Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 689-695  
J. Environ. Treat.  
Tech. ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Modelling and Optimization of Biomass Supply  
Chain for Bioenergy Production  
1
*
2
1
Siti Fatihah Salleh , Mohd Fadzil Gunawan , Mohd Fikri Bin Zulkarnain , Abdul Halim  
3
1
Shamsuddin , Tuan Ab Rashid Tuan Abdullah  
1
Institute of Energy Policy and Research (IEPRe), Universiti Tenaga Nasional, Putrajaya Campus, Jalan Ikram-UNITEN, 43000 Kajang, Selangor,  
Malaysia  
2
Department of Chemical Engineering, Universiti Sains Malaysia Engineering Campus, 14300 Nibong Tebal, Pulau Pinang  
3
Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Putrajaya Campus, Jalan Ikram-UNITEN, 43000 Kajang, Selangor, Malaysia  
Received: 01/05/2019  
Accepted: 08/07/2019  
Published: 03/09/2019  
Abstract  
Biomass utilization in the generation of bioenergy and biofuels is promoted as a sustainable solution to decarbonise the energy  
sector. Effective management of biomass supply chain is pivotal to successful deployment of this energy-rich resource in the power  
sector. Using a case study in Malaysia where biomass feedstock sourcing problem is prevalent, a biomass supply chain system was  
proposed. Three important terminals were identified, namely; i) biomass supply point (BSP), where raw biomass materials are  
collected, ii) biomass processing facility (BPF), as the collection hub cum centralized conversion centre, and iii) biomass demand  
centre (BDC), where the processed biomass meets the end-use sectors. A new modelling approach was proposed to optimize the new  
BPF location with the objective to minimize total road travelling distance between each terminal. The results were compared with the  
other commonly used methods, namely centre of gravity and fuzzy clustering. The positive contributions of the proposed model in  
minimizing the overall logistic cost and CO emissions due to fuel consumption were discussed.  
2
Keywords: Biomass, Palm Oil Mills, Bioenergy, Decarbonization, Supply Chain.  
1
1
03 million tons of biomass, including agricultural waste,  
1
Introduction  
forest residues and municipal waste (2). The agricultural  
waste represents 91% of the biomass amount, of which over  
9
Biomass is an energy resource derived from living matter  
such as field’s crops and trees. Agricultural, forestry wastes  
and municipal solid wastes are also considered as biomass.  
Being in the tropical sun-belt, Southeast Asian countries  
enjoy a year-round sunlight which provides a favourable  
condition for agricultural activities. Global innovations in  
renewable energy technology and growing awareness on  
sustainable agricultural practice have prompted many  
countries in this region to adopt low carbon, bio-based energy  
production from their agricultural wastes. Among the  
common biomass feedstocks are bagasse, palm oil mill waste,  
and paddy husk.  
7% is derived from palm oil mill residues.  
The land area used for oil palm plantation in Malaysia  
keeps growing, covering 5.8 million hectares of land in 2017  
3). The total amount of processed fresh fruit bunches (FFB)  
(
was about 101 million metric ton. After a series of processes  
which involves the removal of the oil fruits from the branches  
and oil extraction, about 72% of the FFB mass is left as  
biomass residues in the form of empty fruit bunches (EFB),  
mesocarp fibres (MF), palm kernel shells (PKS), and also  
palm oil mill effluents (POME).  
These energy-rich biomass resources can be used to  
generate electricity, or converted to other marketable  
products such as bio-based chemicals, biofuels, animal feed,  
wood products and pellets. The estimated electricity  
generation potential of palm oil mill biomass comprised of  
EFB, PMF and PKS is between 2,400  7,460 MW (2, 4),  
while it is between 410 - 483 MW for biogas from POME (2,  
In 2016, bioenergy power generation in this region tripled  
from 1.6 GW in 2000, to 7.2 GW (1). This promising  
progress is mostly contributed by Indonesia, Malaysia and  
Thailand who are experiencing rapid urbanization and  
industrialization. Malaysia for example, produces more than  
5
) (considering 7,200 operation hours of power plant).  
In view of its high availability, biomass could play a  
Corresponding author: Siti Fatihah Salleh, Institute of Energy  
Policy and Research (IEPRe), Universiti Tenaga Nasional,  
central role in gearing up the share of renewable energy  
power generation. It can act as the base load for the national  
or regional grid, slowly taking over the role of coal power  
Putrajaya  
Campus, Jalan Ikram-UNITEN, 43000 Kajang,  
Selangor, Malaysia; E-mail: siti.fatihah@uniten.edu.my and  
sitifatihah.salleh@gmail.com.  
6
89  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 689-695  
plants while decarbonizing the energy industry along the  
way. In order to capture this potential, a cost-effective  
biomass supply chain management is crucial. Establishing a  
centralized biomass collection center and conversion facility  
could be an essential component in the supply chain to reduce  
the processing cost and logistic cost.  
Many tried to resolve problems mostly related to the triple  
bottom line of sustainability; namely i) economy, through  
minimization of cost associated with transportation, storage  
and inventory, redistribution and disaster losses (6), ii)  
environment, through minimization of air pollution such as  
CO emission (7), and iii) social, through maximization of  
2
social benefits such as job opportunities (8).  
1
.1 Biomass Supply Chain System  
Effective management of biomass supply chain is  
The center of gravity (COG) method is a well-established  
tool to find the geographical location a new facility which  
have to transport goods between the demand and supply  
points (9). This method ensures that the optimal location  
coordinates would minimize the required weighted travelling  
distances among them. In some cases, the method has to be  
modified such as implemented by Almetova et al. (2016) to  
cater unevenness in logistic flows in cargo network (10).  
Furthermore, in order to a solve more complex, multi-  
objective, multi-echelon facility location problem, mixed-  
integer linear programming model is most commonly adopted  
critically important to ensure bioenergy project viability and  
economic feasibility. Three important terminals along the  
supply chain have been identified, namely; i) biomass supply  
point (BSP), ii) biomass processing facility (BPF), and iii)  
biomass demand centre (BDC) or the market as shown in  
Figure 1.  
(
1114). Some used fuzzy theory to manage situation of  
uncertain parameters (11, 15), while others used Fuzzy C  
Means (FCM) clustering algorithm as a complementary tool  
to assign geographical clustering of distribution points (16,  
1
7) or to fine tune the facility location optimization result  
Figure 1: Supply chain in bioenergy production system.  
(
18). In FCM method, an objective function called C-means  
functional is minimized through  
clustering algorithm (19).  
a fuzzified k-means  
Generally, BSP is where all the biomass is produced and  
will be collected from, such as the palm oil mills. Meanwhile,  
BPF serves as a collection hub and conversion facility. This  
is where the collected biomass will be stored and processed to  
improve its quality and durability before shipping. Finally,  
the processed biomass will be transported to BDC, where  
biomass is consumed by end-use sectors whether industrial,  
transport or residential. For industrial, it could be a power  
plant or a biorefinery. BDC could also function as a hub for  
national or international trade of biomass since there is a high  
demand for biomass pellet from South Korea, Japan & China,  
which may reach up to 16 million ton by 2020. International  
import and export of biomass will further promote  
diversification of its product portfolio and market  
competitiveness.  
This study is a preliminary work to optimize BPF  
location provided that BSP and BDC locations are known and  
fixed, using a new modelling approach, which is the  
minimized least-square regression (LSR) method. This  
model enables simultaneous minimization of the road  
transportation distance between each terminal, with  
consideration of the number of trips required to transport all  
the biomass. The result will then be compared with the  
conventional COG and FCM methods. An empirical analysis  
was implemented via a case study in Perak, Malaysia, based  
on the current palm oil mill biomass availability data and  
existing road network.  
2
Methodology  
2
.1 Facility Location Optimization Techniques  
1
.2 New Facility Location Optimization  
Three methods were used to determine the suitable  
The economic viability of bioenergy production system  
location of BPF that reduces the overall logistic cost, which  
are; i) Centre of gravity (COG), ii) Fuzzy clustering or Fuzzy  
C Means (FCM) and iii) Least-square regression (LSR). The  
objective function is minimization of the total travelling  
distance between the terminals, on the premise that  
minimizing it will result in minimized total logistic cost and  
depends heavily on the cost of biomass feedstock supplies.  
Biomass sourced from agricultural industry in general is not  
expensive, the purchase price for raw EFB biomass for  
example, could be as low as 1.75 USD/tonne. However, the  
logistic cost to transport it from each BSP to BDC could be  
large and take a heavy toll on total biomass procurement cost.  
In a life cycle assessment of EFB consumption for green  
chemical production in Malaysia, Reeb et al. (2014)  
discovered that transportation cost caused substantial  
financial burdens, responsible for about 61% of the total  
delivered cost.  
This is where BPF should come into play, by serving as a  
collection cum redistribution hub, hence ensuring efficient  
logistic chain and matching of demand and supply. The  
optimization of BPF location in between BSP and BDC is  
therefore critically important to minimize the logistic cost.  
Various mathematical approaches have been applied by past  
researchers to determine the strategic location of new facility.  
CO emissions.  
2
Unlike FCM which is suitable for multiple facility  
location problem, a geographical boundary needs to be pre-  
assigned prior to COG and LSR analysis. Three decision  
factors were considered: (a) state boundaries, (b) state/federal  
road transportation network, (c) biomass processing capacity.  
The distance from each BSP to BPF was set to be not more  
than 100 km. In addition, the biomass supply was assumed to  
always match the demand.  
6
90  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 689-695  
2
.1.1 Centre of Gravity (COG)  
The centre of gravity (COG) method indicates the ideal  
Compared to COG method, this model enables  
simultaneous minimization of the road transportation  
distances between each terminal, with consideration of the  
number of trips required as the weightage. The model was  
solved using the Solver toolbox of Microsoft Excel by  
minimizing the set objective () and setting the variable  
cells as coordinates of BPF.  
location in the grid-map that would ensure minimum  
weighted travelling distances. In biomass supply chain, raw  
biomass from each BSP will be transported to a new  
collection hub, which is the BPF. Therefore, the geographical  
coordinates of the existing i-BSP terminal (x , y ), as well as  
i
i
the amount of biomass, w (ton/day) produced by each BSP  
i
were used as the weightage according to the following  
formula;  
2.3 Mode of Transportation, Road Network, and Travelling  
Distance  
Assuming that the biomass will be transported in a 20  
tons-capacity truck (each supply will be fully loaded with 20  
tons of raw biomass or less) the travelling distance will  
depend on the land transportation network. In reality, a  
highway that directly connects each terminal does not always  
exist. Therefore, the distance between two points is not linear,  
but depends on the actual existing road network. Given the  
coordinates of the potential BPF location optimized by each  
model, the road transportation distance was determined using  
information provided by Google Maps, then multiplied by the  
number of trips required to calculate the total travelling  
distance.  
ꢒ  
ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢂ(ꢊꢌꢍ)ꢎꢏ  
,
)
∑ꢐ  
where  andꢂꢍ are the geographical coordinates of each  
BSP, (ꢊꢌꢍ) are the geographical coordinates of BPF and ꢕ  
is the amount of biomass (ton/day) transported from BSP to  
BPF.  
2
.2.2 Fuzzy Clustering or Fuzzy C Means (FCM)  
Fuzzy C Means (FCM) clustering analysis was performed  
using a developed program in Fuzzy toolbox of Octave,  
which is available from Octave Software (GNU Octave,  
https://www.gnu.org/software/octave/). The input and output  
data were managed through a Microsoft Excel database.  
Given the data set X which includes geographical X and Y  
coordinates, the number of clusters 1 < c < N, the process is  
described as follows:  
2
.4 Logistic Cost and the Resultant CO Emission  
2
Assuming that the truck travels 40 mile per hour, the  
logistic cost was determined as the consolidated costs of three  
components which are truck driver wage, truck fuel cost and  
truck operation cost as listed below in Table 1;  
1
.Input: keyed in the sample data set (two dimensional)  
contains geographical coordinates of x and y of each palm  
oil mill;  
Table 1: Logistic Cost  
Component  
Truck Driver Wage  
Unit  
2
.Fuzzy C Means algorithm call command initialized  
18.35  
2.1  
USD/hr  
USD/gal  
lon  
the modelling process, number of clusters of c was given,  
which are two,  
Fuel Cost  
3
.Output command: prompted the software to show the  
Truck Operation Cost  
Estimations were made based on general case study on biomass  
transportation by 23 ton truck trailer (20) .  
200  
USD/hr  
results  
2
.2.3 Least-Square Regression (LSR) Method  
LSR basically calculates a line of best fit to a set of data  
In addition, assuming the delivery truck travels 5 miles  
per gallon diesel, 2 x 10 metric tons of CO2 would be  
emitted per each gallon (21).  
-
3
pairs, minimizing the sum of squares of the vertical distances  
between the data points and the objective function. The  
required distance between each terminal may be represented  
in the form of following equation:  
2
.5 Case Study Area  
In order to locate and estimate the distance of each palm  
oil mills, a map was created by using Google Maps software.  
Perak, which is one of the major states of oil palm plantations  
in Peninsular Malaysia was selected as the region for our case  
study. In Perak, there are currently 29 operating palm oil  
mills with fresh fruit bunch (FFB) processing capacity of at  
least 20 tonne/hour as listed in Table 2, totalling to 1,494 ton  
of processed FFB/hour. In this study, the biomass of interest  
is EFB, which accounts for 22% of the FFB by weight.  
The FFB processing capacity of each identified palm oil  
mill was used to estimate the amount of FFB processed daily  
using the following equation;  
ꢖ ꢎꢏꢊꢘꢙꢊꢚꢛ ꢜꢏꢍꢘꢙꢍꢚꢛ  
where  is the computed distance between each terminal.  
Using the Solver toolbox of Microsoft Excel software, the  
overall travelling distance,  between each terminal  
BSP to BPF, and BPF to BDC) were minimized using the  
following equation;  
(
ꢝꢞꢝꢟꢠ ꢎꢡꢏꢖ ꢇ ꢛꢜꢏꢖ ꢇ ꢛ  
ꢔꢋ ꢔꢋ  
ꢋꢢ ꢋꢢ  
where  is the total travelling distance required to transport  
biomass from BSP to BPF, ꢋꢢ is the total travelling distance  
required to transport processed biomass from BPF to BDC,  
ꢇꢄꢉ  
ꢀꢣꢄꢅꢤꢥꢥꢤꢦꢂꢁꢁ ꢧ  
ꢨꢂ  
ꢦꢆꢍ  
ꢎꢂꢁꢁ ꢂꢩꢣꢄꢅꢤꢥꢥꢈꢉꢪꢂꢅꢆꢩꢆꢅꢈꢇꢍꢂꢧ  
ꢇꢄꢉ  
while ꢔꢋ and  ꢂare the number of trips required to transport  
ꢋꢢ  
ꢨꢊꢂꢬꢭꢂꢧ  
ꢨꢊꢂꢮꢯꢰ  
ꢦꢆꢍ  
the biomass from each terminal.  
6
91  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 689-695  
ꢝꢞꢴ  
ꢱꢁ ꢂꢀꢤꢃꢃꢤꢇꢥꢂꢩꢣꢄꢦꢲꢅꢇꢈꢄꢉꢳ  
ꢷꢂꢎ  
ꢓꢵꢟꢶ  
The effective operating hour of each mill was assumed to  
be 12 h per day and there will be 0.1% losses of biomass  
during the palm oil production process.  
ꢝꢞꢴ  
ꢀꢣꢄꢅꢤꢥꢥꢤꢦꢂꢁꢁ ꢂꢳꢷꢂꢊꢂꢮꢯꢭꢭꢂꢊꢂꢮꢯꢹꢂꢊꢂꢺꢂꢊꢂꢬꢭ  
For power generation, pretreatment of EFB is necessary  
to reduce its moisture content as well as to increase its energy  
density before firing. Considering that in BPF, the collected  
raw EFB will be transformed to EFB pellets which involves  
drying and pelleting could be produced daily was estimated  
based on the amount of processed FFB, which is 22% per  
tonne FFB on wet basis.  
In this study, the potential BDC is the existing thermal  
power station, which is also the largest operating coal power  
plant in Malaysia, Stesen Janakuasa Sultan Azlan Shah  
(SJSAS) situated near the . Currently, SJSAS only consumes  
pulverized bituminous sub-bituminous coal mostly  
&
imported from Indonesia to fire up its boilers. Coal releases  
huge amount of pollutants upon combustion which include  
carbon dioxide (CO ), methane (CH ), and nitrous oxide  
2
4
Table 2: List of palm oil mills and FFB processing  
(
N O) and particulate matter. Substituting a fraction of coal  
2
capacity  
with biomass could reduce the amount of pollutants  
emissions significantly without much alteration needed in the  
power generation system.  
FFB  
Processing  
Capacity  
No Palm Oil Mill  
(
ton/hr)  
3
Results & Discussion  
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
Kilang Kelapa Sawit Lekir  
Kilang Sawit Changkat Chermin  
Pantai Remis Palm Oil Mill Sdn. Bhd.  
KKS United Int. Enterprises (M) Bhd  
Kilang Sawit Felcra Nasaruddin  
Sri Intan Oil Palm Mill  
KKS Peladang & Perusahaan Minyak  
Awan Timur Palm Oil Mill  
Topaz Emas Sdn Bhd  
Temerloh Mill Sdn Bhd  
Tian Siang Palm Oil Mill  
Selaba Palm Oil Mill  
KKS Ganda  
Perak Agro Mills Sdn Bhd  
KKS TRP  
100  
60  
60  
100  
40  
60  
20  
20  
60  
45  
120  
40  
20  
30  
60  
20  
30  
3
. 1 BPF Location Optimization  
Figure 2 shows the locations of BSPs, BPFs and BDC.  
Since the palm oil mills (BSPs) are spread out far away from  
each other up to 200 km apart, it is simply not economical to  
have only one BPF centre. A single large scale biomass  
facility will require longer distances to transport biomass  
feedstock from multiple locations, thereby increases the  
logistic cost and overall cost of acquiring feedstock. The  
distance between each terminal should not be more than 100  
km, and preferably less than 30 km because the transportation  
cost will be greatly affected by vicinity. Furthermore,  
assuming that the scale of each BPF should only be between  
0
1
2
3
4
5
6
7
8
1
00,000- 500,000 metric ton/year, which are the common  
large scale pellet plants capacity in the United State, there  
should be at least two BPF centres (BPF1 and BPF2) to  
process EFB from all identified BSPs in the northern region  
and southern region of the Perak state.  
KKS Southern Perak  
Felcra Processing & Engineering  
Kilang Minyak Sawit Tanjung Tualang 40  
Gabungan Perusahaan Minyak  
Langkap Oil Palm Sdn. Bhd.  
1
9
60  
2
2
2
2
2
0
1
2
3
4
KKS Perak Motor Co. Sdn Bhd  
SYNN Palm Oil Sdn Bhd  
Tian Siang Oil Mill  
Central Palm Oil Mill  
ST Palm Oil Mill  
54  
60  
120  
40  
30  
KKS Yee Lee Palm Oil Industries Sdn  
Bhd  
2
5
60  
2
2
2
2
6
7
8
9
KKS Tali Ayer (Hilltop Palm Oil)  
KKS Chersonese  
KKS Trolak  
20  
50  
30  
45  
Elphil Palm Oil Mill  
It was assumed that during the EFB pelletization process,  
only 70% of the mass will remain due to some losses of  
moisture content and biomass. Therefore, assuming the  
centralized BPF operates 6 days per week in every month, the  
amount of EFB pellets produced in a year would be;  
Figure 2: BPF location optimization for EFB supply from palm oil  
mills to a coal-biomass cofiring power plant.  
6
92  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 689-695  
Visually, the locations of BPFs as proposed by the three  
methods-COG, FCM and LSR are not far from each other,  
just around 5 to 10 km apart (except for the case of LSR-  
proposed location of BPF1, which is visibly far from the  
locations proposed by the other two models). However, when  
the number of trips was taken into account, there is a huge  
difference in the travelling distance along the biomass supply  
chain, as shown in Table 3. Comparative results show that the  
overall travelling distance is significantly minimized by the  
LSR method for both BPF1 and BPF2. As a consequence, a  
lot of savings can be gained in terms of logistic cost and CO2  
emission due to road transportation as shown in Table 4. By  
optimizing the travelling distance between two supply-and-  
demand points, which are BSP to BPF, followed by BPF to  
BDC, the proposed LSR method has outperformed the other  
two methods with the lowest total logistic cost and CO2  
emission of USD 46,570 and 3,170 kg CO2 respectively.  
However, the purpose of this study is not to prove which  
method is the best, instead it serves to show that there exist  
multiple non-programming and handy approaches available  
to solve facility location problem. Each method has its own  
uniqueness and benefits as shown in Table 5. FCM clustering  
analysis could also work hand in hand with COG or LSR in a  
hybrid manner to solve a multiple facility location problem.  
FCM could be used to assign the geographical clustering  
first, then followed by COG or LSR to optimize the facility  
location. This sequential approach was also proposed by  
Esnaf and Küçükdeniz, 2009 (16). These methods could be  
applied when quick response is needed such as for emergency  
disaster relief distribution.  
3.2 EFB Pellet Production  
Table 6 shows the EFB production potential. A total of  
3,179 ton of raw EFB can be collected and converted to EFB  
pellets amounted to 640,943 ton or 0.64 Mtpa per year.  
Currently, SJSAS power plant has 5 power generation units  
with total installed capacity of 4,100 MW and 9.5 Mtpa of  
e
annual coal consumption (22). Assuming that the plant  
exercise 3-5% biomass cofiring regime, and calorific value  
ratio of EFB pellet to coal is 0.76, the power plant would  
need about 0.38-0.63 Mtpa of biomass supply annually,  
which means that there will be a 100% local demand for the  
EFB pellets produced.  
Table 3: The total land transportation distance necessary to transport the biomass from terminal-to-terminal.  
Overall Travelling  
distance, ꣂ  
Travelling distance between BSP  
Region  
Method  
Travelling between BPF to BDC, ꢽꢾ (km)  
to BPF, (km)  
(
km)  
COG  
FC  
2,287  
2,390  
3,245  
3,182  
5,531  
5,572  
Northern Perak  
(BPF 1)  
LSR  
COG  
FC  
2,920  
4,013  
3,615  
3,584  
2,178  
4,594  
4,930  
4,066  
5,098  
8,607  
8,545  
7,650  
Southern Perak  
BPF 2)  
(
LSR  
Table 4: Logistic cost and CO  
Total Fuel Consumption  
2
emission due to road transportation.  
Total Logistic Cost  
CO  
2
emission  
(kg)  
Method  
(gallon)  
(USD)  
COG  
FC  
1,757  
51,647  
3,516  
3,511  
3,170  
1,754  
1,584  
51,571  
46,570  
LSR  
Table 5: Description of COG, FCM and LSR methods used in this study and lessons learned.  
No  
1
Method  
Suitable Application  
Parameters  
Advantage(s) / Disadvantage(s)  
The simplest and well-established method to solve new facility  
location problem.  
 A precursor step is needed in order to define the geographical  
boundary prior to solve multiple facilities location problem.  
Can solve multiple facility location problem simultaneously and  
instantaneously.  
Centre of gravity  
COG)  
Single/Multiple facility  
location problem  
x
wi  
i
, y  
i
(
Only applicable for multiple facility locations only (n facility  
must =>2)  
Fuzzy C Means  
FCM)  
Multiple facility  
location problem  
2
3
x
i
, y  
i
(
Unmodified FCM clustering algorithm could not take into  
account the relative importance of BSP production capacity during  
location optimization.  
Can be used to solve multi-level distribution network.  
A precursor step is needed in order to define the geographical  
Least-square  
regression (LSR)  
Single/Multiple facility  
location problem  
ꢔꢋꢌꢇꢔꢋ  
ꢌꢇꢢ  
boundary prior to solve multiple facilities location problem.  
6
93  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 689-695  
Table 6: Estimation of EFB pellet production based on FFB processing capacity of existing palm oil mills.  
Total EFB Pellets Production  
ton/year)  
Biomass/Facility  
Total FFB Processed (ton/day)  
Total EFB production (ton/day)  
(
BPF1  
BPF2  
Total  
6,048  
8,791  
14,839  
1,291  
1,888  
3,179  
260,354  
380,589  
640,943  
3
.3 Limitation of Current Study  
It should be noted that this paper is a preliminary study to  
Energy Market Analysis: Southeast Asia. 2018.  
2
3
.
.
Ozturk M, Saba N, Altay V, Iqbal R, Hakeem KR, Jawaid M,  
Ibrahim FH. Biomass and bioenergy: An overview of the  
development potential in Turkey and Malaysia. Renewable and  
Sustainable Energy Reviews. 2017 Nov 1;79:1285-302.  
Malaysia Palm Oil Board (MPOB). Palm Oil Production. 2018;  
test the performance of LSR method to solve a two-level  
distribution networkand compared it with the other  
conventional methods of facility location problem. Therefore,  
this study does not consider many other cost components  
such as inventory cost, labor cost, loading cost, and vehicle  
purchase and maintenance cost. Furthermore, it does not  
include risk assessment or sensitivity analysis on real  
problems such as seasonal biomass production therefore  
variety of biomass volume supply, demand changes, road  
condition, suitability of the proposed locations with the  
current city planning development, and proximity to water  
supply. In addition, the case study applied a conservative  
assumption that 100% of EFB collected will be converted to  
pellets, and that there is no other co-product of interest  
existed. As such, the results shown should be interpreted with  
caution and modification of the current work would be  
necessary to produce more accurate results.  
[
Online].  
Available:  
http://bepi.mpob.gov.my/index.php/en/statistics/production/177-  
production-  
2017.htmlhttp://bepi.mpob.gov.my/index.php/en/statistics/produ  
ction/177-production-2017.html. [Accessed: 30-May-2018].  
Shafie SM, Mahlia TM, Masjuki HH, Ahmad-Yazid A. A review  
on electricity generation based on biomass residue in Malaysia.  
Renewable and Sustainable Energy Reviews. 2012 Oct  
4
5
.
.
1
;16(8):5879-89.  
Loh SK. The potential of the Malaysian oil palm biomass as a  
renewable energy source. Energy conversion and management.  
2017 Jun 1;141:285-98.  
6. Diabat A, Aouam T, Al-Araidah O. The uncapacitated fixed-  
charge facility location problem with a multi-echelon inventory  
system. In2009 International Conference on Computers  
Industrial Engineering 2009 Jul 6 (pp. 803-807). IEEE.  
&
7
.
Tang X, Zhang J. The multi-objective capacitated facility  
location problem for green logistics. In2015 4th International  
Conference on Advanced Logistics and Transport (ICALT) 2015  
May 20 (pp. 163-168). IEEE.  
Lin CC, Liu WY, Huang GL. Fuzzy Multi-objective Forest  
Biomass-to-biofuel Facility Location Problem with Social  
Consideration. Energy Procedia. 2019 Feb 1;158:4067-72.  
Zhuraboev KA. Improving the delivery of perishable goods,  
Current problems of the transport complex of Russia. Interuniv.  
coll. sci. Pap. Nosov Magnitogorsk State Tech. Univ.  
Magnitogorsk, 2012;2:6068.  
4
Conclusion  
This research has successfully applied LSR method to  
optimize BPF facility locations with the goal of minimizing  
the cost of supplying the required biomass to a power plant.  
Comparative results show that the transportation cost-  
performance can be improved significantly by the LSR  
method. LSR could outperform the other methods because it  
is the only method that take into consideration multi-level the  
travelling distance between each terminal. Moving forward, a  
more robust model optimization model and algorithm is  
needed to produce an integrated solution.  
The analysis conducted in this study also sheds light on  
the expected volume of EFB supply and logistic cost, while  
the economic value derivable from the resources will require  
an establish market and relevant policies. For instance,  
mechanism for Competitive Generation Market, for multiple  
generators to trade with a single buyer; electricity wholesale  
market, where retailers can purchase energy from power  
plants; and Electricity Retail Market, where consumers can  
choose a retailer. Under a competition market, it is expected  
the EFB resources can play a competitive substitute or new  
resource to meet greener energy mix.  
8
9
.
.
10. Almetova Z, Shepelev V, Shepelev S. Cargo transit terminal  
locations according to the existing transport network  
configuration. Procedia Engineering. 2016 Jan 1;150:1396-402.  
1
1. Lin C. Fuzzy Multi-objective Forest Biomass-to-biofuel Facility  
Location Fuzzy Multi-objective Forest Location and Cooling  
Problem with Social Consideration Problem with Social  
Consideration Assessing the f. 2019.  
1
2. De Meyer A, Cattrysse D, Van Orshoven J.  
A generic  
mathematical model to optimise strategic and tactical decisions  
in biomass-based supply chains (OPTIMASS). European Journal  
of Operational Research. 2015 Aug 16;245(1):247-64.  
3. Riedl WF. Heuristic for multi-echelon facility location prob-  
lems with non-linear inventory considerations. 2014.  
4. Zhang F, Johnson D, Johnson M, Watkins D, Froese R, Wang J.  
Decision support system integrating GIS with simulation and  
optimisation for a biofuel supply chain. Renewable Energy. 2016  
Jan 1;85:740-8.  
1
1
Acknowledgement  
This research work was supported by UNITEN R&D  
Sdn. Bhd. (URND) through the TNB Seeding Fund [grant  
number U-TR-RD-18-24].  
15. Cebi S, Ilbahar E, Atasoy A. A fuzzy information axiom based  
method to determine the optimal location for a biomass power  
plant: A case study in Aegean Region of Turkey. Energy. 2016  
Dec 1;116:894-907.  
1
6. Esnaf Ş, Küçükdeniz T. A fuzzy clustering-based hybrid method  
for a multi-facility location problem. Journal of Intelligent  
Manufacturing. 2009 Apr 1;20(2):259-65.  
References  
International Renewable Energy Agency (IRENA). Renewable  
1
.
6
94  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 689-695  
1
1
1
7. Hu TL, Sheu JB. A fuzzy-based customer classification method  
for demand-responsive logistical distribution operations. Fuzzy  
Sets and Systems. 2003 Oct 16;139(2):431-50.  
8. Ji Y, Yang H, Zhang Y, Zhong W. Location optimization model  
of regional express distribution center. Procedia-Social and  
Behavioral Sciences. 2013 Nov 6;96:1008-13.  
9. Kenesei T, Balasko B, Abonyi J. A MATLAB toolbox and its  
web based variant for fuzzy cluster analysis. InProceedings of  
the 7th international symposium on Hungarian researchers on  
computational intelligence. 2006 Nov 24 (pp. 24-25).  
20. Larasati A, Liu T, Epplin FM. An analysis of logistic costs to  
determine optimal size of biofuel refinery. Engineering  
Management Journal. 2012 Dec 1;24(4):63-72.  
21. Energy Star Portfolio Manager. Thermal Energy Conversions.  
2015.  
a
22. Energy Commission of Malaysia. Peninsular Malaysia  
Electricity Supply Outlook. 2017;p. 60.  
6
95