and nanofibers from polymer solution and melt." Journal of  
Applied Polymer Science 127.3 (2013): 1901-1908.
‏  
. Zakeri, Abbas, et al. "Polyethylenimine-based nanocarriers in  
co-delivery of drug and gene: a developing horizon." Nano  
reviews & experiments 9.1 (2018): 1488497.
‏  
. Frenot, Audrey, and Ioannis S. Chronakis. "Polymer nanofibers  
assembled by electrospinning." Current opinion in colloid &  
interface science 8.1 (2003): 64-75.
‏  
0. Zong, Xinhua, et al. "Structure and process relationship of  
electrospun bioabsorbable nanofiber membranes." Polymer  
2
017-2030.
‏  
8
9
1
1
1
2
0. Okutan, Nagihan, Pınar Terzi, and Filiz Altay. "Affecting  
parameters on electrospinning process and characterization of  
electrospun gelatin nanofibers." Food Hydrocolloids 39  
(2014): 19-26.
‏  
2
1. Xu, Cancan, et al. "Triggerable degradation of polyurethanes  
for tissue engineering applications." ACS applied materials &  
interfaces 7.36 (2015): 20377-20388.
‏  
2. Uecker, Jan. "The Production and Filtration Efficiency  
Testing of Nonwoven Electrospun Fiber Mats." (2009).
‏  
3. Frenot, Audrey, Maria Walenius Henriksson, and Pernilla  
2
2
4
3.16 (2002): 4403-4412.
‏  
1. Fong, Hao, Iksoo Chun, and Darrel H. Reneker. "Beaded  
nanofibers formed during electrospinning." Polymer 40.16  
Walkenström. cellulosebased  
nanofibers." Journal of applied polymer science 103.3 (2007):  
473-1482.
‏  
"Electrospinning  
of  
(
1999): 4585-4592.
‏  
2. Teo, Wee E., and Seeram Ramakrishna. "A review on  
electrospinning design and nanofibre assemblies."  
1
8
06  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 802-807  
2
2
4. Tan, E. P. S., et al. "Tensile test of a single nanofiber using an  
atomic force microscope tip." Applied Physics Letters 86.7  
BioNanoScience 9.2 (2019): 317-322.
‏  
42. Beheshtkhoo, Nasrin, et al. "Green synthesis of iron oxide  
nanoparticles by aqueous leaf extract of Daphne mezereum as  
a novel dye removing material." Applied Physics A 124.5  
(2018): 363.
‏  
43. Kouhbanani, Mohammad Amin Jadidi, et al. "One-step green  
synthesis and characterization of iron oxide nanoparticles  
using aqueous leaf extract of Teucrium polium and their  
catalytic application in dye degradation." Advances in Natural  
Sciences: Nanoscience and Nanotechnology 10.1 (2019):  
015007.
‏  
44. Kouhbanani, Mohammad Amin Jadidi, et al. "Green synthesis  
of iron oxide nanoparticles using Artemisia vulgaris leaf  
extract and their application as a heterogeneous Fenton-like  
catalyst for the degradation of methyl orange." Materials  
Research Express 5.11 (2018): 115013.
‏  
45. Kouhbanani, Mohammad Amin Jadidi, et al. "Green Synthesis  
and Characterization of Spherical Structure Silver  
Nanoparticles Using Wheatgrass Extract." Journal of  
Environmental Treatment Techniques 7.1 (2019): 142-149.
‏  
46. Rostamizadeh, Shahnaz, et al. "Aqueous NaHSO 4 catalyzed  
regioselective and versatile synthesis of 2-thiazolamines."  
Monatshefte für Chemie/Chemical Monthly 139.10 (2008):  
1241-1245.  
47. Rostamizadeh, Shahnaz, et al. "An efficient onepot procedure  
for the preparation of 1, 3, 4thiadiazoles in ionic liquid  
[bmim] BF4 as dual solvent and catalyst." Heteroatom  
Chemistry: An International Journal of Main Group Elements  
19.3 (2008): 320-324.  
48. Amani, A. M. "Synthesis and biological activity of piperazine  
derivatives of phenothiazine." Drug research 65.01 (2015): 5-  
8.  
49. Rostamizadeh, Shahnaz, et al. "MCM-41-SO 3 H: a novel  
reusable nanocatalyst for synthesis of amidoalkyl naphthols  
under solvent-free conditions." Monatshefte für Chemie-  
Chemical Monthly 144.8 (2013): 1191-1196.  
50. Hashemi, Seyyed Alireza, et al. "Lead oxide-decorated  
graphene oxide/epoxy composite towards X-Ray radiation  
shielding." Radiation Physics and Chemistry 146 (2018): 77-  
85.46.  
(
2005): 073115.
‏  
5. Baudot, Charles, Cher Ming Tan, and Jeng Chien Kong.  
FTIR spectroscopy as tool for nano-material  
characterization." Infrared Physics & Technology 53.6 (2010):  
34-438.
‏  
"
a
4
2
2
6. Huang, Chen, et al. "Electrospun collagenchitosanTPU  
nanofibrous scaffolds for tissue engineered tubular grafts B  
Biointerfaces." (2011).
‏  
7. Chen, Rui, et al. "Preparation and characterization of coaxial  
electrospun thermoplastic polyurethane/collagen compound  
nanofibers for tissue engineering applications." Colloids and  
Surfaces B: Biointerfaces 79.2 (2010): 315-325.
‏  
8. Huang, Chen, et al. "Electrospun collagenchitosanTPU  
nanofibrous scaffolds for tissue engineered tubular grafts B  
Biointerfaces." (2011).
‏  
2
2
9. Samimi Gharaie, Sadaf, Sima Habibi, and Hosein Nazockdast.  
"
Fabrication  
and  
characterization  
polyurethane  
of  
blend  
chitosan/gelatin/thermoplastic  
nanofibers." Journal of Textiles and Fibrous Materials 1  
2018): 2515221118769324.
‏  
(
3
0. Chen, Rui, et al. "Preparation and characterization of coaxial  
electrospun thermoplastic polyurethane/collagen compound  
nanofibers for tissue engineering applications." Colloids and  
Surfaces B: Biointerfaces 79.2 (2010): 315-325.
‏  
1. Chen, Rui, K. E. Ke, and Xiumei Mo. "Preparation and Study  
of TPU/Collagen Complex Nanofiber via Electrospinning."  
AATCC review 10.2 (2010).
‏  
3
3
2.  
Mi,  
HaoYang,  
et  
al.  
"Thermoplastic  
polyurethane/hydroxyapatite electrospun scaffolds for bone  
tissue engineering: effects of polymer properties and particle  
size." Journal of Biomedical Materials Research Part B:  
Applied Biomaterials 102.7 (2014): 1434-1444.
‏  
3. Rogina, Anamarija. "Electrospinning process: Versatile  
preparation method for biodegradable and natural polymers  
and biocomposite systems applied in tissue engineering and  
drug delivery." Applied Surface Science 296 (2014): 221-230.
‏  
4. Electrospun aligned poly(propylene carbonate) microfibers  
with chitosan nanofibers as tissue engineering scaffolds  
5. Liu, LQ., et al. "Tensile mechanics of electrospun  
multiwalled nanotube/poly (methyl methacrylate) nanofibers."  
Advanced Materials 19.9 (2007): 1228-1233.
‏  
3
3
3
3
3
6. Shin, Ho Joon, et al. "Electrospun PLGA nanofiber scaffolds  
for articular cartilage reconstruction: mechanical stability,  
degradation and cellular responses under mechanical  
stimulation in vitro." Journal of Biomaterials Science,  
Polymer Edition 17.1-2 (2006): 103-119.
‏  
7. Gong, Guan, et al. "Tensile behavior, morphology and  
viscoelastic analysis of cellulose nanofiber-reinforced (CNF)  
polyvinyl acetate (PVAc)." Composites Part A: Applied  
Science and Manufacturing 42.9 (2011): 1275-1282.
‏  
3
3
8. Lee, Seung-Hwan, et al. "Mechanical properties and creep  
behavior of lyocell fibers by nanoindentation and nano-tensile  
testing." Holzforschung 61.3 (2007): 254-260.
‏  
9. Jonoobi, Mehdi, Aji P. Mathew, and Kristiina Oksman.  
"
Producing low-cost cellulose nanofiber from sludge as new  
source of raw materials." Industrial Crops and Products 40  
2012): 232-238.
‏  
(
4
4
0. Choi, Sung-Seen, et al. "Formation of interfiber bonding in  
electrospun poly (etherimide) nanofiber web." Journal of  
materials science 39.4 (2004): 1511-1513.
‏  
1. Lohrasbi, Sajedeh, et al. "Green Synthesis of Iron  
Nanoparticles Using Plantago major Leaf Extract and Their  
Application as a Catalyst for the Decolorization of Azo Dye."  
8
07