Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 874-877  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Comparative Analysis of Biologically Active  
Substances in Trifolium Pratense and Trifolium  
Repens Depending on the Growing Conditions  
,
Alexander L. Mikhailov*, Olga A. Timofeeva Uliana A. Ogorodnova, Nikita S. Stepanov  
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia  
Received: 05/08/2019  
Accepted: 20/11/2019  
Published: 20/12/2019  
Abstract  
In our studies, we studied the content of pharmaceutically promising biologically active substances, namely phenolic  
compounds, flavonoids, ascorbic acid, provitamin A (b-carotene) in plants of meadow clover and creeping clover (Trrifolium  
repens). The effect of the plant growth site on the content of the studied compounds was also studied. The obtained data showed  
that the content of biologically active compounds in white clover (Trifolium repens L.) is similar to those of red clover (Trifolium  
pratense L.) and white clover is a source of a whole set of pharmacologically active compounds, as well as red clover. The  
influence of the place of plant growth on the content of the studied compounds was revealed, which may be important for solving  
production problems. For example, in clover plants of both species studied, the flavonoid content collected in meadow steppes is  
higher than in other places. Regarding vitamin C, a significant content is shown for plants from floodplain meadows, also for  
both species. The content of provitamin A and phenolic compounds, according to our data, depended more on the type of clover.  
So the content of provitamin A was found to be higher in white clover, and phenolic compounds - in red clover.  
Keywords: Red clover, White clover, Biologically active substances, Favonoids, Isoflavonoids, Phenolic compounds  
1
therapeutic properties of clover are due to the content in the  
1
Introduction  
aerial part of Trifolium pratense of a number of phenolic  
compounds, including flavonoids, in particular, quercetin,  
rutin (3, 5). In addition, isoflavonoids are of particular  
importance. Also, in the aerial part of red clover, depending  
on the place of growth, isoflavonoids are represented by  
biochanin A, genistein, ononin, formononetin, prunetin,  
daidzein and their derivatives (3, 6). In this regard,  
Trifolium pratense L. attracts the attention of  
pharmacologists for experimental studies. Creeping Clover  
Trifolium repens L., a no less widespread species compared  
to meadow clover, has not been practically studied,  
although it can also be of biological value. In addition, it  
should be borne in mind that the phytochemical  
composition of plants largely depends on various  
environmental factors.  
Throughout the world, interest in herbal medicine is  
increasing every year, including in our country. The  
process of growing medicinal plant materials is  
economically viable, which ultimately has a positive effect  
on the cost of production and has a slight negative impact  
on the environment.  
The most common plant in our country, characteristic  
of meadow and pasture biocenoses, is considered clover  
Trifolium L.), which genus includes about 65 species (1).  
In total, this genus has about 300 species. Red meadow  
Trifolium pratense L. is considered the most studied  
species, which is an excellent fodder and honey plant, and  
therefore has widespread use in agriculture (2, 19).  
There is a significant amount of data in the literature  
that the herb Trifolium pratense L. has a whole set of  
biologically active substances (BAS): triterpenoids,  
sesquiterpenoids, carotenoids, coumarins, cumestanes,  
flavonoids, etc. (3). In folk medicine, Trifolium pratense  
has long been used as a medicine for inflammatory  
processes in the bladder, for various bleeding, and as a  
diuretic for edema of cardiac and renal origin (4, 18). These  
(
The objective of this work is to show the possibility of  
using white clover (Trrifolium repens L.) as a source of  
plant material containing biologically active substances.  
2
Methods  
The objects of our research were red clover (Trifolium  
prätense L.) and white clover (Trifolium repens L.). In  
order to identify the influence of the plant growth on the  
content of biologically active substances, plant material  
was collected in the steppe, which is characterized by water  
Corresponding author: Alexander L. Mikhailov, Kazan  
Federal  
University,  
Kazan,  
Russia.  
E-mail:  
almihailov@bk.ru. Tel.: 89274455173.  
874  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 874-877  
deficiency, in a meadow (in the floodplain of the river),  
where there is plenty of moisture and lighting, and forest  
edge, where there is also a moisture deficit and lighting.  
For experiments, the aboveground parts of plants were  
collected and dried to constant weight.  
The quantitative content of ascorbic acid in the aerial  
part of the studied plants was determined using potassium  
hexacyanoferrate. Dry plant material weighing 50 mg was  
triturated using 1.5 ml of 0.1 M citrate buffer (pH 3.69),  
then transferred to eppendorf tubes and heated in a water  
bath (20 min at 40°C). After it was centrifuged for 5 min at  
ml volumetric flask, was used. The content of the total  
flavonoids in was converted to absolutely dry raw materials  
and quercetin in percent was calculated by the formula.  
Identification of flavonoids was carried out by high  
performance liquid chromatography (HPLC), which is  
characterized by high sensitivity and accuracy, allowing to  
identify the composition of the studied group of  
biologically active substances. The peaks of compounds  
detected in the chromatogram were identified using  
working standards (WS) of quercetin.  
1
2500 g. The supernatant was used for further reactions.  
3
Results and Discussion  
The optical density was measured at a wavelength of 680  
nm relative to the control solution.  
Trifolium prаtense grows in moderately humid and  
upland meadows, in forests and forest edges, along river  
valleys and banks, on mountain meadow slopes, in fields,  
along field roads. The chemical composition and medicinal  
properties are studied relatively well. It contains various  
aromatic compounds, essential oils, fatty acids, steroids,  
coumarins, flavonoids and many other compounds of  
pharmacological value.  
White clover grows in floodplain meadows, in the  
steppes, in forests, along river banks, on the side of roads,  
in wastelands. There is relatively little information about  
the chemical composition of clover in the literature.  
Perhaps that is why this type of clover is not popular in  
pharmacy, unlike red clover.  
The vitamin complex of red clover Trifolium pratese is  
represented by a wide variety of vitamins. There are  
vitamins with a high content, namely vitamins of group B,  
C, E, K, as well as provitamin A or β-carotene. The above  
vitamins are highly important for the human body,  
especially in childhood. As shown by our studies of  
provitamin A, it was most found in Trifolium repens, which  
is consistent with the literature (7,11,15,16) and in all three  
locations (Fig. 1). It is also important to note that of the  
three places of growth, plants collected in the steppe  
meadows have the highest rate.  
The content of provitamin A was determined by the  
number of carotenoids isolated from the aerial parts of the  
studied plants. To obtain an acetone extract, a sample of  
dry plant material (100 mg) was ground with 2 ml of  
acetone in a porcelain mortar. The extract was filtered  
through a paper filter, the extraction was repeated in small  
portions of the solvent. Then the filtrate was adjusted to 25  
ml and used for determination on a spectrophotometer at  
wavelengths of 662, 644, 440.5 nm. The pigment  
concentration was calculated using the Rebbelen formula.  
To determine the total content of soluble phenolic  
compounds, they were extracted with water from the dried  
ground part of plants at the rate of 1.5 ml of distilled water  
per 50 mg of material for 45 minutes at a temperature of  
70°C. The supernatant was centrifuged to separate from the  
precipitate.  
113 μl of Folin-Denis reagent was added to 113 μl of  
the aqueous extract and stirred, after 3 minutes 180 μl of  
NaCHO3 solution (10%) was poured, mixed, and 1.8 ml of  
water was added. After 45 minutes, the solution was  
centrifuged at 16 thousand rpm for 2 minutes. Then, the  
optical density in the supernatant was determined at a  
wavelength of 725 nm. For a control solution, 113 μl of  
solvent was used instead of the extract.  
In order to determine the amount of flavonoids in terms  
of quercetin, the raw materials were crushed to particles  
with a diameter of 1 mm. Then the raw material was placed  
in a 50 ml flask weighing 0.2 g, 30 ml of 90% alcohol  
containing 1% concentrated hydrochloric acid was added.  
The flask was heated in a boiling water bath for 30 minutes  
using a reflux condenser. The flask was then cooled to  
room temperature and filtered through a paper filter into a  
50 ml volumetric flask. The extraction was repeated once  
again in the above manner.  
The extracts were filtered through the same filter into  
the same volumetric flask, the filter was washed with 90%  
alcohol and the filtrate volume was adjusted with 90%  
alcohol to the mark (solution A).  
For spectrophotometry, 2 ml of solution A was placed  
in a 10 ml volumetric flask, 1 ml of a 1% solution of  
aluminum chloride in 95% alcohol was added, and the  
solution volume was adjusted to the mark with 95%  
alcohol. After 20 minutes, the optical density of the  
solution was measured on a spectrophotometer at a  
wavelength of 430 nm in a cell with a layer thickness of 10  
mm. As a comparison solution, a solution consisting of 1  
ml of solution A, brought 95% alcohol to the mark in a 10  
Figure 1: The content of provitamin A in plants Trifolium pratеnse  
and Trifolium repens from different places of growth  
Perhaps this is due to the fact that carotenoids perform  
a
protective function, protecting various organic  
substances, primarily chlorophyll molecules, from  
destruction in the light during photooxidation, since plants  
in the steppe zone are more susceptible to direct light rays.  
Ascorbic acid has strong antioxidant properties, thereby  
acting as an important component of the human body's  
immune system. Together with bioflavonoids, tocopherol  
and retinol, ascorbic acid acts as  
a direct-acting  
875  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 874-877  
bioantioxidant. This complex of compounds with  
antioxidant properties causes a low level of free radical  
states of lipids and biopolymers in the cell. Vitamin C and  
bioflavonoids with simultaneous exposure enhance the  
effect and complement each other, in connection with  
which, they often occur together in dosage forms.  
The results of the study of vitamin C content were  
identical for both types of clover (Fig. 2). In this case, the  
maximum values were found in plants from floodplain  
meadows. There is evidence that the accumulation of  
vitamin C in plants is significantly affected by the  
conditions of their growth. In plants of the northern regions,  
the content of ascorbic acid is much higher, compared with  
plants growing in the southern regions. Also, the type of  
soil on which plants grow affects the content of vitamin C.  
It has been shown that on heavy soils the synthesis of  
ascorbic acid in plants is weaker than on light soils (8, 13).  
The maximum value of the studied parameter for  
meadow clover was found in raw materials from a  
floodplain meadow, and the minimum value was found  
from the forest edge, which is opposite to the data obtained  
for creeping clover. Possibly, these results can be explained  
by the fact that most of the secondary metabolites are  
represented by phenolic compounds, which are formed in  
large quantities when plants are exposed to stress factors.  
The phenolic compounds contained in red clover are  
mostly represented by flavonoids. The chemical structure  
of flavonoids presents a phenylpropane skeleton with the  
formula C6-C3-C6. These compounds are interesting in  
that they exhibit diverse biological activity (10, 12). This is  
probably due to the presence of an oxygen atom in the ring  
of these compounds.  
Given the wide range of pharmacological effects of  
flavonoids, namely immunomodulatory, antispasmodic,  
anti-stress, capillary-strengthening, anti-toxic, anti-  
atherosclerotic, anti-carcinogenic, etc., the value of  
Trifolium pratense as a medicinal plant becomes clear.  
Among the huge variety of Trifolium prenens flavonoids,  
some of them can be noted: flavones (apigenin, baicalein  
tricetin, and luteolin), isoflavones (biohanin-A-7-glucoside,  
prinetin, formononetin, and ononin), and flavonols (rutin,  
kempferol, isoquercetin, etc.) (14).  
Our data on the study of flavonoid content depending  
on the place of growth were approximately similar for each  
of the studied clover species (Fig. 4). The highest values  
were obtained from the raw materials of meadow steppes,  
and the lowest - from the edges of the forest. If neglecting  
the significance of differences between the variants, for the  
studied compound, namely for flavonoids, white clover is  
not much inferior to red clover.  
Figure 2: The content of vitamin C in plants Trifolium pratеnse and  
Trifolium repens from different places of growth.  
Phenolic compounds of plants are usually the products  
of secondary metabolism, which are represented by a large  
group differing in structure, chemical properties and  
biological activity. Phenols in plants are found in all  
organs, especially a significant concentration is found in  
actively functioning organs. The content and concentration  
of phenolic compounds also depends on the type of plant.  
Plants of the same genus can differ greatly in the content  
and concentration of phenolic substances and in their  
qualitative composition.  
Plants of Trifolium pratens compared to Trifolium  
repens showed a higher total content of soluble phenolic  
compounds (Fig. 3). Apparently, this indicator depends on  
the type of plants, as in the case of provitamin A, since the  
results are higher in all three locations.  
Figure 4: The content of flavonoids in terms of quercetin in plants  
Trifolium pratеnse and Trifolium repens from different places of  
growth.  
4
Summary  
The obtained data showed that the content of  
biologically active compounds in white clover (Trifolium  
repens L.) is similar to those of red clover (Trifolium  
pratense L.). The influence of the place of plant growth on  
the content of the studied compounds was revealed, which  
may be important for solving production problems. For  
example, in clover plants of both species studied, the  
flavonoid content collected in meadow steppes is higher  
than in other places. Regarding vitamin C, a significant  
content is shown for plants from floodplain meadows, also  
Figure 3: The content of phenolic compounds in plants Trifolium  
pratеnse and Trifolium repens from different places of growth.  
876  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 874-877  
for both species. The content of provitamin A and phenolic  
compounds, according to our data, depended more on the  
type of clover. So the content of provitamin A was found to  
be higher in white clover, and phenolic compounds - in red  
clover.  
11. Sajjadifar S, Hamidi H, Pal K. Revisiting of Boron Sulfonic  
Acid Applications in Organic Synthesis: Mini-Review. Journal  
of Chemical Reviews. 2019 Jan 1;1(1, pp. 1-77.):35-46.  
1
2. Vinodhkumar G, Ramya R, Potheher I, Cyrac Peter A.  
Reduced graphene oxide based on simultaneous detection of  
neurotransmitters. Progress in Chemical and Biochemical  
Research. 2018 Oct 1;1(1, pp. 1-59):40-9.  
5
Conclusions  
13. Rabah MA. Thermal dislocation and physical changes during  
preparation of active silicate of group 2 Periods 3, 4 and 5  
elements from spent fines of finishing crystal glass. Advanced  
Journal of Chemistry-Section A (Theoretical, Engineering and  
Applied Chemistry). 2019 Apr 1;2(4, pp. 266-385):283-95.  
I. Sheikhshoaie I, Tohidiyan Z. A Novel Facile Synthesis Route  
for Nano-sized Zn (II) Schiff base Complex and Nano-sized  
ZnSe/ZnO. Chemical Methodologies. 2019 Jan 1;3(1. pp. 1-  
144):30-42.  
14. Haq Bhat IU, Yi YS. Green synthesis and antibacterial activity  
of cadmium sulfide nanoparticles (CdSNPs) using Panicum  
sarmentosum. Asian Journal of Green Chemistry. 2019 Oct  
1;3(4, pp. 418-549):455-69.  
The results of analysis of the obtained data of the study  
of the phytochemical composition of two types of clover  
show that white clover is a potential source of a number of  
pharmacologically active compounds, like red clover,  
which creates the basis for a deeper, more detailed study of  
it as a possible object of phytotherapy methods and  
treatment directions, since the species under study refers to  
the sources of natural herbal preparations.  
Acknowledgments  
The work is performed according to the Russian  
Government Program of Competitive Growth of Kazan  
Federal University, as well as with the financial support of  
the Russian Foundation for Basic Research and the  
Government of the Republic of Tatarstan in the framework  
of the research project No. 18-44-160015.  
15. Mohammadnazar D, Samimi A. Nessacities of Studying HSE  
Management Position and Role in Iran Oil Industry. Journal of  
Chemical Reviews. 2019 Aug 30:252-9.  
1
6. Gomaa EG, Berghout MA, Moustafa MR, El Taweel FM,  
Farid HM. Thermodynamic and Theoretical solvation  
parameters  
for  
2-amino-4,  
5-dimethylthiophene-3-  
carboxamide (ADTC) in Ethanol and Mixed EtOH-H2O  
solvents. Progress in Chemical and Biochemical Research.  
2
018 Oct 1;1(1, pp. 1-80):19-28.  
References  
1
1
1
7. Walea A, Mulanib K, Dondeb K, Ponrathnama S, Chavana N.  
In Situ Generation of Ammonia: an Efficient Catalyst for the  
Synthesis of Phenol-Aniline-Formaldehyde Resol Resins.  
Advanced Journal of Chemistry, Section A: Theoretical,  
Engineering and Applied Chemistry. 2019 Aug 21.  
1
. Polozhii AV, Vydrina SN, Kurbatskii VI, Nikiforova OD. Flora  
of Siberia. Legumes (Leguminosae). Novosibirsk, 1994; 9:  
1
99205.  
2
. Hofmann RW, Swinny EE, Bloor SJ, Markham KR, Ryan KG,  
Campbell BD, Jordan BR, Fountain DW. Responses of nine  
Trifolium repens L. populations to ultraviolet-B radiation:  
differential flavonol glycoside accumulation and biomass  
production. Annals of Botany. 2000 Sep 1;86(3):527-37.  
. Budantsev AL. Plant resources of Russia: wild flowering plants,  
their components and biological activity. 2009; 520.  
. Mukhutdinova AN, Richkova MI, Tyumina HA, Vikhareva  
HV. PHARMACEUTICAL COMPOUNDS BASED ON  
NITROGEN-CONTAINING HETEROCYCLES AS A NEW  
CLASS OF ENVIRONMENTAL POLLUTANTS. Bulletin of  
Perm University. Biology/Vestnik Permskogo Universiteta.  
Seria Biologia. 2015 Mar 1(1).  
8. Dehno Khalaji A, Ghorbani M, Dusek M, Eigner V. The Bis  
(
4-methoxy-2-hydroxybenzophenone) copper (II) Complex  
Used as New Precursor for Preparation of CuO  
Nanoparticles. Chemical Methodologies. 2020 Mar 1;4(2. pp.  
15-219):143-51.  
a
3
4
1
9. Sajjadifar S, Mohammadi-Aghdam S. Synthesis of  
dihydropyridines and quinoxaline derivatives using 1-methyl-  
3
-(2-(sulfooxy) ethyl)-1H-imidazol-3-ium chloride as a new,  
reusable and efficient Bronsted acidic ionic liquid catalyst.  
Asian Journal of Green Chemistry. 2017 Jul 1;1(1. pp. 1-  
5
5):1-5.  
5
. Loponen J, Lempa K, Ossipov V, Kozlov MV, Girs A,  
Hangasmaa K, Haukioja E, Pihlaja K. Patterns in content of  
phenolic compounds in leaves of mountain birches along a  
strong pollution gradient. Chemosphere. 2001 Oct  
1
;45(3):291-301.  
6
7
. Plotnikov MB, Koltunov AA, Aliev OI, Kalinkina GI,  
Berezovskaya TP, Andreeva VY, Tikhonova LA. The  
hemorheologic properties of extracts from some flavonoid-  
containing plants. Rastitel'nye resursy. 1998;34:87-90.  
. Graefe EU, Derendorf H, Veit M. Pharmacokinetics and  
bioavailability of the flavonol quercetin in humans.  
International journal of clinical pharmacology and  
therapeutics. 1999 May 1;37:219-33.  
8
9
. Vladimirov IA, Archakov AI. Lipid peroxidation in biological  
membranes. - M., 1972; 252.  
. Kamada C, da Silva EL, Ohnishi-Kameyama M, Moon JH,  
Terao J. Attenuation of lipid peroxidation and hyperlipidemia  
by quercetin glucoside in the aorta of high cholesterol-fed  
rabbit. Free radical research. 2005 Feb 1;39(2):185-94.  
0. Mochizuki M, Kajiya K, Terao J, Kaji K, Kumazawa S,  
Nakayama T, Shimoi K. Effect of quercetin conjugates on  
vascular permeability and expression of adhesion molecules.  
Biofactors. 2004 Jan 1;22(1-4):201-4.  
1
877