Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1146-1156  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Association of Rumen Fluid Analyses and  
Nutrient Apparent Digestibility in Goats as  
Influence by Fat Supplementation  
1
2
Niel L. Ningal , Nora C. Cabaral *  
1University of the Philippines, Los Bańos, College of Agriculture and Food Science, Los Bańos, Laguna, Philippines  
Mindoro State College of Agriculture and Technology, Department of Animal Science, Oriental, Mindoro, Philippines  
2
Received: 13/09/2019  
Accepted: 22/11/2019  
Published: 20/12/2019  
Abstract  
Goat nutrition depends on rumen microorganisms, however when rumen ecosystem is disturbed, cascade of detrimental effects  
on animal health and productivity takes place. Thus, rumen ecosystem alteration by supplementing dietary fats with known potential  
in microbial protein synthesis, nutrient digestibility and reduction of ruminal NH3-N emission are indeed significant scientific  
challenge. The study aims to explore the potential of dietary fats supplementation in goats. Three rumen-cannulated goats in  
individual metabolism stalls with customized urine collection tools was used following cross•over trial over time. Animals were  
randomly selected on different dietary treatment and cycle, provided with concentrate supplemented with VCO and lard at 3 and  
5% on the morning and ad libitum feeding of Napier grass thereafter with continuous access to clean drinking water. Result showed  
that there were positively high associations in all nutrients (DM, CP, NDF and ADF) apparent digestibility while negatively high  
association between rumen pH and NH3-N. Moderately positive associations were observed between purine derivatives and  
apparent nutrient digestibility. However, moderately negative relationship between VFA and purine derivatives and between NH3-  
N and rumen temperature. In general, inversely proportional association on rumen pH and NH3-N was noted. However, apparent  
CP, NDF and ADF digestibility has strong positive association.  
Keywords: Rumen digestibility, Microbial protein synthesis, NH3-N emission, VCO, Lard  
1
adding energy because a source of nitrogen is needed by the  
microbes so as to make their own body proteins (2).  
1
Introduction  
It is of paramount importance that the animal be fed  
Common nitrogen source of nitrogen in ruminant diet is  
urea which is classified as a non-protein nitrogen (NPN)  
supplement. Urea has 46% N which is equivalent to 28%  
crude protein, but it could be toxic if given in higher  
amounts. Since the ammonia formed from urea is toxic at  
high concentrations in the body, it should not be used at more  
than 1% of the total dry matter intake of the animal (16). The  
rumen ammonia nitrogen comes from the deamination of  
dietary proteins. This also comes from non-protein nitrogen  
appropriately so that the ruminal organisms stay healthy.  
Since the health and productivity of the goat depends on the  
rumen function, without these microorganisms the animal  
will become very sick and eventually died. Thus rumen  
organisms require fiber, nitrogen (protein), and energy  
(
carbohydrates). Roughages supply fiber, whey provides  
protein, and energy is provided by good quality (digestible)  
roughages and by concentrates (grains). The rumen  
microorganisms that digest fiber thrive but in a pH range of  
(
NPN) and from urea derived both from the saliva and from  
6.0-6.8 (3). The vigorousness with which the microbes break  
the blood after diffusion across the fore stomach wall. High  
levels of intraruminal ammonia are produced once ruminants  
are fed excess protein or urea supplements. This could lead  
to energy waste in urea synthesis and a potential to ammonia  
toxicity. Moreover, Stern and Bach mentioned that ruminant  
nutrition depends on rumen microorganisms that allow the  
animals to harness the potential of low energy feedstuffs  
down food entering the rumen would be based upon the rate  
at which they are growing and reproducing. Sufficient  
energy to meet their requirements is needed for them to grow  
rapidly. Good sources of “instant energy” are nutrient source  
that usually contains high proportion of α-linked  
polysaccharides which can be in the form of grain such as  
maize or sorghum or a sugar by-product such as molasses.  
Moreover, adding nitrogen supply has similar effects to  
(
18). Without rumen microorganisms, or when the rumen  
ecosystem is disturbed due to different unfavorable  
Corresponding author: Niel L. Ningal, University of the Philippines, Los Bańos, College of Agriculture and Food Science, Los  
Bańos, Laguna, Philippines. Email: nielningal.qualipeak@gmail.com.  
1146  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1146-1156  
environmental factors (i.e. high temperature, low plane of  
nutrition), there can be a cascade of detrimental effects on  
animal health and productivity. One way to alter the rumen  
ecosystem is by supplementing dietary fats that is known to  
influence the synthesis of microbial protein, ruminal  
ammonia nitrogen emission, rumen temperature and pH, and  
eventually facilitates the digestibility of different nutrients.  
Hence, this study was conducted.  
3
temperature, TVAs, NH -N and purine derivatives  
estimates.  
2.2. Rumen pH  
The pH of the rumen fluid was determined immediately  
upon collection using a Jenway 3505® portable glass  
electrode pH meter (Keison Products, United Kingdom).  
In addition, researchers reported that when oil is included  
2.3 Ruminal Temperature, ºC  
Rumen temperature of each animal was obtained and  
recorded using a digital thermometer.  
in the feed concentrate, it converts unsaturated fats to the  
saturated state by acquiring the hydrogen in the rumen  
environment competing with the potential methane  
produced. Thus, lessening the carbon emissions and has now  
provided new sources to nourish the animal by the saturated  
fats. It is aimed to find ways not only to reduce the methane  
emissions of ruminants but also to help improve the animals’  
nutrition and productivity (4-13) Hence, this study was  
conducted to determine the association of rumen fluid  
analyses and nutrient apparent digestibility in goats as  
influence with various dietary fat supplementations.  
2
.4 Total Volatile fatty Acids (TVFA’s)  
The rumen fluid samples used steam distillation with  
calculation.  
VFA (mmol/100ml) = (titrate (ml) x Na OH factor* x  
00)/vol. of rumen fluid.  
1
NOTE: * 0.05N solution factor should be determined using  
oxalic acid: Take 1.25ml of saturated NaOH was  
2
measured and topped up to 500ml with H O.  
The results may serve as basis for feed companies,  
government and private commercial goat raisers and guide  
researchers and goat experts in identifying feeding and  
nutrition aspects that need further improvement. This study  
serves as a springboard for identifying S&T interventions  
necessary to enhance goat farm productivity while reducing  
GHGs emission and provide decision support not only for  
ruminant nutritionist and goat raisers but also for  
extensionists, researchers and policy makers.  
Dissolve using phenolphthalein indicator. The  
color changes from clear to red.  
2.5 Production Estimation by Purine Derivatives Analyses  
To determine the effects of dietary fat on protein  
nutrition of goats, microbial protein production was  
estimated by analyzing allantoin in the urine (1). On the  
average, allatoin and uric acid represent 85% and 15% of the  
total purine derivative excretion in goats respectively. Urine  
th  
volume was weighed for the last three day of every 11 day  
of the in situ trial for each of the treatment cycle. Freshly  
collected urine samples were diluted to 10:1 with 10%  
H SO to prevent bacterial breakdown of purine derivatives.  
2 4  
Urine samples from each animal were further diluted 20X  
with tap water. Representative samples were kept at 4°C  
until use.  
The method of measuring allantoin was based on the  
colorimetric method described by Young and Conway  
2
Materials and Methods  
The study was conducted from August 4, 2015 to April  
22, 2016 at the Metabolism Laboratory of the Institute of  
Animal and Dairy Sciences Cluster (ADSC), and  
Biotechnology Laboratory at the University of the  
Philippines, Los Baňos, College, Laguna.  
Three (3) female (rumen-cannulated goats) weighting  
27.33±1.53 kg were housed in individual elevated  
(
1942). In this procedure, allantoin is initially hydrolyzed  
metabolism stalls provided with 30% concentrate in the  
morning based on feed requirements (3% of their body  
weight (BW) dry matter (DM) basis) of the animals. Ad  
libitum feeding of napier grass follows thereafter. Clean  
drinking water were made available all the times in the  
respective animal watering troughs. Rumen fluid samples of  
different treatments were subjected to total volatile fatty acid  
under a weak alkaline condition at 100°C to produce  
allantoin acid which is further degraded to urea and  
glyoxylic acid in weak acid solution. The glyoxylic acid is  
then reacted with phynylhydrazine hydrochloride to produce  
a phenyldrazone of the acid. The product then forms an  
unstable chromophore with potassium ferricyanide which is  
read at 522 nm.  
(
3
TVFAs) production, rumen NH -N production, rumen pH,  
Using 15 millimeters (ml) tubes, 1 ml diluted urine sample  
previously collected and stored at 4°C was thawed at room  
temperature. The sample was further diluted with 5ml  
distilled water and 1 ml of 0.5 M NaOH, then incubated in  
boiling water bath for 7 min. After cooling in cold water  
bath, 1 ml of 0.5 M HCl and 1 ml of 0.023 M  
phenylhydrazine solution were added to each test tube and  
re-incubated in boiling water bath for another 7 min. After  
cooling in icy ethanol, 3 ml of cooled (-20°C) 11.4 N  
concentrated HCl and 1 ml of 0.05 M potassium ferricyanide  
were quickly added to the samples. After mixing, the  
solution was allowed to stand for 20 min. Absorbance at 522  
nm was determined using the Shimadzu model of UV-VIS  
temperature and urine volume for estimation of purine  
derivatives analysis. Likewise, associations of total VFAs,  
NH -N, purine derivatives estimates, DM, CP and NDF  
3
digestibility with the rest of rumen condition and  
digestibility parameters were tabulated.  
2
.1 Laboratory Analysis  
Evaluation of in situ rumen fluid analyses in rumen-  
cannulated goats fed with different dietary fats on the  
concentrate were done through different biochemical  
analysis of different parameters gathered, rumen pH,  
1147  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1146-1156  
spectrophotometer (Shimadzu). Concentration of allantoin  
from urine samples was estimated from a calibration curve  
using allantoin (Sigma-Aldrich) as standard.  
protein, neutral detergent fiber and acid detergent fiber) were  
collected and tabulated using the following.  
Total urine excretion of allantonic acid was calculated by  
considering in the calculation the dilution factors and by  
multiplying the allantoin concentration to the average daily  
urine excretion of the animal. Computed values were  
converted as excretion considering that 85% of the total  
purine derivatives were excreted in the urine of cattle and  
water buffaloes in the form of allantoin (1). Total purine  
derivative excretion values were subjected to ANOVA for  
Crossover Design.  
Yi= a + bx + e  
Where: a = intercept, b = slope, e= error, x =  
dependent variable; Y = another dependent  
variable  
3
Result and Discussion  
The following relationship of rumen condition (VFAs,  
RT, pH, PD, NH3-N) and apparent nutrient digestibility  
MC, CP, NDF, ADF) of goat supplemented with different  
dietary fats.  
(
2.6 Rumen Ammonia-N Analysis  
Ammonia nitrogen (NH -N) concentration was measured  
using ammonia electrode (Model 95-12) in conjunction with  
an Orion Ion Analyzer (Model 501 pH/mV meter).  
3
3
.1 Correlation Values of Volatile Fatty Acids with other  
Parameters on Rumen Condition and Apparent  
Digestibility  
Simple and complex carbohydrates (fiber) are digested by  
rumen microbes and converted into volatile fatty acids. The  
volatile fatty acids, which consist mainly of acetic,  
propionic, and butyric acids, are the primary energy source  
for ruminants. Volatile fatty acid production can be  
influenced by different factors that could affect the total  
ruminant production.  
2
.7 Research Design and Lay-out  
Three mature goats surgically fitted with rumen cannula  
were used. The experimental animals were in good body  
condition prior to and throughout the duration of the study.  
Complete Randomized Design (CRD) was used to evaluate  
the effect of different dietary treatments. Five dietary  
treatments were used in the study with dietary treatment  
combinations as follows.  
The relationship of volatile fatty acids on different rumen  
condition parameters and apparent nutrient digestibility  
(
DM, CP, NDF, and ADF) as presented in Figure 1. Data  
2
.8 Treatment Combinations  
The rumen-cannulated goats were supplemented with  
showed that VFA have moderately negative relationship on  
rumen temperature, NH3-N and purine derivatives. On the  
other hand, negatively low relationship was observed on  
rumen pH and all apparent nutrient digestibilities (DM, CP,  
NDF and ADF).  
different levels of two dietary fat sources with dietary  
treatment combinations as follows.  
Treatment 1  
Treatment 2  
Treatment 3  
Treatment 4  
Treatment 5  
- Control  
- 3% Virgin Coconut Oil (VCO)  
- 5% Virgin Coconut Oil (VCO)  
- 3% Lard  
3
.2 Correlation Values of Rumen Ammonia Nitrogen with  
other Parameters on Rumen Condition and Apparent  
Digestibility  
- 5% Lard  
Ruminal ammonia-N concentration often serves as an  
indicator of N-status for microbial production. Roffler and  
Satter (14, 15) have presented an equation to predict ruminal  
ammonia from intake protien and dietary energy density.  
Ammonia concentration represents the residual balance  
between input and extraction from the ammonia pool in the  
rumen.  
Table 1: Treatment assignment of goats for the entire  
duration of the study  
The relationship of rumen ammonia nitrogen on different  
rumen condition parameters and apparent nutrient  
digestibility (DM, CP, NDF, and ADF) as presented in  
Figure 2. Data showed that NH3-N have positively low  
association with apparent nutrient digestibility (DM, CP,  
NDF and ADF). However, very low to moderately negative  
relationship were observed on temperature, VFA and purine  
derivatives. While, negatively high relationship was  
observed in rumen pH. The result suggests that there were  
decrease of 52% in rumen pH upon increase of 1.0 mg/l of  
NH3-N.  
Animal 1  
Animal 2  
Animal 3  
T3  
T2  
T5  
T2  
T3  
T4  
T5  
T4  
T3  
T4  
T1  
T1  
T1  
T5  
T2  
2
.9 Statistical Analysis  
The statistical analysis was carried out using Statistical  
Analysis System (SAS® for windows© v.9.1.3. sp.4)  
software (17). The result of significant at P<0.05) were  
presented. The relationship of rumen condition (temperature,  
pH, total volatile fatty acids, NH3-N, and purine derivatives)  
data and nutrient apparent digestibility (dry matter, crude  
1148  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1146-1156  
1
0.0  
10.0  
8.0  
8
6
4
2
0
.0  
.0  
.0  
.0  
.0  
10.0  
8
6
4
2
0
.0  
.0  
.0  
.0  
.0  
6.0  
4.0  
y = 48.83x + 4.592  
R² = 0.36627  
2.0  
0.0  
y = -1.650x + 7.994  
R² = -0.45048  
y = -0.222x + 7.652  
R² = -0.04240  
0
.00  
0.05  
0.10  
0.0  
1.0  
2.0  
5.0  
6.0  
7.0  
pH  
NH3-N (Mg/l)  
PD (Mg/l)  
1
0.0  
1
0.0  
10.0  
8.0  
8
.0  
8
6
4
2
0
.0  
.0  
.0  
6.0  
6.0  
4.0  
2.0  
0.0  
4.0  
.0 y = -0.000x + 6.307  
2.0 y = -0.007x + 6.786  
y = 0.002x + 6.068  
R² = 0.01571  
R² = -0.00494  
R² = -0.05982  
.0  
0.0  
0.0  
50.0  
100.0  
0.0  
50.0  
100.0  
0.0  
50.0  
100.0  
ADM (%)  
ACP (%)  
ANDF (%)  
1
0.0  
8
6
4
2
0
.0  
.0  
.0  
.0  
.0  
y = -0.005x + 6.575  
R² = -0.04565  
0.0  
50.0  
100.0  
AADF (%)  
Figure 1: Pearson correlation coefficients of volatile fatty acids with rumen condition and digestibility of mature female goats  
3
.3 Correlation Values of Purine Derivatives with other  
can be calculated from the amount of purine absorbed which  
is estimated from urinary PD excretion. It is simple since it  
will just require total collection of urine and considered non-  
invasive since it does not require any surgical preparation of  
the animal (1). The relationship of purine derivative on  
different rumen condition parameters and apparent nutrient  
digestibility (DM, CP, NDF, and ADF) as presented in figure  
3. Data showed that purine derivatives have moderately  
positive association with apparent nutrient digestibility (CP,  
NDF and ADF) but moderately negative relationship  
observed with VFA and NH3-N. The rumen temperature and  
pH as well as dry matter apparent digestibility showed  
negatively low relationship with purine derivatives.  
Parameters on Rumen Condition and Apparent  
Digestibility  
The effect of particular diets on microbial protein  
production can be estimated by the method based on  
measurement of purine derivatives (PD) in urine. Nucleic  
acids leaving the rumen are essentially of microbial origin.  
This is because ruminant feeds usually have a low purine  
content, most of which undergo extensive degradation in the  
rumen as the result of microbial fermentation. Absorbed  
nucleic acid purines are degraded and excreted in the urine  
as their derivatives, hypoxanthine, xanthine, uric acid and  
allantoin. The excretion of the PD is directly related to the  
purine absorption. With the knowledge of the purine-N:  
total-N ratio in microbial biomass, microbial N absorption  
1149  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1146-1156  
0
0
0
0
0
0
0
0
.07  
.06  
.05  
.04  
.03  
.02  
.01  
.00  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
y = -0.020x + 0.163  
R² = -0.52418*  
y = -0.002x + 0.107  
R² = -0.41781  
0
0
.01  
.00  
0
.0  
10.0  
20.0  
30.0  
40.0  
5.5  
6.0  
6.5  
7.0  
Temperature (°C)  
pH  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
y = -0.008x + 0.043  
R² = -0.31381  
y = 0.002x + 0.016  
R² = 0.36627  
0
.00  
0.50  
1.00  
1.50  
2.00  
0.0  
5.0  
10.0  
VFA (Mg/l)  
PD (Mg/l)  
0
0
0
0
0
0
0
0
.07  
.06  
.05  
.04  
.03  
.02  
.01  
.00  
0
0
0
.07  
.06  
.05  
0.04  
0.03  
0.02  
0.01  
y = -0.000x + 0.042  
R² = -0.10053  
y = 2E-05x + 0.032  
R² = 0.02620  
0
.00  
0
.00  
50.00  
100.00  
0
.00  
50.00  
100.00  
ADM (%)  
ACP (%)  
0
0
0
0
0
0
0
0
.07  
.06  
.05  
.04  
.03  
.02  
.01  
.00  
0.07  
0.06  
0.05  
0.04  
0.03  
0
0
0
.02  
.01  
.00  
y = 4E-05x + 0.031  
R² = 0.03377  
y = -6E-05x + 0.037  
R² = -0.06911  
0
.00  
50.00  
100.00  
0
.00  
50.00  
100.00  
ANDF (%)  
AADF (%)  
Figure 2: Pearson correlation coefficients of NH3-N with rumen condition and digestibility of mature female goats  
1150  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1146-1156  
2
1
1
0
0
.0  
.5  
.0  
.5  
.0  
2.0  
1.5  
1.0  
0
0
.5  
.0  
y = 0.156x + 0.069  
R² = 0.10843  
y = -0.011x + 1.366  
R² = -0.04743  
5
.50  
6.00  
6.50  
7.00  
0
.00  
10.00  
20.00  
30.00  
40.00  
pH  
Temperature (C)  
2
.0  
2.0  
1.5  
1.0  
0.5  
0.0  
1
1
0
0
.5  
.0  
.5  
.0  
y = -0.122x + 1.820  
R² = -0.45048  
y = -11.46x + 1.445  
R² = -0.31381  
0
.00  
5.00  
10.00  
0.00  
0.02  
0.04  
0.06  
0.08  
VFA (Mg/l)  
NH3-N (Mg/l)  
2
1
1
0
0
.0  
2.0  
1.5  
1.0  
0.5  
0.0  
.5  
.0  
.5  
.0  
y = 0.016x - 0.136  
R² = 0.49071  
y = 0.001x + 0.955  
R² = 0.03366  
0
.00  
50.00  
100.00  
0.00  
50.00  
100.00  
ADM (%)  
ACP (%)  
2
1
1
1
1
1
0
0
0
0
0
.0  
.8  
.6  
.4  
.2  
.0  
.8  
.6  
.4  
.2  
.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
y = 0.019x - 0.345  
R² = 0.43907  
y = 0.015x + 0.125  
R² = 0.48291  
0.00  
50.00  
100.00  
0.00  
50.00  
100.00  
ANDF (%)  
AADF (%)  
Figure 3: Pearson correlation coefficients of purine derivatives with rumen condition and digestibility of mature female goats  
1151  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1146-1156  
1
00.0  
100.0  
80.0  
60.0  
40.0  
8
6
4
2
0.0  
0.0  
0.0  
0.0  
y = -11.11x + 144.2  
20.0  
y = -1.739x + 121.5  
R² = -0.30089  
R² = -0.31715  
0.0  
0.0  
0.0  
10.0  
20.0  
30.0  
40.0  
5.5  
6.0  
6.5  
7.0  
Temperature (°C)  
pH  
1
00.0  
100.0  
80.0  
60.0  
40.0  
20.0  
8
6
4
2
0.0  
0.0  
0.0  
0.0  
y = -0.032x + 74.4  
R² = -0.00494  
y = -89.53x + 77.23  
R² = -0.10053  
0.0  
0.0  
0.00  
0.02  
0.04  
0.06  
0.08  
0.0  
5.0  
10.0  
VFA (Mg/l)  
NH3-N (Mg/l)  
1
00.0  
100.0  
80.0  
60.0  
40.0  
8
6
4
2
0.0  
0.0  
0.0  
0.0  
y = 0.811x + 73.33  
R² = 0.03366  
20.0  
y = 0.090x + 67.54  
R² = 0.11167  
0.0  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
50.0  
100.0  
PD (Mg/l)  
ACP (%)  
1
00.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
8
6
4
2
0.0  
0.0  
0.0  
0.0  
y = 0.148x + 63.63  
R² = -0.13505  
y = 0.094x + 68.55  
R² = 0.11956  
0.0  
0.0  
50.0  
100.0  
0.0  
50.0  
100.0  
ANDF (%)  
AADF (%)  
Figure 4: Pearson correlation coefficients of apparent dry matter with rumen condition and digestibility of mature female goats  
1152  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1146-1156  
1
00.0  
100.0  
80.0  
60.0  
40.0  
8
6
4
2
0.0  
0.0  
0.0  
0.0  
y = -1.693x + 119.6  
R² = -0.23762  
20.0  
y = 10.79x + 5.487  
R² = 0.24980  
0.0  
0.0  
0.0  
10.0  
20.0  
30.0  
40.0  
5.50  
6.00  
6.50  
7.00  
Temperature (°C)  
pH  
1
00.0  
100.0  
80.0  
60.0  
8
6
4
2
0.0  
0.0  
0.0  
0.0  
4
0.0  
20.0  
.0  
y = -0.493x + 76.56  
R² = -0.05982  
y = 28.78x + 72.50  
R² = 0.02620  
0
0.0  
0.00  
0.02  
0.04  
0.06  
0.08  
0.0  
5.0  
10.0  
VFA (Mg/l)  
NH3-N (Mg/l)  
1
00.0  
100.0  
80.0  
60.0  
8
6
4
2
0.0  
0.0  
0.0  
0.0  
4
2
0.0  
0.0  
y = 0.137x + 63.28  
R² = 0.11167  
y = 14.85x + 57.80  
R² = 0.49071  
0.0  
0.0  
0.0  
50.0  
100.0  
0.0  
0.5  
1.0  
1.5  
2.0  
PD (Mg/l)  
ADM (%)  
1
00.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
8
6
4
2
0.0  
0.0  
0.0  
0.0  
y = 1.229x - 13.88  
R² = 0.90505**  
y = 0.863x + 21.77  
R² = 0.88834**  
0.0  
0.0  
50.0  
100.0  
0.0  
50.0  
100.0  
ANDF (%)  
AADF (%)  
Figure 5: Pearson correlation coefficients of apparent crude protein with rumen condition and digestibility of mature female goats  
1153  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1146-1156  
9
8
7
6
5
4
3
2
1
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
y = -1.105x + 101.1  
R² = -0.21084  
y = 0.272x + 69.32  
R² = 0.00856  
0
.0  
0.0  
10.0  
20.0  
30.0  
40.0  
5.5  
6.0  
6.5  
7.0  
Temperature (°C)  
pH  
9
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
8
7
6
5
4
3
2
1
y = 0.095x + 70.44  
R² = -0.01571  
y = 27.30x + 70.11  
R² = 0.03377  
0
.0  
0.0  
5.0  
10.0  
0.00  
0.02  
0.04  
0.06  
0.08  
VFA (Mg/l)  
NH3-N (Mg/l)  
9
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
90.0  
8
7
6
5
4
3
2
1
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
y = 0.122x + 61.95  
R² = 0.13505  
y = 9.782x + 60.71  
R² = 0.43907  
0
.0  
0
.0  
0.5  
1.0  
1.5  
2.0  
0.0  
50.0  
100.0  
PD (Mg/l)  
ADM (%)  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
y = 0.706x + 28.73  
R² = 0.98764**  
y = 0.666x + 22.09  
R² = 0.90505**  
0.0  
0.0  
0
.0  
50.0  
100.0  
0.0  
50.0  
100.0  
ACP (%)  
AADF (%)  
Figure 6: Pearson correlation coefficients of apparent neutral detergent fiber with rumen condition and digestibility of mature female goats  
1154  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1146-1156  
3
.4 Correlation Values of Dry Matter Digestibility with  
association between rumen pH and NH3-N. Moderately  
positive associations were observed between purine  
derivatives and apparent nutrient digestibility (CP and  
ADF). However, moderately negative relationship between  
other Parameters on Rumen Condition and Apparent  
Digestibility  
Evaluating relationship of different parameters was  
analyzed in order to evaluate on how a specific parameters  
influenced the other parameters. This could provide idea to  
consider other parameters when research was conducted.  
The relationship of apparent dry matter digestibility on  
different rumen condition parameters (temperature, pH,  
NH3-N, purine derivatives and VFA) and apparent nutrient  
digestibility (CP, NDF, and ADF) as presented in Figure 4.  
Data showed that apparent DM digestibility have moderately  
positive association with the rest of apparent nutrient  
digestibility (CP, NDF and ADF) and negatively low  
association with the rest of rumen condition parameters  
VFA and purine derivatives and between NH -N and rumen  
3
temperature.  
5
Recommendation  
Due to positively high associations in all nutrient apparent  
digestibility parameters and between purine derivatives and  
apparent nutrient digestibility, fat supplementation indeed is  
a good feeding regimen to improved nutrient digestibility  
and hence recommended for utilization at farmers level. On  
the other hand, due to negatively moderately to high  
association between rumen pH and NH  
3
-N, VFA and purine  
(
temperature, pH, NH3-N, purine derivatives and VFA).  
derivatives and NH -N and rumen temperature, rumen  
3
ecology must be acidic (pH of 4-6), to reduced production of  
ammonia nitrogen and other GHG gases that causes climate  
change and global warming.  
3
.5 Correlation Values of Crude Protein Digestibility with  
other Rumen Fluid Analyses and Apparent Digestibility  
The correlation of apparent crude protein digestibility  
with other parameters on goat supplemented with different  
dietary fats (Figure 5) showed negatively low relationship  
with rumen temperature and VFA. However, positively low  
to moderate relationship were observed on rumen pH, NH3-  
N, apparent dry matter digestibility and purine derivatives.  
Apparent crude protein digestibility was observed  
positively high association with apparent neutral and acid  
detergent digestibility. The data showed that and increase of  
References  
1
.
Chen XB, Gomes MJ. Estimation of microbial protein supply  
to sheep and cattle based on urinary excretion of purine  
derivatives-an overview of the technical details. Rowett  
Research Institure; 1992.  
2. Chesworth J. Ruminant Nutrition Dietary Functions, 1992:93-  
9.  
9
3
.
Coffey L, Hale M, Wells A. Goats: Sustainable Production  
Overview. Livestock Production Guide. NCAT Agriculture  
Specialists. IP248, 2004.  
1% CP digestibility, there were 90 and 88% probability to  
increase in neutral and acid detergent digestibility,  
respectively.  
4
.
Ismail AI, Arafat SM. Quality Characteristics of High-Oleic  
Sunflower Oil Extracted from Some Hybrids Cultivated Under  
Egyptian Conditions. Journal of Food Technology Research,  
2014;1(2):73-83.  
3.6 Correlation Values of Nuetral Detergent Fiber  
Digestibility with other Rumen Fluid Analyses and  
Apparent Digestibility  
5. Kanwar SS, Devi S. Thermostable xylanases of microbial  
origin: recent insights and biotechnological potential. The  
International Journal of Biotechnology, 2012;1(1):1-20.  
Detergent fiber analysis indicates the concentration of  
fiber (hemicelluloses, cellulose, lignin and silica) in a  
sample. Acid detergent fiber indicates the concentration of  
cellulose, lignin and silica which compose the residue with  
hemicelluloses (neutral detergent fiber) dissolved in the  
ADF solution.  
The relationship of NDF digestibility on different rumen  
condition parameters (temperature, pH, NH3-N, purine  
derivatives and VFA) and apparent nutrient digestibility  
6
.
Kareem SD, Olusegun AK, Samuel OO. The Effect of Co2  
Emission and Economic Growth on Energy Consumption in  
Sub Sahara Africa. International Journal of Sustainable Energy  
and Environmental Research, 2017;6(1):27-35.  
7. Kaygisiz F, Sezgin FH. Forecasting Goat Milk Production in  
Turkey Using Artificial Neural Networks and Box-Jenkins  
Models. Animal Review, 2017;4(3):45-52.  
8
.
Kazora AS, Mourad KA. Assessing the National Sanitation  
Policy in Rwanda. Review of Environment and Earth Sciences,  
2
018;5(2):55-63.  
(
DM, CP and ADF) as presented in Figure 6. Data showed  
9
.
Khan I. The Impact of Land Use on Spatial Variations of  
Begging in District Lahore_Pakistan. International Journal of  
Geography and Geology, 2018;7(2):27-34.  
that apparent NDF digestibility negatively low relationship  
on temperature and VFA. However, low to moderately  
positive relationship were observed on apparent DM  
digestibility, rumen pH, NH3-N and purine derivatives.  
Perfectly positive relationship was observed on ADF  
digestibility. This means that, an increase of 1 % in apparent  
NDF digestibility, there is 98% possibility on increase in  
apparent ADF digestibility.  
10. Malinga NG, Masuku MB, Raufu MO. Comparative analysis of  
technical efficiencies of smallholder vegetable farmers with and  
without credit access in swazil and the case of the Hhohho  
region. International Journal of Sustainable Agricultural  
Research, 2015;2(4):133-145.  
1
1. Mohammed U, Olaleye RS, Umar IS, Ndanitsa MA, Jibrin S.  
Farmers Assessment of the Training and Visit Extension  
System in Niger State: Evidence from Fadama Ii & Iii in  
Mokwa Local Government Area of Niger State, Nigeria.  
International Journal of Sustainable Agricultural Research,  
4
Conclusion  
Generally, supplementing dietary fats to the concentrate  
2
015;2(4):111-119.  
of goat showed decrease protozoa population that ingest  
rumen bacteria resulted to increase digestibility on the  
supplemented groups which can be associated to the  
positively high associations in all nutrient apparent  
digestibility parameters while there were negatively high  
1
2. Mukadasi B. Mixed Cropping Systems for Sustainable  
Domestic Food Supply of the Smallholder Farming  
Communities in Nakasongola District, Central Uganda.  
Canadian Journal of Agriculture and Crops, 2018;3(1):42-54.  
1155  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1146-1156  
1
1
3. Navaeefard A, Babaee O, Radmanesh H. Optimal sizing of  
hybrid systems and economical comparison. International  
Journal of Sustainable Energy and Environmental Research,  
2
017;6(1):1-8.  
4. Roffler RE, Satter LD. Relationship Between Ruminal  
Ammonia and Nonprotein Nitrogen Utilization by Ruminants.  
I. Development of a Model for Predicting Nonprotein Nitrogen  
Utilization  
Science, 1975;58(12):1880-1888.  
5. Roffler RE, Satter LD. Protein Requirement and Non Protein  
Nitrogen Utilization. Journal of Dairy  
Science, 1975;58(12):1880-1889.  
6. Roxas DB. Animal Feeds and Feeding: With Emphasis on the  
Tropics. pp.1. University of the Philippines Los Baños, Laguna,  
Philippines: University Publication Office, 2006.  
by  
Cattle1. Journal  
of  
Dairy  
1
1
1
1
7. SAS institute Inc., 2003. SAS User’s Guide, Version 9.1,  
second ed. SAS Institute Inc. Cary, NC.  
8. Stern MD, Bach A, Calsamiglia S. New concepts in protein  
nutrition of ruminants. In21st Annual Southwest Nutrition &  
Management Conference 2006 Feb 23 (pp. 45-62).  
1156