Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 858-864  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Algal Flora of the Ponds, Located within the City  
of Vyksa (Nizhny Novgorod Region of the  
Russian Federation)  
Liliya Yu. Khaliullina*, Anastasia D. Panina  
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia  
Received: 13/09/2019  
Accepted: 22/11/2019  
Published: 20/12/2019  
Abstract  
The article presents the results of studies of planktonic algae of ponds, located within the city of Vyksa, for 2017-2018.  
During the period of observation, 110 taxa were found in the phytoplankton of the studied water bodies. Phytoplankton was  
formed by diatoms, green, blue-green and euglena algae. The highest values of the abundance and biomass were typical for the  
Vil'skiy pond. The lowest values of the abundance and biomass were observed in the Verkhnevyksunsky pond. The quality of  
water in majority of the studied reservoirs was estimated as mesosaprobic. According to the indicators of water trophicity, most  
of the studied objects are mesotrophic. The highest values of the indices of saprobity and trophicity were defined in the Vil'skiy  
pond, the water quality of which corresponded to the eutrophic and hypereutrophic types.  
Keywords: Algocenosis, Algae, Phytoplankton, Vyksa city, Zheleznitsa River, Pond  
1
Verkhnevyksunsky, Varnavsky, Nizhniy ponds, Lake  
1
Introduction  
Lebedinka and Lake Malaya Lebedinka) are one of the  
The city of Vyksa is an administrative-territorial (the  
2
largest reservoirs (with a surface area from 2.8 to 5.8 km )  
city of regional significance) and a municipal formation  
with the status of an urban district in the Nizhny Novgorod  
region of the Russian Federation. Currently, the city of  
Vyksa is one of the largest industrial centers of the region.  
Its production is represented by 15 large enterprises.  
in the Nizhny Novgorod region, and are situated within the  
urban district of Vyksa. The city is located in the Prioksky  
lowland and is included in the Prioksky southwestern  
lowland territory of Polesye.  
In 2017-2018, during the growing season, we  
conducted expeditionary surveys of these reservoirs.  
Algological samples were taken at 10 control stations. The  
location map of the sampling points is shown in Figure 1.  
Sampling and laboratory investigation of phytoplankton  
samples were carried out according to generally accepted  
methods (2, 3, 6, 12). Phytoplankton samples were taken  
using Molchanov bathometer. All quantitative samples with  
a volume of 0.5 l were fixed with 4% solution of formalin.  
Fixed samples were concentrated in 2 stages, using the  
settling method, to 10−20 ml. Qualitative water samples  
were concentrated by direct filtration through the  
membrane filters in two stages  with pore diameters of  
For the development of ferrous metallurgy, several  
large artificial factory ponds were created in this area. Four  
of five largest ponds of the Nizhny Novgorod region are  
located within the urban district of Vyksa. These reservoirs  
are the part of the previously existing Vyksa hydropower  
system. In the 18th century it operated the mechanisms of  
seven metallurgical plants, and two flour mills, using the  
water of the Zheleznitsa River nine times (5). Nowadays,  
the cascade of ponds is a place for recreation and fishing.  
These reservoirs are the object of cultural heritage.  
The results of investigations of planktonic algae of  
ponds, located within the city of Vyksa, are presented in the  
article. To date, there are very few published works on the  
study of hydrobiont communities of water bodies in the  
Vyksa urban district. There is no information about the  
algal flora of these water bodies.  
3–5 μm and 1.2–1.5 μm, and they were studied in a living  
state (7-10). Also, during the period of research, the  
weather conditions and air temperature were recorded.  
When sampling, the temperature of water and the  
transparency by Secchi disk were measured (11-13).  
2
Materials and Methods  
The studied water bodies (Vil'skiy, Zapasnyy,  
Corresponding author: Liliya Yu. Khaliullina, Kazan  
Federal University, E-mail: Liliya-kh@yandex.ru.  
858  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 858-864  
stations 5 - 8), diatoms algae dominate in the number of  
species. 53 species, belonging to blue-green, diatoms, green  
and euglena algae were found in the Nizhniy pond, in  
which all other water bodies flow.  
Figure 2: The distribution of taxa (%) of algae in the reservoirs,  
located within the city of Vyksa (2017-2018)  
In the small lakes Malaya Lebedinka (station 9) and  
Lebedinka (station 10), phytoplankton was represented only  
by 12-15 species of diatoms and euglena algae. The most  
frequent occurrence was typical for the euglena algae  
Trachelomonas, blue-green algae Microcystis aeruginosa  
Kutz., diatoms algae of the genera Aulacoseira, Cyclotella,  
species Tabellaria fenestrata (Lyngb.) Kütz., Nitzschia  
palea (Kütz).W.Sm., as well as green algae of the genera  
Pediastrum, Scenedesmus.  
Figure 1: The location map of the water quality sampling stations  
in the reservoirs, which are situated within the city of Vyksa (14-  
1
8)  
56 quantitative and qualitative samples were collected  
in total. Species composition, abundance, and biomass were  
used to characterize the algal communities. The index of  
trophicity was calculated for each sample by the Milius  
block: Ib = 44.87 + 23.22 * logB (1); and the PantleBuck  
saprobity index in the Sladechek modification for plankton  
communities was also estimated (4, 19, 20). The dynamics  
of the general and relative species richness was studied in  
order to characterize the structural indicators of  
phytoplankton communities. The species with the  
abundance or biomass greater than or equal to 10% of the  
total values of indicators, were considered as dominant in  
the communities, for the subdominant species - 5-10%.  
Dominant complexes were distinguished on the basis of  
rank distribution by the abundance and biomass of species.  
4
Discussion of the Results  
According to the analysis of ecological and  
geographical characteristics of the algae species of plankton  
in the ponds of the city of Vyksa, in terms of the  
geographical distribution, the vast majority of taxa refer to  
the species with a wide geographical distribution. The main  
part of algae the indicators of acidification of the  
environment refers to indifferents. The significant  
number of algae, represented in the algal flora of plankton,  
is the indicators of organic pollution. Among them, the  
major part relates to mesosaprobes. The algae of the studied  
reservoirs are mainly represented by the phytoplankton  
species. At the same time, there are diatoms with a wide  
ecological spectrum, which can inhabit both plankton and  
benthos. There are also some taxa, requiring further  
identification at the level of specie. The average abundance  
and biomass of algae in the ponds, located on the river  
Zheleznitsa were 37.3 million cells/l and 17.3 mg/l (Fig. 3,  
3
Research Results  
During the period of observation, 110 taxa were  
defined in the phytoplankton of the studied water bodies.  
The largest number of taxa was found among the diatoms  
4).  
(
39.0%) and green algae (36.6%) (Fig. 2). Among the other  
divisions, phytoplankton was represented by blue-green  
7.31%) and euglena (17.1%) algae. The most frequent  
occurrence is typical for the species, belonging to the  
classes Bacillariophyceae, Chlorophyceae, and  
Among them, 32.8% of abundance and 2.3% of  
biomass were constituted by blue-green algae. There were  
also diatoms, which amounted to 33.9 and 44.9% of the  
abundance and biomass, euglena algae - 8.5 and 44.9%, and  
(
green algae  
- 24.8 and 8.0%, respectively. The  
Euglenophyceae. The highest species diversity of algae is  
observed in the ponds, located on the river Zheleznitsa, at  
the stations 1 and 2 (Vil'skiy pond), where 21-23 species  
are occurred simultaneously. At the stations, located below  
phytoplankton of ponds, located on the river Vyksunka, is  
less abundant. Here, the average abundance and biomass  
were 1.44 million cells/l and 2.85 mg/l. In this water body,  
diatoms algae (33.1% of the abundance, 50.0% of biomass)  
and euglena algae (33.1 and 49.8%, respectively) prevail.  
There are also blue-green and green algae. Their share in  
the percentage ratio doesn’t exceed 0.1-3.0%.  
(
Nizhniy and Zapasnyy ponds), the species diversity  
increases to 30 species. In the samples from these  
reservoirs, diatoms and green algae predominate in the  
number of taxa. The phytoplankton of ponds, located on the  
river Vyksunka, is less diverse. In this reservoir (the  
859  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 858-864  
in a number of ponds, located within the city of Vyksa, was  
studied. The reason is that the single-shot irregular analyzes  
of water are uninformative, and based on them it is difficult  
to assess the state of the reservoir. For this purpose, the  
observations and water sampling were conducted at the  
Verkhnevyksunsky pond, located on the river Vyksunka, on  
the Vil'skiy pond, located on the river Zheleznitsa, as well  
as on the Nizhniy pond, where all other water bodies flow.  
The highest values of the abundance and biomass during  
the period of research were defined for the Vil'skiy pond.  
The total abundance and biomass here ranged from 12.5 -  
4
41.3 million cells/l and 15.4 - 116.4 mg/l (Fig. 5-8). The  
Figure 3: The abundance of planktonic algae (million cell/l) in a  
number of reservoirs, located within the city of Vyksa (August  
average values of the abundance and biomass of algae for  
the season was 82.2 ± 52.1 million cells/l and 40.4 ± 11.9  
mg/l. In early summer, the diatom complex of algae  
dominated in the reservoir. The following species  
prevailed: Aulacoseira granulata, A. italica, Melosira  
varians, Stephanodiscus hantzschii, Asterionella formosa,  
Navicula sp., Nitzschia palea, Synedra ulna. From the  
second half of summer, “blooming” in the pond was  
periodically caused by the blue-green algae Oscillatoria  
sp., Microcystis aeruginosa, Aphanizomenon flos-aquae.  
Also in the second half of summer, the green algae of the  
species Pediastrum duplex, Coelastrum proboscideum,  
Scenedesmus guadricauda, Chlamydomonas sp. were  
subdominant. Periodically, the increase in the content of  
dinophytes algae Peridinium, euglena algae Trachelomonas  
and cryptophytic algae Cryptomonas ovata was observed in  
water.  
2
017): the axis of abscissa shows the numbers of stations on the  
studied reservoirs  
Figure 4: The biomass of planktonic algae (mg/l) in a number of  
water bodies, located within the city of Vyksa (August 2017): the  
axis of abscissa shows the numbers of stations on the studied water  
bodies  
The lowest values of the abundance and biomass,  
during the period of study, were defined for the  
Verkhnevyksunsky pond. The total abundance and biomass  
varied between 0.7 - 15.4 million cells/l and 2.4 - 22.6 mg/l  
During the period of research, “blooming” of water was  
observed, caused by blue-green algae, in the Nizhniy pond,  
where all other water bodies flow. The average abundance  
and biomass were 119.9 million cells/l and 11.8 mg/l, while  
(
Fig. 5-8). The average abundance and biomass of algae  
were 7.0 ± 1.8 million cells/l and 8.0 ± 2.6 mg/l. During the  
entire period of research, the dominant complex consisted  
of diatoms and green algae in equal shares: Aulacoseira  
granulatа, A. italica, Navicula sp., Asterionella formosa,  
Nitzschia palea, Synedra ulna, Diatoma vulgare,  
Dictyosphaerium pulchellum, Scenedesmus guadricauda,  
Coelastrum proboscideum, Crucigenia tetrapedia.  
In the second half of summer, there were short-time  
outbreaks of development of the blue-green algae  
Microcystis aeruginosa. Also in August, the euglena algae  
of the genus Trachelomonas were observed among the  
subdominants. On some dates, the species of dinophytes,  
related to the genera Peridinium, became quite numerous.  
Despite the fact, that all other water courses flow into the  
Nizhniy pond and it is located at the very bottom of the  
stream, this reservoir is not the most polluted, according to  
the indicators of phytoplankton. Here, the quantitative  
indices of algae and trophic indices are significantly lower,  
than in the Vil'skiy pond. The total abundance and biomass  
vary between 13.8 - 78.7 million cells/l and 1.9 - 27.4 mg/l  
83.0% of the abundance and 9.0% of the biomass were  
constituted by blue-green algae. Diatoms (5.7 and 40.2%),  
euglena algae (0.7 and 29.7%) and green algae (10.6 and  
21.1%) were also numerous.  
In the lake Malaya Lebedinka, the abundance and  
biomass of algae were 0.93 million cells/l and 1.38 mg/l.  
Among them, 74.07% of the abundance and 47.32% of  
biomass were constituted by diatoms, and 25.93% of the  
abundance and 52.68% of biomass - by euglena. In the lake  
Lebedinka, the average abundance and biomass of algae are  
0.11 million cells/l and 0.48 mg/l. Among them, 50.00% of  
the abundance and 99.23% of biomass are constituted by  
diatoms. In terms of quantitative indicators, the following  
algae prevail among phytoplankton: division Cyanophyta:  
Microcystis aeruginosa f. flos-aquae (Wittr.) Elenk.,  
Aphanizomenon flos-aquae (l.) Ralfs., Oscillatoria  
planctonica Wotosz., class Bacillariophyceae: Aulacoseira  
italicа (Ehr.) Kiitz., A. granulata (Ehr.) Ralfs., Nitzschia  
palea (Kiitz).W.Sm., Cyclotella meneghiniana Kiitz.,  
Fragilaria construens (Ehr.) Grun., Tabellaria fenestrata  
(
Fig. 5-8). The average abundance and biomass of algae  
during the study period were 40. ± 9.1 million cells/l and  
3.7 ± 3.1 mg/l.  
(
Lyngb.) Kiitz., division Chlorophyta: Scenedesmus sp. sp.  
1
Pediastrum boryanum (Turp.) Menegh. and Euglenophyta:  
Trachelomonas sp. sp. (Table 1).  
During the growing period of 2018, the seasonal  
dynamics of the quantitative indicators of planktonic algae  
860  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 858-864  
Table 1: The dominant complexes of planktonic algae in a number of reservoirs, located within the city of Vyksa (August 2017)  
Water body  
Dominant species  
Water body  
Dominant species  
Aulacoseira italica (Ehr.) Simonsen  
Aulacoseira granulata (Ehr.) Simonsen  
Trachelomonas volvocina (Ehr.) Ehr.  
Nitzschia palea (Kütz). W. Sm.  
Scenedesmus denticulaus Lagerheim (var.  
disciformis Hortobágyi)  
Scenedesmus quadricauda (Turp.) Bréb.  
Pediastrum boryanum (Turp.) Menegh.  
Trachelomonas hispida (Perty) Stein  
emend. Defl.  
Trachelomonas volvocina (Ehr.) Ehr.  
Aulacoseira granulata (Ehr.) Ralfs.  
Aulacoseira italica (Ehr.) Simonsen  
Aphanizomenon flos-aquae (L.) Ralfs.  
Tabellaria fenestrata (Lyngb.) Kütz.  
Cyclotella meneghiniana Kütz.  
Asterionella formosa Hass.  
Synedra ulna (Nitzsch.) Ehr.  
Cocconeis placentula Ehr.  
Microcystis aeruginosa Kütz.  
Verkhnevyksun  
sky pond  
(st. 5, 6, 7, 8)  
Vil'skiy pond  
1
4
(
st. 1, 2)  
Microcystis aeruginosa Kütz.  
Trachelomonas intermedia Dang.  
Trachelomonas horrida Palmer.  
Cyclotella meneghiniana Kütz.  
Euglena sp.  
Synedra ulna (Nitzsch.) Ehr.  
Oscillatoria planctonica Wotosz.  
Fragilaria construens (Ehr.) Grun.  
Scenedesmus quadricauda (Turp.) Breb.  
Microcystis aeruginosa Kütz.  
Aulacoseira granulata (Ehr.) Simonsen  
Trachelomonas volvocina (Ehr.) Ehr.  
Nitzschia palea (Kütz). W. Sm.  
Pediastrum boryanum (Turp.) Menegh.  
Fragilaria construens (Ehr.) Grun.  
Coelastrum cambricum Arch.  
Aulacoseira granulata (Ehr.) Simonsen  
Aulacoseira italica (Ehr.) Simonsen  
Euglena viridis Ehr.  
Trachelomonas volvocina (Ehr.) Ehr.  
Trachelomonas intermedia Dang.  
Aulacoseira italica (Ehr.) Simonsen  
Coelastrum proboscideum Bohl.  
Cyclotella meneghiniana Kütz.  
Trachelomonas intermedia Dang.  
Trachelomonas hispida (Perty) Stein  
emend. Defl.  
Lake  
Lebedinka  
(st. 9)  
Malaya  
2
Zapasnyy pond  
st. 3)  
5
(
Tetraedron caudatum (Corda.) Hansg.  
Didimocystis planctonica Korschikoff.  
Trachelomonas horrida Palmer.  
Cyclotella comta (Ehr.) Kütz.  
Oscillatoria planctonica Wotosz.  
Scenedesmus quadricauda (Turp.) Breb.  
Microcystis aeruginosa Kutz.  
Nitzschia palea (Kütz). W. Sm.  
Pediastrum boryanum (Turp.) Menegh.  
Aulacoseira granulata (Ehr.) Simonsen  
Pediastrum duplex Meyen.  
Cocconeis placentula Ehr.  
Monoraphidium arcuatum (Korsch.) Hind.  
Trachelomonas volvocina (Ehr.) Ehr.  
Scenedesmus falcatus Chodat.  
Aulacoseira italica (Ehr.) Simonsen  
Cyclotella meneghiniana Kütz.  
Asterionella formosa Hass.  
Nizhniy pond  
st. 4)  
3
Lake Lebedinka  
(
6
(st. 10)  
Trachelomonas intermedia Dang.  
Trachelomonas hispida (Perty) Stein  
emend. Defl.  
Achnanthes sp.  
Nitzschia holsatica (Kütz). W. Sm.  
861  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 858-864  
Figure 5: Seasonal dynamics of the total abundance of planktonic  
algae (million cells/l) in the reservoirs, located within the city of  
Vyksa (2018)  
Figure 6: Seasonal dynamics of the total biomass of planktonic  
algae (mg/l) in the water bodies, located within the city of Vyksa  
Figure 7: The abundance of planktonic algae (million cells/l) in the  
reservoirs, located within the city of Vyksa (2018): a - Vil'skiy  
pond, b - Verkhnevyksunsky pond, c - Nizhniy pond  
(2018)  
In this reservoir, the dominant complex consists of  
diatoms, green and blue-green algae. The following species  
are the most numerous among the diatoms: Aulacoseira  
italica, Melosira varians, Nitzschia palea, Diatoma  
vulgare, Asterionella formosa. Such species as  
According to the calculations, the quality of water in  
most of the studied reservoirs is estimated as mesosaprobic,  
and only at some stations  as oligosaprobic. The trophic  
indices, calculated on the basis of the Milius block (1) for  
the assessment of trophic status of the reservoirs,  
characterize these water bodies as mesotrophic for the most  
part.  
According to the results of research of the seasonal  
dynamics of ponds in 2018 (Vil'skiy, Nizhniy and  
Verkhnevyksunsky ponds), during most of the growing  
season, these water bodies belong to β-mesosaprobic type  
and correspond to a moderately polluted zone (1.51-2.50).  
The highest values of the saprobity index are typical for the  
Vil'skiy pond. Considering the composition of the dominant  
complex, it can be said, that this reservoir is significantly  
polluted, and it is slow flow. During the summer, the  
quality of water remains rather low. Flagellate  
cryptophytes, dinophytes and green algae prevail in the  
pond. They prefer water bodies with organic pollution. The  
indicators of trophic status also characterize the reservoir as  
eutrophic, and in some periods  as hypereutrophic. The  
values of the trophic index range from 72.45 to 92.84.  
Scenedesmus  
guadricauda,  
Carteria  
globosа,  
Dictyosphaerium pulchellum, Chlamydomonas sp.,  
Coelastrum cambricum, Pediastrum sp. sp. predominate  
among the green algae. During the summer, the blue-green  
algae breed in large quantities in this pond, and periodically  
cause the “blooming” of water by such species as  
Microcystis  
aeruginosa,  
Oscillatoria  
planctonica,  
Aphanizomenon flos-aquae, Anabaena scheremetievi. The  
high content of euglena algae of the genus Trachelomonas  
and Euglena is also observed in this reservoir.  
The indicators of quantitative development of  
phytoplankton are widely used in order to characterize the  
state and trophic status of water bodies. To determine the  
degree of saprobity of the reservoir, the PantleBuck  
saprobity index in the Sladechek modification (S, P/B) was  
calculated on the basis of the phytoplankton biomass (Fig.  
9
-10).  
862  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 858-864  
range from 53.66 to 76.32. Contrary to the assumptions, the  
Nizhniy pond is in a satisfactory condition. The values of  
the trophic indices during the summer were in the range  
51.47-78.24, the water quality corresponded to the  
mesotrophic and eutrophic type. Such different indicators  
of trophicity of the studied reservoirs are explained by their  
heterogeneity and location, as well as by the features of the  
streams, which flow into these ponds.  
Figure 10: The trophic indices (ITS) of the water bodies, located  
within the city of Vyksa (August 2017): the axis of abscissa shows  
the numbers of stations on the studied reservoirs  
5
Summary  
The phytoplankton of the studied water bodies, located  
within the city of Vyksa, is formed by diatoms, green, blue-  
green and euglena algae. The highest values of the  
abundance and biomass are typical for the Vil'skiy pond.  
The lowest values of the abundance and biomass are  
observed in the Verkhnevyksunsky pond. The quality of  
water in most of the studied reservoirs was estimated as  
mesosaprobic. According to the indicators of water  
trophicity, most of the studied objects are mesotrophic. The  
highest values of the indices of saprobity and trophicity  
were defined in the Vil'skiy pond, the water quality of  
which corresponded to the eutrophic and hypereutrophic  
type.  
Figure 8: The biomass of planktonic algae (mg/l) in the water  
bodies, located within the city of Vyksa (2018): a - Vil'skiy pond, b  
-
Verkhnevyksunsky pond, c - Nizhniy pond  
6
Conclusions  
To identify a complete list of the species composition  
and structural features of the algal flora of water bodies,  
located within the city of Vyksa, it is necessary to conduct  
multiple seasonal investigations with repeated analyzes.  
Nevertheless, the obtained data can be applied in the long-  
term monitoring and prognostic research of the biodiversity  
and the state of water bodies in the Russian Federation. The  
study of biology and structure of phytoplankton  
communities in aquatic ecosystems is the basis for  
monitoring and control the quality of natural waters.  
Figure 9: The indices of saprobity S (P/B) of the reservoirs, located  
within the city of Vyksa (August 2017): the axis of abscissa shows  
the numbers of stations on the studied reservoirs  
Acknowledgements:  
The work is performed according to the Russian  
Government Program of Competitive Growth of Kazan  
Federal University.  
According to the trophic index, the Verkhnevyksunsky  
pond is the most prosperous among the studied reservoirs.  
The trophic status of this water body in the studied area  
mostly corresponds to the mesotrophic type, and only  
sometimes - to eutrophic. The values of the trophic index  
References  
[1] Andronikova IN. Theoretical issues of lakes classification. - St.  
Petersburg: Nauka. 1993; 51-72.  
863  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 858-864  
[2] Chapman DJ. The algae. Springer; 1973.  
[3] Morduhay-Boltovskiy FD. Method of study biogeocenosis of  
inland waters. Book in Russian]. Nauka. 1975.  
[
4] Sadchikov AP. Research methods of freshwater  
phytoplankton. Moscow: Publishing House" University and  
School"(In Russian). 2003.  
[
5] Shesterov LV. Vyksa hydropower system of the XVIII  
century. - Nizhny Novgorod: Publishing House of NSU. 1981;  
2
00.  
[
6] Guiry MD, Guiry GM. AlgaeBase is a database of information  
on algae that includes terretrial, marine and freshwater  
organisms. 2000.  
[
7] Lange-Bertalot H, Hofmann G, Werum M, Cantonati M.  
Freshwater benthic diatoms of Central Europe: over 800  
common species used in ecological assessment. Kelly MG,  
editor. Schmitten-Oberreifenberg: Koeltz Botanical Books;  
2
017.  
[
8] Krammer K. Bacillariophyceae 3 Centrales, Fragilariaceae,  
Eunotiaceae. Susswaser flora von Mitteleuropa. 1991;2:1-576.  
9] Krammer K. Bacillariophyceae 4. Teil: Achnanthaceae,  
Kritische Erganzungen zu Navicula (Lineolatae) und  
Gomphonema. Suβwasserflora von Mitteleuropa. 1991;437.  
10] Proschold T, Leliaert F. Systematics of the green algae:  
conflict of classic and modern approaches. Systematics  
Association Special Volume. 2007 Nov 26;75:123.  
[
[
[
11] Abdussalam-Mohammed W. Review of Therapeutic  
Applications of Nanotechnology in Medicine Field and its  
Side Effects. Journal of Chemical Reviews. 2019 Jul 1;1(3. pp.  
1
54-251):243-51.  
[
12] Eldefrawy M, Gomaa EG, Salem S, Abdel Razik F. Cyclic  
Voltammetric studies of calcium acetate salt with Methylene  
blue (MB) Using Gold Electrode. Progress in Chemical and  
Biochemical Research. 2018 Oct 1;1(1, pp. 1-80):11-8.  
[
13] Abagale S, Atiemo S, Abagale F, Ampofo A, Amoah C,  
Aguure S, Yaw O. Pesticide Residues Detected in Selected  
Crops, Fish and Soil from Irrigation Sites in the Upper East  
Region of Ghana. Advanced Journal of Chemistry, Section A:  
Theoretical, Engineering and Applied Chemistry. 2019 Aug  
3
0.  
[
[
[
[
14] Dehghani N, Babamoradi M, Hajizadeh Z, Maleki A.  
Improvement of Magnetic Property of CMC/Fe3O4  
Nanocomposite by Applying External Magnetic Field During  
Synthesis. Chemical Methodologies. 2020 Jan 1;4(1):92-9.  
15] Khan M, Parmar DK, Bhatt HB. Imidazole mediated  
synthesis of spirooxindoles in water using isatin as  
a
privileged scaffold. Asian Journal of Green Chemistry. 2019  
Jan 18.  
16] Kupwade RV. A Concise Review on Synthesis of Sulfoxides  
and Sulfones with Special Reference to Oxidation of Sulfides.  
Journal of Chemical Reviews. 2019 Mar 1;1(2. pp. 78-  
1
70):99-113.  
17] Moosavi-Zare AR, Zolfigol MA, Khaledian O, Khakyzadeh  
V, Farahani MD, Kruger HG. Tandem KnoevenagelMichael-  
cyclocondensation reactions of malononitrile, various  
aldehydes and dimedone using acetic acid functionalized ionic  
liquid. New Journal of Chemistry. 2014;38(6):2342-7.  
[
18] Nain S, Singh R, Ravichandran S. Importance of Microwave  
Heating In Organic Synthesis. Advanced Journal of  
Chemistry-Section A. 2019 Feb 1;2(2, pp. 94-183):94-104.  
[
19] Association Parameters for Paratoluic Acid in Binary  
Mixtures of Ethanol and Water at Different Temperatures  
20] Bader N, Alsharif E, Nassib M, Alshelmani N, Alalem A.  
Phytoremediation potential of Suaeda vera for some heavy  
metals in roadside soil in Benghazi, Libya. Asian Journal of  
Green Chemistry. 2019 Jan 1;3(1. pp. 1-124):82-90.  
[
864