2019, Volume 7, Issue 4, Pages: 737-746  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
The Impact of Economic Risk Factors on Industry  
Stock Returns: An Empirical Investigation in the  
UAE Stock Market  
Maryam Ali Rashed Alyammahi*, Siti Norbaya Yahaya, Nusaibah Mansor  
Universiti Teknikal Malaysia Melaka  
Received: 13/07/2019  
Accepted: 29/08/2019  
Published: 03/09/2019  
Abstract  
This paper employs a multifactor pricing model to investigate the pricing of several local sources of risk factors and whether these  
factors explain the variation in the stock returns for the U. A. E. industries, and if so, to what extent. We examine returns of nine  
industries: banking, consumer staples, industrial, insurance, investment & financial service, real estates, service, telecommunication,  
and transportation for which data is available. Our results show that local sources of risk factors are very important in explaining the  
variations in the monthly excess return for the U. A. E. industries. Also, the local sources of risk factors and industry stock returns are  
found to be related. Local market excess return has major influence on industry returns for all industries investigated.  
Keywords: Macroeconomic Factors, Returns, Local Risk, Multifactor Model  
1
objective of this study is to identify and examine the extent to  
1
Introduction  
which key macroeconomic factors are reflected in the  
performance of stock returns in different industries.  
Specifically, two major research questions are posed. First,  
whether and to what extent do returns in industries respond to  
changes in macroeconomic risk factors? Second, is the impact  
on industry stock returns similar across industries?  
The findings of this study are valuable for several reasons.  
First, the findings shed light on the effect of macroeconomic  
risk factors on industry returns. Second, the findings help  
investors and practitioners improve their understanding of the  
influence of risk on returns of different industries. Such  
information can help investors make informed decisions with  
respect to investment decisions e.g., allocating, timing, and  
diversifying portfolios. To the knowledge of the authors, such  
a study does not exist for the stock market in the United Arab  
Emirates (U.A. E).  
This paper employs a multifactor pricing model to  
investigate industry stock returns. For our purpose, several  
local macroeconomic risk factors are constructed: exchange  
rate, export of goods, imports of goods, industrial production,  
inflation, money supply (M1), money supply (M2), oil prices,  
and composite market price. We examine returns of nine  
different U. A. E. industries (for which data is available):  
banking, consumer staples, industrial, insurance, investment &  
Pricing of financial assets has intrigued researchers in  
finance for years. Early analysis was influenced by the  
dominant models within the single factor Capital Asset Pricing  
Model (CAPM) developed by Sharp (1964), Lintner, Black,  
Jensen, and Scholes, and Fama and McBeth (3, 8, 13). These  
models apply CAPM, which considers the market index to be  
the only relevant factor in measuring an asset’s systematic risk.  
Prognostication based around CAPM retains certain strengths,  
however many empirical studies on the very same also fail to  
provide evidence in favor of a clear relationship between  
return and market beta Fama and Fench found evidence of  
significant effects on asset returns originating from a set of  
microeconomic and company specific factors such as size and  
book-to-market ratio along with the market portfolio using  
their three-factor model (9).  
Roll (1977), Roll and Ross (1980) and Chen, Roll and Ross,  
the founders of the Arbitrage Pricing Theory (APT), offered  
an alternative model to CAPM (4, 19, 20, 21). They  
hypothesized that macroeconomic factors are the only relevant  
factors that impact asset returns, but results from measuring  
these effects on return vary according to the set of  
macroeconomic factors observed. This variation in outcomes  
provides a motivation for further research by examining  
diverse stock markets under various time frames. The  
Corresponding author: Maryam Ali Rashed Alyammahi,  
Universiti  
Teknikal  
Malaysia  
Melaka.  
E-mail:  
Mariam.alyammahi84@gmail.com.  
7
37  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 737-746  
financial service, real estates, service, telecommunication, and  
transportation.  
fundamentals and the Vietnamese stock prices was found.  
Finally, the results show that the influence of the US real sector  
is stronger than that of the money market.  
2
Literature Review  
The relationship between risk factors and asset returns has  
Donatas Pilinkus investigated the relationship between  
several macroeconomic factors and the main Baltic stock  
market indices as an attempt to present a model of the impact  
of macroeconomic factors on stock market index, and to  
determine what macroeconomic factors that have impact on  
stock market index in the short and long runs (6). The data used  
are monthly and extend from the January of 2000 to the  
December of 2008. The Baltic States included in the study are  
Lithuania, Latvia, and Estonia. They discovered different  
relationships between macroeconomic factors and stock  
market indices in each market with varying impact.  
been a subject of debate in the literature. Most of the studies  
employ different models to investigate the effect of different  
sets of local and global risk factors on the returns of either  
individual or portfolios of stocks regardless of industry type.  
Christopher Gan, Minsoo Lee, Hua Hwa Au Yong, and  
Jun Zhang employed cointegration tests such as the Johansen  
Maximum Likelihood and Granger-causality tests to  
investigate the relationships between the New Zealand Stock  
Index and a set of macroeconomic variables from January  
1990 to January 2003 (5). Specifically, they tried to determine  
Using Nigeria stock market data from 1985 to 2009,  
Anthony Olugbenga Adaramola investigate the impact of  
macroeconomic indicators on stock prices in Nigeria. a panel  
model was used to examine the impact of macroeconomic  
variables on stock prices of the selected firms in Nigeria (1).  
A set of macroeconomic variables was used for the analysis.  
The macroeconomic variables used are: money supply, interest  
rate, exchange rate, inflation rate, oil price,and gross domestic  
product. The study revealed that macro-economic variables  
have varying significant impact on stock prices of individual  
firms in Nigeria. Except for inflation rate and money supply,  
all the other macroeconomic variables have significant  
impacts on stock prices in Nigeria. Finally, the study  
concluded with empirical evidences that changes in  
macroeconomic variables can be used to predict changes of  
stock prices in Nigeria.  
Using the vector autoregression Model, M. N. Khan, N.  
Tantisantiwong, S. G. M. Fifield, and D. M. Power investigate  
whether economic variables have explanatory power for share  
returns in four South Asian stock markets, Namely,  
Bangladeshi, Indian, Pakistani, and Sri Lankan (16). The data  
covers the period 19982012, the study examines the influence  
of a selection of local, regional and global economic variables  
in explaining equity returns. The South Asian markets  
examined are found to be not efficient. Both local and regional  
factors can directly and indirectly explain Bangladeshi,  
Pakistani and Sri Lankan stock returns while the lagged returns  
of the Pakistani stock market and world economic activity can  
explain Indian stock returns.  
A cross section data that cover six different countries was  
used by Jordan French to test five macroeconomic variables  
that have been both theorized to affect stock returns and been  
proven to do so in past empirical research (11). The study  
different analytical methodologies to test the relationships  
such as principle component regression, cross section  
regression, and factor analysis. The economic variables chosen  
are risk premium, industrial production, term structure,  
expected inflation, and unexpected inflation. Some economic  
variables were found to have an impact on the stock returns  
while others are not in the countries studied. For example, risk  
premium and industrial production were significant over the  
sample, but term structure, expected inflation, and unexpected  
inflation were not significant in explaining domestic market  
returns. Furthermore, principal component regressions  
outperformed cross-sectional ones, with factor analysis as the  
least statistically significant model. Not surprisingly, the  
whether the New Zealand Stock Index is a leading indicator  
for macroeconomic variables. Using innovation accounting  
analyses, the paper also investigates the short run dynamic  
linkages between NZSE40 and macroeconomic variables. The  
authors found that the NZSE40 is consistently determined by  
the interest rate, money supply and real GDP. Weak evidences  
that the New Zealand Stock Index is a leading indicator for  
changes in macroeconomic variables were found.  
Orawan Ratanapakorn and Subhash C. Sharma used the  
Granger causality test to investigate the long-term and short-  
term relationships between the US stock price index (S&P 500)  
and several macroeconomic variables over the period 1975:1–  
1999:4. Interestingly, the authors observe that the stock prices  
negatively relate to the long-term interest rate. On the other  
hand, a positive relationship between stock prices and money  
supply, industrial production, inflation, the exchange rate and  
the short-term interest rate was found. Stock prices were found  
to be impacted by the macroeconomic variables in the long-  
run but not the short-run according to the Granger causality  
sense (17).  
Serkan Yilmaz Kandir used annual data from July 1997 to  
June 2005 to study the relationship between macroeconomic  
factors and stock returns in Turkey (22).  
A set of  
Macroeconomic variables that is consistent with financial  
theory and economic intuition was chosen. The economic  
variables are the growth rate of industrial production index,  
change in consumer price index, growth rate of narrowly  
defined money supply, change in exchange rate, interest rate,  
growth rate of international crude oil price and return on the  
MSCI World Equity Index. The authors designed a multiple  
regression model to test the relationship. Except for the  
inflation, all of the portfolio returns seem to be affected by the  
exchange rate, interest rate and world market return, while  
inflation rate is significant for only three of the twelve  
portfolios. No relationships between the stock returns and  
industrial production, money supply and oil prices were found.  
Khaled Hussainey and Le Khanh Ngoc used monthly time  
series data from Vietnamese stock market and covered the  
period from January 2001 to April 2008 to investigate the  
effects of macroeconomic variables such as the interest rate  
and the industrial production on Vietnamese stock prices (12).  
The authors also examined how US macroeconomic variables  
affect Vietnamese stock prices. The study found significant  
relationships among the domestic production sector, money  
markets, and stock prices in Viet Nam. Surprisingly, a  
significant relationship between the US macroeconomic  
7
38  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 737-746  
arbitrage pricing theory was also found to be a less robust  
pricing tool than the capital asset pricing model.  
real estates, service, telecommunication, and transportation.  
Industry stock returns, Rit, are calculated for each industry  
index, as:  
3
Methodology and Data Analysis  
3
.1 Methodology  
Rit  
R  ln[  
]
(2)  
According to Arbitrage Pricing Theory, asset returns are  
it  
sensitive to unexpected change in several macroeconomic  
factors. Under this assumption, some research used  
unexpected components of macroeconomic factors. This  
method requires a measure to represent the unanticipated  
component of the macroeconomic factors in the actual time  
series. We use the ARIMA model for that purpose. The  
expected values as represented by ARIMA are subtracted from  
the actual values to calculate the unexpected component of the  
macroeconomic factors. To examine the effects risk factors  
have on the returns of the nine different industries being  
investigated, we employ a multifactor pricing model for the U.  
A. E data. Eq. (1) provides the framework for implementing  
that relationship. It models industry stock returns as a function  
of K-macroeconomic risk factors.  
Rit1  
where, Rit, Rit-1 are the index values of industry I at time t  
and t-1 respectively, in local currency. We choose the broadest  
index available to provide a long-term series that shows the  
overall trend of stocks in the U. A. E. The industry stock  
returns (Rit) are in excess of the local short-term interest rate  
in the U. A. E. We used the U. S. A. 3-month Treasury Bill  
(ITUSA3D) as a proxy for the short-term interest rate in the U.  
A. E. the U. S. A. 3-month Treasury Bill serve as the risk-free  
(Rf) rate and is used to measure excess returns for each  
industry.  
3.2.3 Local Macroeconomic Risk Factors  
Table 1 presents a list of factors used in different studies  
within APT framework. The choice of macroeconomic factors  
was dictated by each factors theoretical relevance to asset  
pricing, regardless of the location of the market. Additionally,  
k
rit  i  
ij F  it  
(1)  
jt  
j1  
data availability on monthly frequency was also  
a
and,  
consideration. Each factor starts in May 2003. Based on the  
above approach, we selected a set of macroeconomic factors  
that explain the variation on the industry stock returns. These  
factors are exchange rate, export of goods, imports of goods,  
industrial production, inflation, money supply (M1), money  
supply (M2), oil prices, and composite market price.  
Foreign Exchange Rate: Foreign exchange rate is  
measured as the change from month t-1 to month t in the  
natural logarithm of foreign currency exchanges of the U. A.  
E. The following equation is used  
r
it = Rit - Rft  
where,  
r
j
= the excess return  
it = the return for industry i at time t  
ft = risk free interest rate  
= the constant term  
ij = the betas of the rit on the k risk factors  
jt = the risk factors where j = 1….k  
it = the error term representing the non-systematic excess  
R
R
i
F
ꢀꢁꢂ  
퐹푋 = 푙푛[ 1]  
(3)  
return relative to risk factors  
The k risk factors chosen in this study include exchange  
rate, export of goods, imports of goods, industrial production,  
inflation, money supply (M1), money supply (M2), oil prices,  
and composite market price.  
The series was obtained from Global Financial Data (GFD)  
for the period 5/2003 thru 5/ 2018.  
Export of Goods: Export of goods is measured as the  
change from month t-1 to month t in the natural logarithm of  
export of goods of the U. A. E. The following equation is used:  
3
3
.2 Data: Description and Sources  
.2.1 Definition of data sets and the sample period  
The data is divided into two sets. The first set includes  
industry stock returns of the U. A. E. stock market on a  
monthly basis. The second set consists of monthly  
macroeconomic factors. All monthly data is from May 2003  
thru May 2018.  
EGt  
EG  ln[  
]
(4)  
t
EGt1  
The series was obtained from GFD for the period 5/2003  
thru 5/ 2018.  
Imports of Goods: Import of goods is measured as the  
change from month t-1 to month t in the natural logarithm of  
import of goods of the U. A. E. The equation (5) is used.  
3
.2.2 Industry Stock Returns  
The industry indices chosen in this study come from the  
Securities and Commodities Authorities (SCA). We examine  
stock returns of nine different industries for which data is  
available in the U. A. E. The industries are banking, consumer  
staples, industrial, insurance, investment & financial service,  
Table 1: Macroeconomic factors utilized in previous studies  
7
39  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 737-746  
Macroeconomic Factors  
Industrial Production  
Previous studies that utilized specific factors  
Chen, Roll, and Ross, Hamao, Wasserfallen, Asprem, Poon and Taylor, McQueen Roley, Orawan  
Ratanapakorn and Subhash C. Sharma, Serkan Yilmaz Kandir, Mahdy, Khaled Hussainey and Le  
Khanh Ngoc , Jordan French (2,4,10,11,12,14,15,16,17,18,22,23)  
Chen, Roll, and Ross, Hamao, Wasserfallen, Asprem, Poon and Taylor, Drehman and Manning,  
Orawan Ratanapakorn and Subhash C. Sharma, Serkan Yilmaz Kandir, Mahdy, Anthony Olugbenga  
Adaramola, Jordan French (1,7,10,11,14,17,18,22,23)  
Inflation  
Foreign exchange rate  
Asprem, Drehman and manning, and Mahdy, Anthony Olugbenga Adaramola (1,2,4,7,14)  
Wasserfallen, Asperm, McQueen and Roley, Christopher Gan, Minsoo Lee, Hua Hwa Au Yong,  
and Jun Zhang, Orawan Ratanapakorn and Subhash C. Sharma, Serkan Yilmaz Kandir, Anthony  
Olugbenga Adaramola (1,5,15,17,22,23)  
Money supply  
Oil prices  
Chen, Roll, and Ross, Drehman and Manning, Serkan Yilmaz Kandir, Mahdy, Anthony Olugbenga  
Adaramola (1,4,7,14,22)  
Wasserfallen, Asprem , Christopher Gan, Minsoo Lee, Hua Hwa Au Yong, and Jun Zhang, Orawan  
Ratanapakorn and Subhash C. Sharma, Serkan Yilmaz Kandir, Khaled Hussainey and Le Khanh  
Ngoc , Anthony Olugbenga Adaramola (1,2,5,12,16,17,22,23)  
Interest Rate  
Term Structure  
Risk Premium  
Chen, Roll, and Ross, Poon and Taylor, and Mahdy, Jordan French (4,11,14,18,  
Chen, Roll, and Ross, Poon and Taylor, Jordan French (4,11,18)  
Unemployment  
Employment  
Wasserfallen, McQueen and Roley (15,23)  
Asprem (2)  
Export Prices  
Asprem (2)  
Consumption  
Chen, Roll, and Ross, Asprem (2,4)  
McQueen and Roley (15)  
Merchandise trade deficit  
Gross domestic product  
Wages  
Drehman and Manning, Anthony Olugbenga Adaramola (1,7)  
Wasserfallen (23)  
Real investment  
Capital formation  
Wasserfallen (23)  
Asprem (2)  
monthly consumer price index of the U. A. E. for period t and  
computed using the following equation:  
IGt  
IG  ln[  
]
(5)  
t
IGt1  
푡  
 = 푙푛[  
]
(7)  
The series was obtained from GFD for the period 5/2003  
thru 5/ 2018.  
푡ꢃꢄ  
where, P  
t
and Pt-1 are prices at time t and t-1. The consumer  
Industrial Production: Monthly growth rate in industrial  
production is calculated from the monthly industrial  
production index. The industrial production growth rate is the  
first difference in the logarithm of the monthly industrial  
production index of the U.A. E. If IP denotes the industrial  
t
production rate in month t, then the monthly growth rate is  
price index was obtained from GFD. The inflation series is for  
the period 5/2003 thru 5/ 2018.  
Money Stock (M1)  
Money stock (M1) is measured as the change from month  
t-1 to month t in the natural logarithm of money stock (M1) of  
the U. A. E. The following equation is used  
IPt  
M1t  
IP  ln[  
]
t
M1  ln[  
]
(8)  
IPt1  
t
M1t1  
(
6)  
The series was obtained from GFD for the period 5/2003  
thru 5/ 2018.  
The series was obtained from GFD for the period 5/2003  
thru 5/ 2018.  
Inflation Rate: The realized inflation rate for period t(It) is  
defined as the first difference in the natural logarithm of the  
7
40  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 737-746  
Money Stock (M2): Money stock (M2) is measured as the  
change from month t-1 to month t in the natural logarithm of  
money stock (M2) of the U. A. E. The following equation is  
used  
4.1 Industry Returns and Risk Factors  
After choosing the best ARIMA model for each  
macroeconomic risk factor we subtracted the fitted values from  
the actual values to form the unexpected components of the  
series. The new variables thus created are unexpected  
measures for exchange rate, export of goods, imports of goods,  
industrial production, inflation, money supply (M1), money  
supply (M2), oil prices and local Market Index. After deriving  
new measurements for local macroeconomic risk factors, their  
influences on the stock price indices for all nine industries were  
estimated and tested. OLS was applied to estimate Equation 1  
over the sample period.  
M 2t  
M 2  ln[  
]
(9)  
t
M 2t1  
The series was obtained from GFD for the period 5/2003  
thru 5/ 2018.  
Table 2 presents descriptive statistics for the U. A. E  
market index and macroeconomic risk factors for the period  
Oil Prices (OG): Oil prices are included as a systematic  
risk factor influencing equity markets. Chen et al use the  
producer price index / crude petroleum as an approximation of  
oil prices in the U.S markets (4), and Hamao uses the Arabian  
Light Spot prices in Japanese equity markets. We use Dubai  
Arab Light Crude Oil index (10). The oil price growth factor  
5/2003 thru 5/ 2018. Table 2 shows that the unexpected  
inflation bears the highest risk, while the unexpected exchange  
rate bears the lowest level of risk as approximated by standard  
deviation. Skewness statistics show that unexpected import of  
goods, unexpected inflation, unexpected stock supply (M1),  
unexpected stock supply (M2) and unexpected oil prices are  
positively skewed with the highest positive skewness found in  
unexpected money stock (2) and the lowest in unexpected oil  
prices. The negatively skewed factors are unexpected exchange  
rates, unexpected export of goods, unexpected industrial  
production, and the local market index. The highest negative  
skewness found in the unexpected exchange rates and the  
lowest in local market index. The Jarque-Bera statistics  
indicate that every unexpected macroeconomic risk factor  
exhibits significant departure from normality; therefore, the  
null hypothesis of normal distribution for those  
macroeconomic series is rejected at the 1% level of  
significance. The abnormality can be attributed to the  
existence of large numbers both positive and negative within  
the sample period. The ADF statistics show that all of the  
unexpected macroeconomic risk factors are stationary (series  
are all I (0)). The null hypothesis of a unit root is rejected at the  
(
OG) is constructed as the realized monthly first difference in  
the logarithm of Dubai Arab Light Crude Oil index using the  
equation below:  
OGt  
OG  ln[  
]
t
(
10)  
OGt1  
where Oil t, Oil t-1 are oil prices at time t and t-1  
respectively. The series was obtained from GFD for the period  
5/2003 thru 5/ 2018.  
Market Index: Asset pricing models usually accommodate  
a role for a market portfolio to measure risk and to capture all  
the information available to the market, not captured by the  
non-equity economic factors. The return on the market  
portfolio is defined as the monthly first difference in the  
logarithm of the national equity market portfolio using the  
following equation;  
1% level.  
Table 3 presents the correlation matrix for the U.A.E  
푡  
monthly market index and unexpected macroeconomic risk  
factors. As reported, a mild correlation exists among the  
unexpected macroeconomic factors in the U.A. E The highest  
correlation is found between unexpected money stock (M1)  
and unexpected money stock (M2). The results also suggest  
that the factors do not have any meaningful indication of  
multicollinearity. Table 4 reports reactions of industrial stock  
returns to several local macroeconomic risk factors for the  
U.A.E over the period of 5/2003 thru 5/2018. The results show  
that the market index in the U.A. E (MKT) has a significant  
positive effect in every relevant industry. Moreover, the most  
sensitive industry to the market index is the real estate industry  
with a market beta coefficient of 1.3154 and t=41.274, while  
the consumer staples industry is considered the least sensitive  
to the market index with a market beta coefficient of 0.2172  
and t=3.6537, both at the 1% level of significance. With regard  
to the macroeconomic risk factors, some important  
relationships have been found. The investment & financial  
service industry has been found to be the most sensitive  
industry to changes in macroeconomic factors during the  
sample period.  
푅푚 = 푙푛[  
]
(11)  
푅푚ꢄ  
t
Rm , and Rmt-1 are the return values of the market at time t  
and t-1, respectively, in local currency. We use the most  
common but readily available stock return index. The series  
for the U.A. E. stock market portfolio is obtained from SCA.  
The series covers the period from 5/2003 thru 5/ 2018.  
The market return portfolios (Rm  
short-term interest rates. The latter is used as a proxy for the  
risk-free rate (Rf ) to measure excess returns for the market  
portfolio. The short-term interest rate refers to the 3-month  
Treasury Bill. We used the U. S. A. 3-month Treasury Bill  
ITUSA3D) as a proxy for the short-term interest rate in the U.  
t
) are in excess of local  
t
(
A. E.  
4
Empirical Results  
This section of the paper presents the effects of risk factors  
on local industry returns in the U. A. E by estimating equation  
one using the OLS (Ordinary-Least Squares) regression method.  
7
41  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 737-746  
Table 2: Summary Statistics for the U. A. E Market Index and Macroeconomic Factors  
May 2003 to May 2018)  
(
UFX  
UEG  
UIG  
UIP  
UI  
UM1  
UM2  
UOG  
MKT  
Mean  
Median  
4.02E-08  
2.32E-06  
0.000383  
-0.001508  
0.000129  
-8.628826  
104.0981  
-2.29E-05  
-0.002744  
0.077976  
-0.140907  
0.022885  
-1.069123  
11.08208  
2.86E-05  
-3.95E-05  
0.014765  
-0.007507  
0.002989  
0.850106  
6.160759  
1.91E-05  
4.24E-05  
0.005636  
-0.005016  
0.001628  
-0.214331  
4.192162  
-0.000519  
-0.041448  
1.655444  
-1.109310  
0.333008  
0.610976  
7.306685  
-3.55E-05  
-0.003481  
0.465429  
-0.075183  
0.037987  
10.24494  
126.1750  
-2.46E-05  
-0.003136  
0.463609  
-0.051503  
0.036255  
11.63312  
149.4470  
-8.43E-06  
0.002604  
0.141301  
-0.115256  
0.036358  
0.020193  
4.664792  
-0.009014  
-0.006794  
0.122602  
-0.175460  
0.044720  
-0.319267  
4.242781  
Maximum  
Minimum  
Std. Dev.  
Skewness  
Kurtosis  
Jarque-  
7
9328.13  
527.1035  
0.000000  
97.14510  
0.000000  
12.10439  
0.002353  
151.1403  
0.000000  
117588.9  
0.000000  
165826.6  
0.000000  
20.91427  
0.000029  
14.72306  
0.000635  
Bera  
Probability  
0.000000  
-
ADF Test  
at the  
Level I (0)  
-
-
-
-
-
-
-
-
1
*
3.56456*  
*
13.29053*  
**  
13.25501*  
**  
13.20142*  
**  
12.84219*  
**  
13.64670*  
**  
13.15461*  
**  
13.39204*  
**  
5.703556*  
**  
Sum  
Sum Sq.  
Dev.  
Observatio  
ns  
7.28E-06  
-0.004150  
0.094268  
0.005173  
0.001608  
0.003453  
0.000477  
-0.093867  
19.96095  
-0.006427  
0.259741  
-0.004458  
0.236602  
-0.001526  
0.237936  
-1.631553  
0.359972  
3
1
.01E-06  
81  
181  
181  
181  
181  
181  
181  
181  
181  
Note: The ADF Test is an augmented Dickey- Fuller Unit Root Test. The ADF test is a stationary test. The critical values for ADF test are 2.5677, -  
2
.8632, and 3.4359 for significant levels of 10%, 5%, and 1% respectively. *, **, *** Denote significance at 10%, 5%, and 1% level, respectively  
Table 3: Correlation Matrix for the U. A. E Market Index and Macroeconomic Factors  
(May 2003 to May 2018)  
Correlation  
UFX  
UEG  
UIG  
UFX  
UEG  
UIG  
UIP  
UI  
UM1  
UM2  
UOG  
MKT  
1.000000  
-0.069146  
-0.023122  
0.245501  
-0.189518  
0.055098  
0.055158  
-0.029647  
-0.026323  
1.000000  
-0.049245  
0.185461  
0.241234  
0.085188  
0.027636  
-0.013231  
0.247767  
1.000000  
0.150903  
0.012987  
-0.029051  
-0.010193  
-0.046796  
0.017858  
UIP  
1.000000  
0.023538  
0.084669  
0.074144  
0.024693  
0.196961  
UI  
1.000000  
0.061127  
0.051541  
0.076491  
0.072108  
UM1  
UM2  
UOG  
MKT  
1.000000  
0.964780  
-0.001764  
0.042479  
1.000000  
0.013168  
0.010449  
1.000000  
0.091247  
1.000000  
Note: local macroeconomic risk factors for UAE are unexpected measures for exchange rate (UFX), export of goods (UEG), imports of goods  
UIG), industrial production (UIP), inflation (UI), money stock, M1 (UM1), money stuck, M2 (UM2), oil prices (UOG) and local Market Index (MK  
(
The unexpected foreign exchange (UFX), the unexpected  
factor with a coefficient value of -0.7652 and t= -2.8125 at the  
5% level of significance. R for the nine estimated regressions  
2
import of goods (UIG), the unexpected money stock (M1), and  
the unexpected oil prices are not found to have any significant  
association with any industry in the U.A. E. However, the same  
cannot be said about the other economic factors. Unexpected  
export of goods (UEG) has a negative effect on the banking  
industry (-0.1082) (t= -2.6680) at the 10% level of significance  
while has a positive effect on investment & financial service  
industry (0.1559) (2.6656) at the 10% level of significance.  
Both Unexpected inflation (UI) and the unexpected industrial  
production (UIP) are found to have significant negative effects  
on the investment & financial service industry (-0.0129) (t=-  
in the U.A. E. are reasonable, which implies that most  
variations in the industry returns are explained by the local  
market index in addition to the local macroeconomic risk  
factors. DW is very close to 2 therefore the serial correlation  
problem is ignored. For the purpose of completeness, figure 1  
shows movements of the monthly returns of the U. A. E.  
industry indices over the period of May 2003 thru May 2018,  
while figure 2 shows movement of the U.A. E. monthly  
macroeconomic risk factors over the same period.  
Generally, the regression results in the U.A. E. as reported  
in table 4, show the powerful effect of the local market index  
on each of the nine industries with some reasonable effects  
2
.6137), (-2.6266) (t=-2.5812) for the same sample period. In  
the case of the unexpected money stock (UM2), the consumer  
staples industry was the only industry to be affected by that  
7
42  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 737-746  
regarding the local macroeconomic factors such as UEG, UIP,  
UI and UM2.  
4
58  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 737-746  
Figure 1: Measuring Movement of the Monthly Returns of the U.A. E. industries indices (May 2003 to May 2018)  
7
44  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 737-746  
Figure 2: Movement of the U. A. E. Monthly Unexpected Macroeconomic Factors (May 2003 to May 2018)  
Table 4: Industrial Stock Returns Reactions to Macroeconomic Risk Factors for the U. A. E.  
May 2005 to May 2018)  
(
2
R2  
MKT  
Industry  
Banking  
Consta  
nt  
UFX  
UEG  
UIG  
UIP  
UI  
UM1  
UM2  
UOG  
MKT  
N
R .  
DW  
adj  
-
9.3837  
-
-
0.8271  
(1.189  
8)  
0.0028  
(0.882  
9)  
0.0624  
(0.582  
3)  
-
0.0689  
(-  
0.6158  
)
0.0180  
(0.622  
9)  
0.8106  
(33.20  
8) ***  
18  
1
0.869  
5
1.9256  
0.866  
7
0.0022  
14  
(1.0992  
)
0.1082  
52  
0.6967  
(1.963  
3)  
(
-
2
.5835  
)
(2.6680  
*
*
)
Consumer  
Staples  
-
2.5246  
(0.1219  
)
-0.1520  
(-  
1.2545)  
-
0.2885  
(-  
0.3346  
)
0.0009  
(0.000  
5)  
-
0.0046  
2
0.3565  
9
(1.368  
0)  
-
-
0.1122  
(-  
1.5987  
)
0.2172  
(3.653  
7) ***  
18  
1
0.197  
2
1.4735  
00  
0.046  
9
0.0104  
0.7652  
(-  
2.8125  
) **  
(
-
4
)
.0737  
***  
(-  
0.5800  
)
Industrials  
Insurance  
-
25.555  
0.0955  
(0.5172  
)
0.5998  
5
(0.456  
2.2371  
(0.870  
5)  
0.0028  
(0.231  
6)  
0.6248  
(1.573  
1)  
-
0.7200  
(-  
1.7367  
)
-
0.0316  
3
0.3650  
(4.028  
1) ***  
18  
1
0.099  
5
2.2899  
54  
0.107  
6
0
.0107  
6
(0.8099  
)
(
-
2
.7537  
*
6)  
(-  
)
0.2957  
)
0.1167  
(0.755  
8)  
-
36.548  
(0.8021  
)
0.0944  
1.4267  
2
(0.752  
1)  
-
4.2018  
(-  
1.1323  
)
-
0.0047  
5
0.1161  
(0.202  
4)  
-
0.1255  
(-  
0.2097  
)
0.5037  
(3.849  
1) ***  
18  
1
0.049  
0
2.0593  
1.9239  
0.078  
5
0
.0007  
4
(0.3540  
)
(
-
0
.1389  
)
(-  
0.2709  
)
-
0.0129  
(-  
Investment &  
Financial  
Service  
0.0015  
(0.988  
4)  
-9.5824  
(-  
0.7431)  
0.1559  
(2.6656  
) *  
0.1114  
6
(0.207  
-
0.1932  
(1.190  
4)  
-
0.0718  
(1.643  
3)  
1.1450  
(30.91  
7) ***  
18  
1
0.857  
8
0.847  
8
2.6266  
(-  
0.1417  
(-  
6)  
2.5812  
2.6137  
) *  
0.8368  
)
)
*
Real Estate  
Service  
0.0042  
-4.8953  
(-  
0.4411)  
0.0800  
(0.0800  
)
0.8777  
(1.899  
9)  
0.0503  
(0.055  
7)  
0.0021  
(0.512  
6)  
-
0.0040  
(-  
0.0158  
0(.108  
3)  
-
1.3154  
(41.27  
4) ***  
18  
1
0.914  
5
1.8804  
13  
0.914  
9
(
3.088  
0.0260  
(-  
0.6916  
)
-
0.1182  
(-  
1.2607  
)
5) ***  
0.0290  
)
-
-
10.689  
(0.3863  
)
0.1570  
(0.9692  
)
-
1.1903  
(-  
1.0332  
)
1.6880  
(0.749  
0)  
-
0.0118  
(-  
1.1155  
)
0.2212  
0.2212  
1.0460  
(13.16  
1) ***  
18  
1
0.516  
8
1.7307  
0.521  
3
0.0031  
0.2701  
(
-
(-  
0.7756  
)
0.9290  
)
7
45  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 737-746  
Telecommunicat  
ion  
-
1.8860  
(0.1003  
)
0.0022  
(0.0203  
)
-
0.7134  
(0.466  
1)  
0.0039  
(0.548  
5)  
0.3429  
0.2734  
(1.107  
2)  
-
0.5368  
(9.946  
5) ***  
18  
1
0.365  
4
1.8823  
0.380  
1
0.0034  
0.0663  
(-  
(-  
1.4497  
)
0.0040  
(-  
0.0636  
)
-
0.0476  
(-  
(
-
1
.4929  
)
-
0.0847  
)
0.4317  
(0.613  
6)  
-10.103  
(-  
0.5978)  
-0.1112  
(-  
1.1243)  
0.0703  
(0.051  
1)  
0.0056  
(0.870  
2)  
-
0.1502  
(-  
0.0558  
(0.251  
4)  
0.6500  
(13.39  
1) ***  
18  
1
0.509  
3
2.0225  
0.511  
8
Transportation  
0.0046  
(
-
2.2075  
0.7061  
0.8314  
)
)
)
Note: independent variables are unexpected measures for exchange rate (UFX), export of goods (UEG), imports of goods (UIG), industrial production  
UIP), inflation (UI), money stock, M1 (UM1), money stuck, M2 (UM2), oil prices (UOG) and local Market Index (MKT). T- Values (in parenthesis).  
(
N is the number of observations for each local industry. DW is Durbin-Watson statistic. *, **, *** Denote significance at the 10%, 5%, 1% level  
2
respectively. R is the coefficient of determination adjusted for degrees of freedom.  
1
1
0. Hamao Yasushi. An Empirical Examination of Arbitrage Pricing  
Theory: Using Japanese Data. Japan and the World Economy.  
5
Discussions and Conclusions  
This paper examines the domestic sources of risk as an  
1
988;1: 45-61.  
explanation of the variation in the industries’stock returnsand  
if so to what extent. The results show that local risk factors  
have reasonable explanatory power in accounting for the  
differences in industry excess returns on a monthly basis. The  
factors explained between 04% and 91% of the variations for  
the U. A. E. market over the sample period. We compared the  
illustrativepowers of the local market, where the excess return  
is the only explanatory factor, with that of the multifactor  
model. Results suggest that market excess return is the most  
importantexplanatoryfactor among domesticriskfactors. Any  
variation in the market excess return directly affects industry  
stock returns. Adding macroeconomic factors increases the  
explanatory power of the models. Investment & financial  
service, consumer staples, and banking are among the most  
sensitive industries in the U.A. E. In terms of allocating,  
timing, and diversifying investment portfolios from a policy  
perspective, the significant relationship between risk factors  
and industry stock returns is critical information for investors  
and practitioners seeking to better understanding how and to  
what extent risk factors effect returns by industry.  
1. French J. Macroeconomic forces and arbitrage pricing theory.  
Journal of Comparative Asian Development. 2017 Jan 2;16(1):1-  
20.  
12. Hussainey K, Khanh Ngoc L. The impact of macroeconomic  
indicators on Vietnamese stock prices. The Journal of Risk  
Finance. 2009 Aug 14;10(4):321-32.  
1
3. Lintner J. The Valuation of Risk Assets and Selection of Risky  
Investments in Stock Portfolios and Capital Budgets. Review of  
Economics and Statistics. 1965;47: 13-37.  
4. Mahdy F. Elhusseiny. The industry stock return reaction to risk  
factors: empirical evidence from Canadian stock market.  
International Journal of Business, Accounting, and Finance.  
2009;3(1): 48-59  
1
15. McQueen G, Roley V. Stock Prices, News, and Business  
Conditions. The Review of Financial Studies. 1993;6(3): 683-  
7
07.  
1
6. Khan MN, Tantisantiwong N, Fifield SGM, Power DM. The  
relationship between South Asian stock returns and  
macroeconomic variables”, Journal of Applied Economics.  
2
015;47(13): 1298-1313.  
17. Ratanapakorn O, Sharma SC. Dynamic analysis between the US  
stock returns and the macroeconomic variables. Applied Financial  
Economics. 2007 Mar 1;17(5):369-77.  
1
8. Poon S, Taylor SJ. Macroeconomic Factors and the UK Stock of  
Business Finance and Accounting. 1991;18(5): 619-636.  
9. Roll R. A Critique of the Asset Pricing Theories’ Tests, Part 1: On  
Past and Potential Testability of the Theory. Journal of Financial  
Economics. 1977; 4: 129-176.  
0. Roll R, Ross SA. An Empirical Investigation of the Arbitrage  
Pricing Theory. The Journal of Finance. 1980;35(5): 1073-1103.  
1. Ross S. The Arbitrage Theory of Capital Asset Pricing. Journal of  
Economic Theory. 1976;13: 341-360.  
2. Kandir SY. Macroeconomic variables, firm characteristics and  
stock returns: Evidence from Turkey. International research  
journal of finance and economics. 2008;16(1):35-45.  
3. Wasserfallen W. Macroeconomic News and The Stock Market.  
Journal of Banking and Finance. 1989;13: 613-626.  
References  
1
2
3
.
.
.
Adaramola AO. The impact of macroeconomic indicators on  
stock prices in Nigeria. Developing Country Studies. 2011;1(2):1-  
1
4
.
Asprem M. Stock prices, asset portfolios and macroeconomic  
variables in ten European countries. Journal of Banking &  
Finance. 1989 Sep 1;13(4-5):589-612.  
Black F, Jensen MC. Scholes M. The Capital Asset Pricing  
Models, Empirical Tests, in Studies in the Theory of Capital  
Markets. (Ed.) Jensen, M. C., NY, Praeger. 1972.  
2
2
2
4
5
.
.
Chen NF, Roll R, Ross S. Economic Forces and the Stock Market.  
Journal of Business, 1986; 59: 383-403.  
2
Gan C, Lee M, Yong HH, Zhang J. Macroeconomic variables and  
stock market interactions: New Zealand evidence. Investment  
management and financial innovations. 2006;3(4):89-101.  
Pilinkus D. Macroeconomic indicators and their impact on stock  
market performance in the short and long run: the case of the  
Baltic States. Technological and Economic Development of  
Economy. 2010; (2):291-304.  
6
.
7
8
9
.
.
.
Drehman M, Manning M. Systematic Factors Influencing UK  
Equity Returns. Forthcoming Publication. 2004.  
Fama EF, MacBeth JD. Risk, Return and Equilibrium: Empirical  
Tests. Journal of Political Economy, 1973;81: 607-636.  
Fama EF, French KR. The Cross-section of Expected Stock  
Returns. Journal of Finance, 1992;47(2): 427-466.  
7
46