Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 722-729  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Forecast of Boundaries of Hydrocarbon Deposit  
Productivity Based on the Data of Land  
Geochemical Surveys, Seismic Exploration and  
Drilling  
*
Mikhail ZAVATSKII , Olga VEDUTA  
Danil KOBYLINSKII, Olga VOLOBUEVA, Artur NIKIFOROV  
Industrial University of Tyumen, Tyumen, Russia  
Received: 27/05/2019  
Accepted: 22/08/2019  
Published: 03/09/2019  
Abstract  
The relevance of the research results from the increasing complexity of the structure of hydrocarbon deposits, which are objects  
of exploration and development in Western Siberia. Exploration efficiency can be improved by using a technique able to provide  
fundamentally new geological information  a land geochemical survey detecting oil migrational hydrocarbons on the surface. The  
purpose of the work is to improve interpretational models used when integrating seismic and drilling data with detailed geochemical  
survey results. To solve this problem, the authors analyzed the results of geochemical surveys carried out in two areas. In one area,  
the investigation was aimed at identifying the type of the reservoir fluid content prior to drilling, on the other  at delineating a gas  
deposit. It was discovered that surface gas shows depended on the reservoir fluid content (hydrocarbons or water) and the vertical  
permeability of overlying rocks. The discovered local zones of active hydrocarbon migration show that cap rocks lose their sealing  
properties, which allows identifying lateral boundaries of trap productivity.  
Keywords: Land geochemical survey, Snow survey, Hydrocarbon migration, Geochemical indicators of oil and gas occurrence,  
Tazovskoye field, Vostochno-Terelsky prospecting block.  
1
detected with a probability of 0.7. Currently, with an  
1
Introduction  
accuracy of ± 15 m, the most common structure with an  
amplitude of 15 m is detected with a probability of no more  
than 0.41 (1). The most informative is a 3D seismic survey,  
but it does not always solve the problems associated with  
thinly bedded reservoirs (2). The above said explains the fact  
that the efficiency of exploratory drilling in Western Siberia  
does not exceed 30-35% (3).  
Thus, there are two parallel and interrelated processes –  
development of seismic exploration, as the main tool of oil  
and gas exploration geology, and the constant complication  
of target geological features. The seismic survey is  
indispensable for describing a sedimentary basin, but it  
remains an indirect method, since its search object is a  
In Western Siberia, as well as in other traditional oil and  
gas regions, large oil fields confined to amplitude anticlinal  
layer-arch traps tend to be exhausted. Currently, much  
attention is paid to the exploration of unconventional oil and  
gas deposits: deep-seated horizons of the sedimentary basin  
including the pre-Jurassic basement, unconventional traps  
with thinly bedded reservoirs having a complex structure, and  
others. It is difficult to simulate all these geological features  
using only seismic data.  
Geophysicists try to increase efficiency by using new  
technologies for measuring the seismic signal and  
mathematical methods for interpreting it, but they do not  
manage to perform a unique interpretation of the seismic  
signal. Until 1976 with an accuracy of ± 25 m, the most  
frequently detected structure with an amplitude of 50 m was  
potential trap and not  
a hydrocarbon accumulation.  
Exploration efficiency can be significantly increased by  
combining geophysical methods with a land survey, which  
gives  
a planar characteristic the variability of the  
sedimentary cover in the plan. Currently, the land  
geochemical survey is the most reliable tool for mapping the  
lateral variability of the sedimentary cover (4, 5). In Western  
Corresponding author: Mikhail ZAVATSKII, Industrial  
University of Tyumen, Tyumen, Russia. Email:  
eksis2005@yandex.ru.  
722  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 722-729  
Siberia, the most technologically advanced and informative  
method of land geochemical surveys is a snow survey (5, 6).  
positions of observation points were determined using a  
satellite topographic positioning system GPS with an error of  
no more than 5 m.  
Based on the field and analytical work results, the authors  
constructed maps of distributions of the main geochemical  
parameters  the content of methane and the sum of methane  
homologs (SMG) from ethane to hexane. In some cases, the  
authors used additional characteristics of the geochemical  
field  the sum of gaseous methane homologs (SGMG) and  
the ratio of methane to its homologs. The maps were  
compared with seismic plans of target potential oil-bearing  
horizons. When interpreting data, the authors used a fluid-  
dynamic model (Fig. 1) considering a hydrocarbon deposit as  
a system in dynamic equilibrium. On the one hand, there are  
processes leading to an increase in the formation pressure  
2
Materials and Methods  
The research object is the data of multi-year geochemical  
research (1991-2017) in Western Siberia (5). This work  
considers in detail the results of two surveys conducted with  
different purposes: at the Vostochno-Terelsky prospecting  
block, the investigation was aimed at studying the local  
elevations identified by the seismic survey and at the  
Tazovskoye field, it was required to delineate a gas deposit in  
the Cenomanian layer PK . All the works under consideration  
were carried out using the snow survey technique: at the  
observation point, a surface snow sample with a volume of  
1
2
00 ml was collected, then in the laboratory this sample was  
subjected to thermal vacuum degassing, the extracted gas was  
analyzed using a chromatograph with hydrocarbon  
(water-oil emulsion inflow, thermal cracking of  
hydrocarbons, and hydrothermal injections); on the other  
hand, the overpressure is released causing a decrease in the  
rock pressure, i.e., generally vertically upwards. Hydrocarbon  
migration occurs along the zones of overlying rock  
a
-
7
detection threshold of no more than 1-10 % in volume.  
Saturated hydrocarbons from methane (CH ) to hexane  
4
(
C H ) were determined. Before degassing and analysis, the  
6 14  
decompaction  
of  
different  
genesis.  
sample was stored under refrigeration. The terrestrial  
Fig. 1: Model of the reflection of geological boundaries of a ring-type bottom water-drive reservoir in gas saturation of the snow based on the results  
of the work at the Urnenskoye field. 1  basal complex; 2  oil-saturated reservoir; 3  water-saturated reservoir; 4  effective cap rock; 5  zone of  
cap rock decompaction; 6  oil reservoirs not covered with an effective cap rock; 7  the most powerful migration channels resulting from the full or  
partial pinch of a cap rock; 8  productivity boundaries caused by underlying waters; 9  productivity boundaries caused by reservoir drainage; 10 –  
productivity boundaries resulting from the full or partial pinch of a cap rock; 11  water microstream; 12  water microstream enriched in  
hydrocarbons; 13 hydrothermal inflow.  
723  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 722-729  
This may be a zone of tectonic activity, zones of  
overlying strata dynamic stresses, zones of hydrothermal  
activity, etc. Regardless of the genesis, such zones are  
boundaries of an effective seal (5-7).  
but they have local zones of active hydrocarbon migration  
along the enveloping isohypse. These characteristics allow  
giving a positive forecast for the prospects of these features.  
The Kutymsky elevation (southeast part) has similar  
characteristics and is characterized as a productive area.  
Taking into account the gas shows position relative to the  
seismic plan, the contour was predicted to be closed at 3140  
m isohypse. The Zapadno-Terelsky structure did not have any  
gas shows so its productivity forecast was negative.  
Exploratory drilling of the Vostochno-Terelsky site  
structures by the subsoil user “Noyabrskgazdobycha”  
basically confirmed this forecast. The Jurassic deposits  
proved to be productive within the Kutymsky, Ninelsky,  
Vostochno-Ninelsky and Lensky elevations within the  
predicted contours. The negative forecast for the  
Kypakynsky, Yuzhno-Kypakynsky and Graviyny elevations  
was partially confirmed: stratum water inflow was obtained at  
the Kypakynsky elevation, but the oil-wet core was lifted  
from the Upper Jurassic deposits within the Yuzhno-  
Kypakynsky elevation. The forecast error is likely to be  
caused by a low density of geochemical sampling. The sizes  
of this geological feature are comparable to the distance  
between the sampling profiles, so the local zone of formation  
fluid migration could be skipped. In general, the level of gas  
content in the structure is non-zero and stable over the entire  
area, which is a positive geochemical characteristic, but the  
zones of formation fluid migration, which are typical for  
marginal zones of commercial hydrocarbon accumulations,  
were not found.  
3
Results  
The main objective of the work at the Vostochno-  
Terelsky prospecting block was evaluating local elevation  
prospects including a primary forecast of the oil reservoir  
boundaries in the Jurassic sediments.  
Oil and gas-bearing features in the eastern part of the  
prospecting block were predicted in the Sigovskaya  
0
formation (layer J ), which is westerly pinched out (Fig. 2).  
1
1
The layer J1 (Nizhnesigovskaya subformation) is spread  
over the entire exploration area (Fig. 3). A number of local  
elevations were identified as prospective areas; the following  
of them were included in the geochemical research zone:  
Kutymsky,  
Zapadno-Terelsky,  
Terelsky,  
Yuzhno-  
Kypakynsky, Kypakynsky, Graviyny II, Ninelsky,  
Vostochno-Ninelsky, Lensky, Zapadno-Lensky.  
The Terelsky, Lensky and Kypakynsky local elevations  
were investigated by drilling. The well at the Terelsky local  
1
elevation gave oil, gas, and condensate from the layer J ; the  
1
2
Lensky local elevation showed gas (layer J ) and oil (layer  
1
3
J ).productivity. Three wells revealed water saturation of the  
1
studied layers in the marginal parts of the Kypakynsky  
structure.  
The seismic plan shows two prospective local elevations  
0
identified by the seismic survey at the top of layer J : Lensky  
1
This experience is very important for using detailed land  
geochemical surveys for predicting boundaries of oil-bearing  
features. The survey results give an idea of productive  
stratum influence on the geochemical field. Initially, the  
(
in the north of the site) and Kypakynsky (at the eastern  
boundary of the site). To identify the Jurassic deposit  
productivity within these structures, the authors constructed a  
map comparing the seismic plan with the SMG content in the  
snow cover. The actual absence of gas shows in the eastern  
part (Kypakynsky, Graviyny local elevations) indicates that  
these geological features are unproductive.  
The comparative analysis of the maps presented in Figs. 2  
and 3 showed that the geochemical signal structure was more  
influenced by the occurrence mode of the Nizhnesigovskaya  
subformation than by the overlying layer J1 for which the  
main forecast was done. When analyzing the correlation of  
the geochemical field with the J1 layer structural plan, one  
can see the intensive subsoil degassing lineaments coinciding  
with the 2900-2910 m isohypses contouring the structural  
plateau, which includes the Lensky elevation.  
The data on oil and gas saturation of the underlying  
layers allows drawing the boundary of oil and gas occurrence  
in the Jurassic sediments along these lineaments taking into  
account the structural plan. The absence of geochemical  
sampling in the southwest of the identified zone did not allow  
closing the contour from this side. The delineated area is an  
anticline (a monocline) between the Verkhne-Chaselsky  
elevation in the north-west and the regional elevation slope in  
the east. At first glance, these are not good structural  
conditions, but the subsequent exploration confirmed oil and  
gas presence in the delineated area.  
0
Jurassic layer J1 was expected to contain hydrocarbon  
accumulations, but after receiving information on its water  
saturation and oil detection in the underlying strata, the  
authors were faced with the problem of identifying the  
boundaries of oil and gas occurrence within the geological  
0
feature because the structure on the top of the layer J1 is not  
0
hypsometric. This is the case when the seismic survey and  
drilling do not provide reliable information for locating the  
next exploratory well. The mismatch of the Lensky structure  
contour along the top of the Sigovskaya formation (Fig. 2)  
with the SMG distribution on the surface allows concluding  
that the hypsometry does not indicate hydrocarbon  
1
accumulations in the Jurassic sediments. Along the top of the  
0
layer J , this subsurface site is a non-amplitude fold between  
1
two higher-order anticlines, but it is its hypsometric  
boundaries that are spatially correlated with surface gas  
shows. This suggests that despite the effect of overlying  
strata, the gas shows are strongly influenced by the structure  
of oil and gas-bearing horizon.  
The patterns of geochemical field distribution at the  
geological features of the Vostochno-Terelsky subsurface site  
correspond to the existing ideas about the confinedness of  
maximum gas shows to the periphery zones of productive  
anticlinal traps (8). As the surveys at the Tazovskoye field  
show, this effect is the most pronounced at large amplitude  
elevations, where the dimension of the individual elements of  
The Ninelsky and Vostochno-Ninelsky elevations are  
equally characterized by a low SMG content over the area,  
724  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 722-729  
the pool structure far exceeds the sampling interval, which  
makes the geochemical picture on the surface more  
representative. The Tazovskoye field is confined to the  
cognominal elevation in the north-western part of the Ust-  
Tazovsky bar and contains productive reservoirs in the  
Middle Jurassic (condensate), Achimovsky (oil) and  
Cenomanian (gas with oil rim) deposits. The Cenomanian  
petroleum deposit is relatively well studied by drilling within  
the Tazovsky elevation dome.  
The work was aimed at delineating the Cenomanian  
deposit by mapping the location of the petroleum reservoir  
and the cap rock. Special attention was paid to the northern  
slope of the elevation, which was not studied in such detail  
by drilling.  
0
Fig. 2: The content of methane homologs in the snow relative to the seismic plan for the layer top of the Sigovskaya formation (J  
1
stratum). 1 –  
fractures; 2 boundaries of promising local elevations identified by the results of the seismic survey and prospecting drilling; 3 sampling point.  
725  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 722-729  
Local elevations  
-
-
Terelsky  
Zapadno-Terelsky  
Well testing results  
- Kutymsky  
-
-
Verhnechaselsky  
Lensky  
-
-
oil  
water  
-
Zapadno-Lensky  
-
oil by geophysical  
well logging  
- Ninelsky  
Vostochno-Ninelsky  
- Kypakynsky  
-
-
oil-wet core without  
oil influx  
-
-
Juzhno-Kypakynsky  
Gravijny-II  
1
1
structural contour of the J stratum  
-
(
nizhnesigovsky subsuite)  
-
-
tectonic faults  
prospective feature contours according  
to geochemical survey  
1
1
Fig. 3: The content of methane homologs in the snow relative to the seismic plan for the top of Nizhnesigovskaya subsuite (J  
stratum)  
The initial comparison of the maps of the methane and  
SMG content in the snow with the key bed hypsometry  
revealed the maximum correspondence of the zonal  
distribution of gas shows to the structure of the PK1  
reservoir model (Tyumen NIIGIPROGAS contour) suggested  
the presence of an oil rim in the 85-R well area and gas  
saturation of the layer at the 82-R well area. The forecast for  
these wells done taking into account the land geochemical  
survey data was negative. The boundaries of gas occurrence  
in the Cenomanian deposits predicted using the land  
geochemical survey results were confirmed by well tests.  
(Cenomanian) layer. The SMG maxima were confined to  
disjunctive faults on the eastern side of the structure, which is  
a structural seal of the Cenomanian gas reservoir. Lower  
intensity gas shows are mainly localized on the elevation  
slopes, forming concentric zonality lineaments, consistent  
with the layer top hypsometry (Fig. 4). The structure dome,  
the productivity of which is proven, was displayed by low  
values of SMG.  
Taking into consideration these phenomena, the  
Cenomanian gas reservoir contours were forecasted not only  
by methane but also by SMG, the most likely source of which  
could be the Jurassic and Achimovsky oil-bearing strata,  
since the gas reservoir seal in the Cenomanian sediments  
must stop the migration flow from deep-lying sources.  
One of the research tasks was identifying the structure of  
the northern undrilled part of the field. The subsoil user  
4
Conclusions  
The work carried out at the Tazovskoye field showed that  
the land geochemical survey data provided significant  
geological information even about explored areas. The  
Tazovskoye field has been explored for about 50 years. Its  
structure was identified in 1959, and the first inflow was  
received in 1962 (9). By the time of the work start, 105  
geological features had been tested by 52 wells. Seismic  
surveys were carried out twice in 1985-1988 and in 2002.  
However, the obtained data were insufficient for reliable  
simulation of the undrilled part of the field. The use of data  
on the lateral variability of the sedimentary basin horizons  
markedly detailed the ideas about the hydrocarbon potential  
of the Tazovskoye field.  
8
Yamburggazdobycha” drilled four exploratory wells – Nos.  
5-R, 86-R, 80-R, 82-R. As can be seen from Fig. 5, the  
forecast for two of them was contradictory  the earlier  
726  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 722-729  
1
Fig. 4: The content of methane homologs in the snow relative to the structure of the oil and gas deposit in the PK layer (Cenomanian) in the  
Tazovskoye field  
727  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 722-729  
Fig. 5: Forecast of the oil and gas reservoir contour in the PK  
1
(Cenomanian) stratum based on the results of the complex interpretation of the  
1
geochemical survey, seismic exploration and drilling. 1  isohypses of the PK stratum (Cenomanian); 2  tectonic faults; 3  boundary of the cap  
rock decompaction zone; 4  oil and gas reservoir contour based on the results of the complex interpretation of the geochemical survey, seismic  
exploration and drilling; 5  oil productivity contour according to the Tyumen NIIGIPROGAS model; 6  gas productivity contour according to the  
Tyumen NIIGIPROGAS model.  
In methodological terms, it became clear that the  
readability” of the land geochemical field depended on  
petroleum occurrence within the earth. However, fixing  
anomalies of the hydrocarbon gas content on the surface is  
insufficient for effective use of land geochemical survey data  
in oil exploration. To identify geological boundaries, it is  
necessary to obtain reliable information on the correlation  
between the geochemical field and the sedimentary cover  
structure.  
correspondence between dimensions of a geological feature  
under investigation and sampling frequency. The correlation  
between surface gas shows and the structure of the main  
productive horizons at the Tazovskoye field was much  
stronger than at the Vostochno-Terelsky site, where the  
geological features under investigation had small sizes and  
the use of the same sampling interval resulted in taking less  
than ten samples at each of them.  
References  
1. Brekhuntsov AM, Bevzenko YuP. About the economics and  
technology of searching for oil and gas deposits in Western  
Siberia. Petroleum Geology. 2000;3: 22-26.  
The obtained data indicate that the differences in  
hydrocarbon gas concentrations on the surface reflect real  
geological boundaries, to some extent related to the  
728  
Journal of Environmental Treatment Techniques  
2019, Volume 7, Issue 4, Pages: 722-729  
2
3
4
5
6
.
.
.
.
.
Cherepanov EA, Kychkin AN, Khasanov RN. Prediction of the  
geological structure of the arch part of the Usanovskaya structure  
based on 3D seismic data using geoacoustic simulation.  
Information on http://www.tngf.ru/tngf/dnirnst.html  
Grekova LS. The forecast of the oil and gas potential of local  
structural traps (using the example of the J  
southeast of Western Siberia. Petroleum Geology. 2011;5: 84-  
1.  
1
horizon of the  
9
Andreeva NN, Borkovsky AA, Veres SP, et al. Prospects for  
using direct geochemical methods for searching for relatively  
small sized petroleum deposits in Western Siberia. Petroleum  
Geology. 2001;4: 26-29.  
Zavatsky MD. Study of the Fields of Hydrocarbon Gas  
Concentrations in Surface Natural Sorbents while Exploring Oil  
and Gas Deposits in Western Siberia. Abstract of PhD  
dissertation. Tyumen. 2009.  
Zavatsky MD, Tseplyaeva AI. Informative value of geochemical  
indicators when searching for hydrocarbons in Western Siberia  
(based on snow survey results). Natural and Technical Sciences.  
2
016;10(100): 9-15.  
7
.
Nwaogu C, Abrakasa S, Nwankwoala H, Uzoegbu M, Nwogu J.  
Evaluating some aspects of gas geochemistry of some North Sea  
oil fields. Chemical Sciences Journal. 2015;6(2).  
8
.
Zorkin LM, Carus EV, Kuznetsov OL, et al., About the nature of  
the ringphysical-chemical anomalies in the sedimentary cover.  
Reports of the USSR Academy of Sciences. 1978;2(243): 477-  
4
79.  
9
.
Nesterov II, Salmanov FK, Shpilman KA. Oil and gas fields in  
Western Siberia, Nedra, Moscow, 1971.  
729