Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 882-889  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Developing Multigenerator Plants for Separating  
Rabbit Wool from Conies  
1
2
3
4
Evgeny An. Shamin , Maryana V. Belova , Olga V. Mihailova , Galina Novikova , Alexei N.  
5
6
7
Korobkov , Peter Vl. Zaytsev , Tatiana V. Sharonova  
1Candidate of Economics, Associate Professor, Director of the Institute for Alimentary Design and Technologies of the Nizhny Novgorod State  
Engineering and Economic University, ul. Oktyabrskaya 22a, Knyaginino, Nizhny Novgorod oblast’, 606340 Russia  
Doctor of Engineering Sciences, Professor at the Department of Automation and Connectivity of the Nizhny Novgorod State Engineering and  
2
Economic University, ul. Oktyabrskaya 22a, Knyaginino, Nizhny Novgorod oblast’, 606340 Russia  
Doctor of Engineering Sciences, Professor at the Department of Information and Communication Technologies and Communication Systems of the  
Nizhny Novgorod State Engineering and Economic University, ul. Oktyabrskaya 22a, Knyaginino, Nizhny Novgorod oblast’, 606340 Russia  
3
4
Doctor of Engineering Sciences, Professor, Senior Research Officer at the Nizhny Novgorod State Engineering and Economic University, ul.  
Oktyabrskaya 22a, Knyaginino, Nizhny Novgorod oblast’, 606340 Russia  
Candidate of Engineering Sciences, Associate Professor at the Department of Automation and Connectivity of the Nizhny Novgorod State  
5
Engineering and Economic University, ul. Oktyabrskaya 22a, Knyaginino, Nizhny Novgorod oblast’, 606340 Russia  
Doctor of Engineering Sciences, Full Professor, Professor at the Department of Mechanization, Connectivity, and Automation of the Chuvash State  
Agricultural Academy, ul. K. Marxa 29, Cheboksary, 428000 Russia  
6
7
Candidate of Engineering Sciences, Associate Professor at the Department of Mechanization, Connectivity, and Automation of the Chuvash State  
Agricultural Academy, ul. K. Marxa 29, Cheboksary, 428000 Russia  
Received: 05/08/2019  
Accepted: 20/11/2019  
Published: 20/12/2019  
1
Abstract  
According to statistics, the amount of rabbit wool produced in Russia, China, and France is 21, 180, and 2.5 tons, respectively.  
The development of rabbit raising in several Russian regions offers large prospects to farming enterprises. However, high-quality  
treatment of conies on farming enterprises is impossible; this is why, conies are subject to disposal. Consequently, the study’s  
relevance is conditioned by disposed cony amounts. The scientific problem is to reduce operating costs of separating rabbit wool  
from conies and collect the raw material while preserving its quality in the farming enterprise environment. The priority microwave  
technology of separating rabbit wool from conies is distinguished by analyzing the results of tests conducted by many authors for  
implementing electrophysical methods of treating multicomponent raw materials, animal skins included. The goal of this work is to  
separate decontaminated rabbit wool from conies by developing the microwave technology and multigenerator radiation-tight plants  
with low-capacity air-cooled magnetrons for continuous operation. This article is intended to discover efficient design configurations  
of resonator chambers ensuring the fulfillment of most of the criteria of designing ultrahigh frequency (UHF) plants. The efficient  
design of the plant processing chamber was chosen by analyzing the parameters of the electrodynamic system with different  
unconventional resonators. The four UHF plants described herein have unconventional resonators ensuring the continuous collection  
of wool from conies, with electromagnetic safety ensured without below cutoff waveguides. The length and diameter calculation  
procedure for using waveguides is presented. The first and the second UHF plants with prismatic resonators do not ensure multiple  
exposure but maintain impermeability to radiation. The third plant with a prolate spheroid and a disk conveyor ensures a duty ratio  
below 0.5, which excludes cony shrinking; however, additional units are needed to maintain electromagnetic safety. The fourth plant  
with a biconical resonator allows meeting all the basic criteria of UHF plant design.  
Keywords: Electromagnetic field, Resonator, Bicone, Spheroid, Electrophysical factors  
Corresponding author: Evgeny An. Shamin, Candidate of Economics, Associate Professor, Director of the Institute for Alimentary Design and  
Technologies of the Nizhny Novgorod State Engineering and Economic University, ul. Oktyabrskaya 22a, Knyaginino, Nizhny Novgorod oblast’,  
6
06340 Russia, E-mail: ipt-filial@yandex.ru.  
8
82  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 882-889  
1
Introduction  
3 Results and Discussion  
The flowchart of basic UHF plants (1, 13, 17) includes  
the following components:  
According to the target program “Development and  
Scaleup of Rabbit Raising Production in Russia in 2014-20”,  
it is necessary to increase the rabbit meat output and stock to  
1) Power supply source for converting mains voltage to high  
voltage necessary to run a magnetron (HV rectifier or  
stepup transformer with a voltage adjuster and filament  
supply);  
2) UHF generator for converting main frequency power to  
UHF power;  
3) Resonator chamber;  
4) Resonator chamber’s electrodynamic system ensuring a  
preset distribution of UHF energy in the chamber space;  
5) Auxiliary parts for evenly heating up raw materials;  
6) Devices for preventing UHF energy leaks from the plant to  
the surrounding environment;  
50,000 tons per year and 750,000 heads, respectively. In the  
farming enterprise environment HQ cony treatment is  
impossible; therefore, selling conies is unprofitable. The  
rabbit raising production at farming enterprises can be made  
more profitable not only by improving productivity and  
reducing fodder costs but also by selling rabbit wool  
collected from conies. Not only does using hair coat reduce  
the prime cost of meat but it also provides additional sources  
of raw materials for felt industry. This is why, it is a relevant  
task to develop engineering tools and technologies using  
ultrahigh-frequency electromagnetic field (UHFEMF) energy  
to separate rabbit wool from conies at reduced operating  
costs.  
The scientific problem is to reduce operating costs of  
separating rabbit wool from conies and collect the material  
while preserving its quality in the farming enterprise  
environment.  
The goal of this work is to separate decontaminated  
rabbit wool from conies by developing the microwave  
technology and multigenerator radiation-tight plants for  
continuous operation at low operating costs.  
7) Remote control.  
We are upgrading the resonator chamber with an UHF  
input device and a raw materials conveyor for continuous  
operation and with electromagnetic safety ensured by means  
of several low-power air-cooled magnetrons. In particular,  
plants with unconventional resonators for separating rabbit  
wool from conies have been designed and described.  
The analysis of available methods of skin unwooling by  
means of different chemical preparations allows making the  
following inferences (6, 7):  
The means of practical significance are:  
-double treatment using salts, alkali, and sulfides destroys  
the hair bulbs, and the hairs are released and removed within  
five to seven hours;  
-if to soak conies for five to seven days in lime cream  
with sodium hydroxide, soda, sodium sulfide, unwooling  
takes place and the hair structure changes, which makes the  
raw material low-value;  
-UHF plant developed, made, and tested in factory  
conditions and equipped with a prolate spheroidal resonator;  
the plant is designed to ensure electromagnetic safety during  
continuous selective heating of conies with the flesh side  
impregnated with predough to weaken the hair coat  
holdability in the skin;  
-
discovered efficient modes of using the UHFEMF to  
-if to apply in sequence alkali sulfide and lime solutions  
(pH > 7), the hair holdability in the dermis weakens within  
five to six hours but the hairs remain strong;  
treat the raw materials impregnated with special predough.  
-
conies limed with lime and sodium bisulfite are  
unwooled within four to six hours;  
conies treated using a homogenized fermented mix of  
2
Materials and Methods  
The study materials were the experience accumulated by  
-
the school of science from (2-4, 14). The efficient design for  
the process chamber of the UHF plant was selected by  
analyzing the parameters of the electrodynamic system with a  
cylindrical, coaxial, toroidal, ellipsoidal, biconical,  
spheroidal, and asteroid resonator. The predough weight was  
calculated, taking into account the average weight of one  
cony equal to 400-450 g. The consumption of each  
component was calculated given that the share of consumed  
mustard and rye flour was 27 % of the cony weight. The  
unwooling degree and quality of the conies from the  
reference and the test sample were evaluated by the  
histomorphologic skin test. The wool’s qualitative  
characteristics were evaluated against microbiological  
indicators. This study is based on the seminal works in the  
theory and practice of raw materials treatment by such  
renowned scientists as Borodina I. F., Strebkova D. S.,  
Ginsburg A. S., etc., and in the theory of cavity resonators by  
such scientists as Atabekova G. I., Bessonova L. A.,  
Pchel’nikova Yu. N., Drobakhina O. O., Plaksina S. V., etc.  
rye flour, water, yeast, mustard flour, and salt (predough) are  
unwooled within five to six hours.  
The exposed methods take much time to apply; that’s  
why, the conventional technology, in which the flesh side is  
permeated with predough, was combined with the MW  
technology to speed up the separation of wool from conies.  
The engineering problem is to reduce operating costs  
while adopting on rabbit raising farms the technology of  
separating hair coat from conies by selective treatment in the  
UHFEMF in continuous mode; preserve the quality of hair  
coat, intensify the process, and make the production more  
ecofriendly (20-24).  
The developed operation and process procedure of  
separating hair coat from conies involves:  
-preparing brine solution or predough in the form of a  
homogenized fermented mix of rye flour, water, yeast,  
mustard flour, and salt with an accurate concentration of  
components;  
-processing the conies removed from rabbits into a  
furrow slice and taking steps for veterinary and sanitary  
supervision;  
8
83  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 882-889  
-placing the conies on the conveyor belt and turning on  
the pump for pulverizing predough or brine solution on the  
flesh side;  
-turning on the conveyor and the UHF generators for  
thermally treating the conies moving through the resonator to  
о
a skin temperature of 32 to 40 С;  
-turning on the pneumatic pump to collect the wool  
separated from the rabbit skin and discharging the unwooled  
conies;  
-
ensuring the veterinary and sanitation supervision of the  
Figure 1: UHF plant with a resonator for separating wool from conies  
in continuous mode: 1 is the prismatic resonator with astroids at the  
base; 2 is the magnetrons; 3 is the slit closed with a non-  
ferromagnetic mesh; 4 is the pneumatic duct; 5 is the drum with  
pegs; 6 is the dielectric grid conveyor; 7 is the guiding and pressing  
rollers; 8 is the bath with brine solution; 9 is the cony; 10 is the brine  
solution pulverizer  
wool;  
-tracking the plant’s adjustable parameters, including  
conveyor speed, generator capacity, energy costs;  
-
turning off the plant when the line of treated conies ends;  
discharging the wool from the cyclone storage and  
transporting it to the production shop;  
sanitary treatment of equipment.  
-
-
The analysis of weak points of various resonator design  
configurations (5, 10-12, 15-16) was used to develop four  
UHF plants with unconventional resonators ensuring  
continuous collection of wool from conies and with  
electromagnetic safety ensured without below cutoff  
waveguides. The first and the second UHF plant with  
prismatic resonators do not ensure multiple exposure but  
retain impermeability to radiation. The third plant with a  
prolate spheroidal resonator and a disk conveyor ensures a  
duty ratio below 0.5, which excludes cony shrinking;  
however, additional units are needed to maintain  
electromagnetic safety. In addition to unconventional  
resonators and magnetrons, the plants have units for  
permeating the cony flesh side with predough or brine  
solution, which speeds up the weakening of the hair coat  
holdability in the dermis of conies treated in the UHFEMF.  
The fourth plant with a biconical resonator meets all the basic  
criteria, including process continuity with a duty ratio below  
3.2 UHF Plant with Prismatic Resonator for Sanitary  
Treatment of Hair-Type Raw Material by Exposure to  
Electrophysical Factors  
The plant is shown in Fig. 2 and consists of horizontal  
hexagonal shielding prism 11 of four equally large faces and  
two opposite small faces with slits. Together with the two  
opposite faces with slits the impellers mounted inside the  
prism in parallel with the four equal faces with larger area  
form a hexagonal prismatic resonator to the inside of which  
the magnetron emitters are directed.  
Like the air-conditioner impeller, these impellers are  
made from a non-ferromagnetic material. Some of the  
impellers are mounted closer to the faces with slits of the  
shielding prism and do not rotate, whereas the other impellers  
are set in rotation by two electric motors. For this purpose,  
the impeller shafts are equipped with idle gears engaged in  
cohesion with each other and respective guiding gears  
mounted on the electric motor shafts. Two guiding gears are  
mounted on each shaft of the electric motors setting the  
impellers in rotation. The working dielectric strand of the  
conveyor is extended through the slits in the faces. The idle  
strand of the conveyor is found under the hexagonal prism.  
The UHF generator magnetrons and the kilohertz frequency  
power sources working according to d’Arsonval’s principle  
are mounted on the outside of the shielding prism base. There  
are also electric gas discharge bulbs energized by kilohertz  
frequency power sources and mounted inside the stationary  
impellers along their blades.  
0.5, even heating of raw materials, high electrical intensity,  
electromagnetic safety, low energy costs.  
3.1 UHF Plant with Astroid Resonator for Separating Wool  
from Conies in Continuous Mode  
The plant shown in Fig. 1 has horizontal prismatic  
resonator 1 with slits (this is an open resonator). Astroids are  
used as the resonator bases. The working strand of grid  
dielectric conveyor 6 is extended through the resonator slits  
along the upright diagonal and passes between pressing and  
guide rollers 7 mounted at the front of the conveyor. There is  
also drum 5 with pegs at the end of the conveyor. A probe  
with pneumatic duct 4 is mounted above the drum. Brine  
solution pulverizer 10 is mounted at the junction of the two  
upper facets of the resonator. Magnetrons 2 are mounted in  
the middle on the upper facets of the prism. The diameter  
and length of the cylinder conventionally escribed in the  
prism are equal to an aliquot half of wavelength. The height  
of slits 3 near the resonator’s face interfaces does not exceed  
3.3 UHF Plants with a Prolate Spheroidal Resonator for  
Separating Hair Covering from Conies  
Cylindrical resonator 1 with half-spherical bases (Fig. 3)  
is horizontally installed on mounting frame 7. There are also  
two slits along the generatrix of the cylindrical resonator.  
They are turned towards one another at one level, and their  
size is 25 % of wavelength. Horizontal rotating disk 5  
projects through the slits because its diameter exceeds the  
cylindrical resonator diameter. Moreover, the projection  
perimeter exceeds half the perimeter of the disk part in the  
resonator. This will ensure a duty ratio (heating duration  
related to cycle duration, heating/cooling) below 0.5 for  
equaling the temperature in each elementary particle of the  
25 % of wavelength, and the cross-section of these slits does  
not overlap the throat of the open resonator.  
884  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 882-889  
raw material.  
Figure 3: 3D graphic presentation of a microwave plant with a disk  
conveyor for separating wool from conies (in section): 1 is the  
cylindrical resonator with half-spherical bases; 2 is the UHF energy  
emitters; 3 is the inspection window closed with a metal mesh lid; 4  
is the pulverizer with a viscous liquid pump; 5 is the rotating PTFE  
disk, 6 is the dielectric pressing ring; 7 is the mounting frame; 8 is  
the drawoff nozzle; 9 is the support bearings; 10 is the gear motor; 11  
is the guiding gear; 12 is the driving crown; 13 is the cony; 14 is the  
pneumatic pump.  
Figure 2: Plants for sanitary treatment of wool raw material by  
exposure to electrophysical factors: a) is the 3D graphic presentation;  
b) is the impellers; 1 is the hexagonal prismatic resonator; 2 is the  
impellers; 3 is the impellers electric drives; 4 is the air duct; 5 is the  
rings for clamping impeller blades; 6 is the electric gas discharge  
bulbs; 7 is the dielectric grid conveyor; 8 is the kilohertz frequency  
power sources; 9 is the conveyor electric drive shaft; 10 is the UHF  
generators magnetrons; 11 is the hexagonal shielding prism.  
Turn on the generators, whose UHF emitters 2 excite an  
S-band EMF in the cylindrical resonator. The cony’s  
exposure to the UHFEMF ensures selective heating of hair  
bulbs, epidermis, and dermis treated with the predough. This  
integral influence of the dielectric heating on the flesh side  
permeated with the predough speeds up the weakening of the  
hair coat holdability in the cony dermis. The pressure and  
temperature of the skin components evens outside the  
cylindrical resonator on the projection of the rotating disk,  
which excludes any cony shrinking; in addition the predough  
is pulverized onto the flesh side with the help of the  
pulverizer and the viscous liquid pump. Then the cony is  
exposed to the UHFEMF for the second time and the hair  
coat separated from the skin is collected at the exit from the  
cylindrical resonator and carried to the cyclone. The skin is  
carried to the tare. The plant runs in continuous mode, which  
is why the operator lays the conies pre-permeated with the  
predough onto the rotating disk projection. This double  
exposure to the UHFEMF ensures that the conies are treated  
in sparing mode and, when the PTFE disk rotates, the  
separated hair coat is not scattered in all directions because it  
is pressed by dielectric ring 6. After the treatment of the  
conies is finished, turn off the equipment as follows:  
predough pulverizer pump 4, UHF generators 2, gear motor  
and pneumatic pump 14. The non-ferromagnetic mesh louver  
on the slits restricts the UHF radiation flow. Then open the  
lid of inspection window 3, open drawoff nozzle 8, expose  
the resonator’s internal surface to sanitary treatment. Then  
cover the fresh skin with predough on the flesh side and  
expose to the UHFEMF with a dose of 0.2 kWh/kg. Affected  
by endogenous heat, the homogenized fermented mix  
Disk 5 is made from PTFE and holds on support bearings  
fixed onto the mounting frame. Inside the cylindrical  
resonator dielectric pressing ring 6 is rigidly and coaxially  
clamped above the disk to the inside of the resonator. Cony  
3 is carried between the ring and the disk. Pulverizers 4 with  
9
1
a pump for viscous liquid are mounted on the one side above  
the disk projections, whereas pneumatic pump 14 is mounted  
on the other side. Driving crown 12 engaged in cohesion with  
guiding gear 11 clamped to the shaft of gear motor 10 is  
rigidly mounted on the disk. Inspection window 3 is cut on  
the cylindrical resonator generatrix and closed with a metal  
mesh lid. The mesh openings do not exceed 3 mm in size,  
which excludes any possibility of microwave energy  
penetrating through these openings. UHF energy emitters 2  
on the magnetrons mounted on the generatrix are directed to  
cylindrical resonator 1. Drawoff nozzle 8 is clamped on one  
side of the half-spherical base of the resonator. The mesh-  
type non-ferromagnetic louvers on the generatrix are  
designed to restrict the UHF radiation flow through the slits  
and not shown in Fig. 3.  
The process procedure develops as described below.  
Close the metal mesh lid of inspection window 3 upon the  
sanitary treatment of resonator 1; close drawoff nozzle 8. The  
inspection window allows visually tracking the thermal  
treatment of conies and protects against microwave radiation.  
Start gear motor 10, which will make PTFE disk 5 rotate by  
means of gear 11 engaged in cohesion with driving crown 12.  
Then start pneumatic pump 14 and the pump of predough  
pulverizer 4. Rub into the cony flesh side the predough made  
as a homogenized mix of rye flour, water, yeast, and mustard  
rye, then put cony 13 with its flesh side up on the projection  
of the rotating PTFE risk on the side of the pneumatic pump.  
While the disk is rotating, the cony is dragged down  
dielectric pressing ring 6.  
(
predough) in the UHFEMF reduces the holdability of the  
hairs in the hair bursa, and they are separated from the dermis  
within few minutes, depending on the condition of the  
original raw material. The specific features of mustard rye  
885  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 882-889  
stem from the hydrolyzing influences of starch-derived acids,  
high fat content in starch, and from the influence of enzymes  
in conies. According to the histomorphologic evaluation of  
the unwooling degree of the conies with the flesh side  
permeated with predough, the exposure to the UHFEMF  
destroys the hair bulb and fully loosens the epidermis layer,  
which weakens the hair coat holdability in the dermis and  
ensures quite an easy separation of wool from conies at a  
minor inlet pressure of the pneumatic pump. This being the  
case, the structural properties of the downy raw material are  
retained.  
form an electrical field concentrated in the center of the  
resonator. The full wave reflection is observed on the  
surfaces formed near the vertices, which is why the radiation  
flow from open ends becomes much less intensive. The  
expansion of the cone part angle increases the Q-factor; the  
resonator length is adjusted at permanent cone base  
diameters. The UNF plant designed following the specified  
guidelines contains a symmetrical biconical resonator (Fig. 4)  
with a loaded conveyor strand coaxially installed inside. The  
cone vertex region contains slits. The magnetrons are  
mounted in the cone base region with a perimeter-wise shift,  
whereas the pneumatic duct is mounted above the loaded  
conveyor strand. Conies with the predough-permeated flesh  
side are carried by means of the conveyor. The steamed cony  
in the UNFEMF creates the conditions for skin softening,  
pore widening, rapid hair bulb destruction, and wool release.  
The pneumatic pump ensures the transportation of the  
separated downy raw material to the cyclone. The design of  
the resonator in question helps maintain the only working  
type of oscillations at 2 450 mHz and minimally reduces the  
loaded Q-factor at an increase in the resonator filling  
coefficient.  
3.4UHF Plant with Biconical Resonator for Separating  
Hair Covering from Conies  
As shown in works by Drobakhin O. O. et al. (9, 19), an  
open biconical resonator helps maintain continuous operation  
mode at a high radiation Q-factor. The resonator’s having  
areas, where the exponential law of EMF changes is strongly  
pronounced, allows cutting cone vertices with significant  
losses in the basic Q-factor. These resonators have a fairly  
high Q-factor because there is no degeneration of parasitic  
oscillations. A properly chosen vertex angle of the cone may  
Figure 4: Process chart of separation of wool from conies in continuous mode in a plant with a biconical resonator: a) is the resonator; b) is the plant  
layout: 1 is the symmetrical biconical resonator; 2 is the magnetrons; 3 is the conies; 4 is the pneumatic duct; 5 is the unwooled cony; 6 is the  
conveyor; 7 is the predough or brine solution pulverizer  
The adopted basic Q-factor of 9 000 should be calculated  
via the geometrical volume and surface area of the biconical  
resonator, taking the slits into account. The biconical  
resonator layout shown in Fig.4 was made up especially for  
the purpose. The design dimensions of the resonator were  
preset, and such parameters of the truncated biconical  
According to the calculations, a decrease in the resonator  
height does not affect its resonant frequency but significantly  
reduces its basic Q-factor. The basic Q-factor of the truncated  
biconical resonator is only 10 % lower than the biconical  
resonator Q-factor of 10,816; i.e., there is no significant  
change in the Q-factor. Because of the rough resonator  
surface and the slit, the actual basic Q-factor of the truncated  
biconical resonator with be 10 to 20 % lower than the design  
Q-factor, i.e., about 7 000 to 9 000. Thus the 350 l truncated  
biconical resonator with a basic Q-factor of 9 000 and with  
3 200 W magnetrons will ensure an electrical intensity of 1.2  
to 1.5 kV per cm in a volume of up to 55 l and reduce the  
total microbial number by 100 %. The main specifications of  
the designed plant are given below: the UHF generator power  
consumption is 4.8 kW, the expected output is 35 to 45 pcs.  
per hour, and the unit energy OPEX are 0.25 to 0.39 kWh per  
hour.  
resonator were calculated as its volume (350 l), surface area  
2
(
30,900 cm ) and basic Q-factor (9 647). Surface layer  
thickness Δ of the biconical resonator fabricated from  
-5  
aluminum is 1.8 10 m. (8, 17, 18). As per calculation, the  
basal diameter of the biconical resonator is taken equal to  
wavelength, i.e., 85.68 cm, and the cone height and the  
central axis length are taken equal to 100 and 200 cm,  
respectively. If to take the grid conveyor width equal to 36  
cm and take into account that the slit height necessary for  
letting pass the conveyor with the cony is 6 to 10 cm, the  
biconical resonator length will be 125 cm. Moreover, the  
critical section diameter is 0.72∙85.68 = 30.85 cm. Then a  
truncated cone will be formed with a 10x36 cm slit in the  
smaller base. To let the conveyor pass, it is necessary to cut  
the truncated cone generatrix to a depth of 5.15 cm. The  
truncated cone generatrix tilt is 67 degrees.  
The horizontally mounted symmetrical biconical  
resonator is assembled from two casings so that their bases  
are interfaced (Fig. 4). The loaded strand of the dielectric grid  
belt conveyor is mounted coaxially inside the resonator.  
Conies are laid onto the loaded strand unfolded, with the  
flesh side looking to the grid belt.  
886  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 882-889  
Figure 5: UHF plant for separating rabbit wool from conies  
The idle strand of the conveyor is mounted beyond the  
resonator with slits in the vertex region the sizes of which are  
dovetailed the wavelength for making the plant impermeable  
to radiation and achieving a fairly high basic Q-factor of the  
resonator. The slits shall not be higher than 25 % of  
wavelength; thus the propagation of EMWs beyond the  
resonator will be limited. The slits shall be wider than the  
grid belt. The magnetron emitters are mounted perimeter-  
wise in the cone basal region with a shift by 120 degrees. The  
pneumatic duct is located on the generatrix of one cone,  
whereas the brine solution pulverizer is mounted under the  
loaded strand on the generatrix of the other cone. The nozzle  
for drawing off waste brine solution is mounted in the region  
of the resonator’s maximum basal diameter. As the waves  
originating in the middle of the resonator propagate away  
from the center, their propagation constants decrease. This  
being the case, the waves are almost completely reflected by  
the surfaces formed at the cone vertices. Since these surfaces  
are found in the resonator, the radiation flow from the open  
slits considerably weakens. Resonators can have any section  
dovetailed with wavelength. The low longitudinal currents in  
the walls of such resonators allow achieving the maximum  
basic Q-factor. The slits in out-of-limit regions allow  
continuously loading the resonator with the raw material.  
Since a bicone is hard to fabricate in the lab, a cylindrical  
resonator with half-spherical bases was taken as a basis. That  
resonator was used as a working chamber able to meet the  
main criteria of UHF plant design, including process  
continuity, highly intense electromagnetic field sufficient for  
disinfecting the wool, high basic Q-factor, electromagnetic  
safety (Fig. 5). The most efficient system is the UHF plant  
with an output of 35 to 45 pcs. per hour, a power  
consumption of 5.55 kW, and an energy OPEX of 0.3 kWh  
per hour. The resonator specifications are provided in Table  
at 0.5 m away from the plant operated for eight hours the  
radiation density shall not exceed 0.01 mW/cm . According  
2
to UHF radiation flow capacity analyses using a OZ-33M  
measuring instrument in relation to the distance to the plant  
and measuring height, the operator’s electromagnetic safety  
is ensured for three hours of work right near the conveyor  
without a shielding mesh and for the whole day of work near  
the conveyor with this mesh.  
Table 1: UHF plant specifications  
Power consumption of four generators, kW  
Output, kg/h;  
4.8  
15-20  
34-45  
0.25  
0.015-0.2  
0.25  
0.25  
5.55  
0.3  
pcs./h  
Conveyor electric motor capacity, kW  
Conveyor speed, m/s  
Pneumatic pump capacity, kW  
Magnetron cooling fan capacity, kW  
UHF plant power consumption, kW  
Unit energy OPEX, kWh/kg  
Dimensions, m  
1.2х1.0х2.15  
According to the Sanitary Standards of Protecting  
Attending Personnel against Electromagnetic Radiation, the  
maximum permissible level (MPL) of the UHFEMF at  
2
continuous round-the-clock exposure is 10 μW/cm . At an  
exposure for eight and two hours the MPL is 25 and 100  
2
μW/cm , respectively; this being the case, the UHFEMF  
2
MPL shall not exceed 1000 μW/cm (2).  
According to the analysis of the propagation of an S-band  
wave beyond the UHF plant by G. B. Belotserkovskiy’s  
method (3), the spherical wave generated in space by the  
emitter has an amplitude pro rata with the distance from the  
UHF plant and the phase also lags behind pro rata with the  
distance to the plant. The fabricated test model of the UHF  
plant for separating rabbit wool from conies should be  
checked for impermeability to radiation. For this purpose, the  
capacity flow density was analyzed using a PZ-31 or PZ-33M  
1. With an output capacity of 700 to 800 W in each  
magnetron and the inspection window open, the plant can  
2
generate radiation of more than 5 000 μW/cm in intensity.  
electromagnetic radiation measuring instrumentwith  
a
All the slits can be treated as sources of UHF radiation leaks.  
A leak is defined as significant when the orifice diameter in  
the inspection window exceeds 2 mm. The UHF energy  
emitted through the narrow slits with a width below 25 % of  
wavelength is below the MPL when the slits are situated  
along the lines of current flow in the resonator. There are two  
safe radiation standards for plants with UHF energy supply:  
measurement limit of up to 18,000 mHz, 615 W/m,  
depending on the distance from the plant and the measuring  
height. The relation of the standard safe capacity flow density  
to the plant operation time is presented in Fig. 6. The  
empirical equation of the maximum permissible radiation  
8
87  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 882-889  
level related to the duration of exposure to UNFEMF (τ) is  
recorded as  
achievable for below cutoff waveguide of 6 cm in length and  
3 cm in diameter. The radiation flow through the slits  
designed for carrying the raw material through the cavity  
resonator can be restricted in other ways as well, including  
using biconical resonators with slits in cone vertices at the  
critical cross section level.  
MPL = 73.283 e -0,374 τ , μW/cm2.  
(5)  
With an increase in the distance from the resonator or  
from waves of leading systems, the emitted energy flow  
weakens inversely pro rata with the squared distance. This is  
why, it is possible to find the safe boundary at which the  
radiation is below normal (Fig. 6).  
4
Conclusion  
1
. The elaborated scientific concept makes for separating  
rabbit wool from conies by selective exposure to the  
UHFEMF.  
2
. The suggested unconventional approach to the design  
configuration of resonator chambers in UHF plants with  
low-capacity magnetrons of 800 W ensures a reduction in  
microbial content and a continuous weakening of the  
wool holdability in conies the flesh side of which is  
soaked in predough.  
3
4
. The elaborated efficient form of predough is a  
homogenized fermented mix of rye wheat (27 % of cony  
weight), water, yeast, mustard flour (27 %), and salt (1.5  
%
). This mix is intended for permeating White Giant  
rabbit conies exposed to the UHFEMF up to a heating  
о
temperature of 35 to 40 С.  
. The four described UHF plants have unconventional  
resonators ensuring continuous collection of wool from  
conies, while providing electromagnetic safety with  
below cutoff waveguides. The first and second UHF  
plans with prismatic resonators do not ensure multiple  
exposures but maintain impermeability to radiation. The  
third plant with a prolate spheroidal resonator and a disk  
conveyor ensures a process duty ratio below 0.5, which  
makes cony shrinking impossible. However, additional  
units are needed to preserve electromagnetic safety. The  
fourth UHF plant designed and fabricated with a  
truncated biconical resonator allows meeting all the basic  
operational criteria.  
Figure 6: Changes in the radiation flow capacity against the distance  
to the plant and measuring height: 1) w/o shielding mesh, 2) with  
shielding mesh  
Мощность потока излучения,  
Radiation flow capacity,  
μW/cm  
Distance to the plant, m  
мкВт/см2  
2
Расстояние до установки, м  
The UHF radiation capacity set against the distance to the  
2
plant shall not exceed 50 μW/cm : in this case the personnel  
attending the plant can work five hours a day. It is known  
that any shielding system relies on the radiophysical  
principles of reflecting or absorbing electromagnetic energy.  
The full reflection of electromagnetic waves is guaranteed by  
means of highly conductive materials; the full absorption of  
these waves is possible only in poorly conductive dielectric  
materials with large losses. Taking into account the  
properties of the raw material, the parameters of the radiation  
source, and the peculiarities of the process, it is  
recommended to apply an aluminum shielding material.  
To prevent the radiation flow through loading and  
drawoff nozzles in UHF plants running in continuous mode,  
it is possible to use below cutoff waveguides. These are non-  
ferromagnetic pipes with a small diameter and a preset  
length. Such waveguides do not let pass UHF energy given  
that the pipe radius is 10 to 15 times shorter than wavelength  
5
. As shown by the calculation and measurement of the UHF  
radiation flow capacity using a PZ-33M, the MPL of 50  
2
μW/cm is not exceeded, which means that the personnel  
can work near the UHF plant for up to four hours daily.  
References  
1. Belotserkovskiy GB. Basics of Radio Engineering and  
Antennae. Pt. 1: Basics of Radio Engineering [Osnovy  
radiotekhniki i antenny. Ch. 1. Osnovy radiotekhniki]. Moscow:  
Sovetskoye Radio. 1979.  
2
.
Belova MV. Design Configurations of Volumetric Resonators of  
UHF Generator for Thermal Treatment of Raw Materials in  
Streaming Mode [Varianty ispolneniya ob”yemnykh rezonatorov  
(
17). Let us consider a below cutoff waveguide with radius  
SVCH generatora dlya termoobrabotki syr’ya  
v potochnom  
R=1.5 cm at a wavelength of 12.24 cm and determine at each  
centimeter of the pipe length the specific attenuation of lower  
modes H11 as L=16/R. L = 16/1.5 = 10.67 dB/cm. If the  
resonator’s UHF oscillation capacity is 0.8 kW and the  
permissible capacity outside the below cutoff waveguide  
rezhime]. Vestnik GBOUVPO Nizhegorodskiy gosudarstvennyy  
inzhenerno-ekonomicheskiy institute (NGIEI) (Bulletin of  
Nizhniy Novgorod State Engineering and Economic Institute  
(NNSEEU)). 2015;2(45):13-16.  
3
.
Belova MV. Developing Ultrahigh Frequency Plants for  
Thermal Treatment of Agricultural Raw Materials [Razrabotka  
sverkhvysokochastotnykh ustanovok dlya termoobrabotki  
sel’skokhozyaystvennogo syr’ya]. Extended Abstract of Thesis  
for a Doctor of Engineering Sciences. Moscow: All-Russian  
equal to 0.8 μW, the attenuation on pipe length l shall be by  
6
0
.8 kW/0.8 μW =10 times or by 60 dB. Then the below  
cutoff waveguide length shall be l = 60/L = 60/10.67 = 5.62  
cm. The calculations suggest that the safe radiation level is  
888  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 882-889  
Research Institute of Electrification of Agriculture (ARRIEA).  
15. Shamin YeA, Osokin VL, Novikova GV, Belova MV. Patent  
2655748 RU, MPK S14V1/58. Microwave Plants for Separating  
Rabbit Wool from Conies [Mikrovolnovaya ustanovka,  
obespechivayushchaya otdeleniye mekha ot kozhi shkur  
krolikov]. Applicant and Patent Holder: NNSEEU (RU). Appl.  
No. 2017123454 of July 3, 2017. Bull. 16 of May 29. 2018.  
16. Shamin YeA, Osokin VL, Novikova GV, Belova MV. Patent  
2655770 RU, MPK S14V1/58. Ultrahigh Frequency Plant with  
Mobile Cylindrical Resonators for Continuous Drying of Fur-  
and-Down Raw Materials. Applicant and Patent Holder:  
NNSEEU (RU). Appl. No. 2017114325 of April 24, 2017. Bull.  
16 of May 29. 2018.  
17. Pchel’nikov YuN, Sviridov VT. Ultrahigh Frequency Electronics  
[Elektronika sverkhvysokikh chastot]. Moscow: Radio y Svyaz’.  
1981.  
18. Pchel’nikov YuN. Yelizarov AA. Prospects for Applying  
Electromagnetic Heating in Treating Agricultural Raw Materials  
and Foodstuffs [Perspektivy primeneniya elektromagnitnogo  
2
016.  
4
5
.
.
Belova MV, Ziganshin BG, Novikova GV. Resonator Chambers  
of UHF Plants for Thermal Treatment of Agricultural Raw  
Materials [Rezonatornyye kamery SVCH ustanovok dlya  
termoobrabotki s.-kh. syr’ya] in Proceedings of International  
Research-to-Practice Conference “Engineering Sciences for  
Agrarian Production”. Kazan’: Kazan State Agricultural  
University. 2014:22-25.  
Belov AA. Zhdankin GV. Developing and Underpinning  
Parameters of Plant with Mobile UHF Power Sources of for  
Thermal Treatment of Raw Materials [Razrabotka  
obosnovaniye parametrov ustanovki dvizhushchimisya  
istochnikami sverkhvysokochastotnoy energii dlya  
termoobrabotki syr’ya]. Vestnik NGIEI (Bulletin of NNSEEU).  
017;7(74):44-54.  
i
s
2
6
7
.
.
Berseleva MYu. Resource-Sparing Technologies of Making  
Down and Fur Intermediate Products from Animal Skins with  
Dense, Thickened Leather Fabric. Thesis for a Candidate of  
Engineering Sciences. Kazan: Kazan National Research  
Technological University. 2014.  
nagreva dlya obrabotki sel’khozyaystvennogo syr’ya  
i
pishchevykh produktov]. Elektronnaya tekhnika (Electronic  
Technology). 1993;5:47-52.  
Voznesenskiy EF, Sharifullin FS, Abdullin ISh. Theoretical  
Basics of Structural Modification of Leather-and -Fur Industry  
Materials in Low-Pressure High-Frequency Discharge Plasma:  
Monograph [Teoreticheskiye osnovy strukturnoy modifikatsii  
19. Strekalov AV, Strekalov YuA. Electromagnetic Fields and  
Waves [Elektromagnitnyye polya  
INFRA-M. 2014.  
i volny]. Moscow: RIOR:  
20. Shamin YeA, Novikova GV, Belova MV, Mikaylova OV.  
Analyzing and Underpinning Parameters of UHF Plant with  
Mobile Resonators for Separating Hair Coat from Conies in  
materialov kozhevenno-mekhovoy promyshlennosti  
vysokochastotnogo razryada ponizhennogo  
monografiya]. Kazan: KSTU. 2011.  
v
plazme  
davleniya:  
Continuous Mode [Issledovaniye  
SVCH ustanovki s peredvizhnymi rezonatorami dlya otdeleniya  
volosyanogo pokrova so shkur krolikov nepreryvnom  
i obosnovaniye parametrov  
8
9
1
.
.
Voznesenskiy DI, Gostyukhin VL, Maximov VM, Ponomarev  
nd  
LI. UHF Devices and Antennae, 2 Revised Edition [Ustroystva  
v
SVCH  
i
antenny. 2-e izd., dop.  
i
pererab]. Moscow:  
rezhime]. Vestnik GBOUVPO NGIEI (Bulletin of NNSEEU).  
2018;3(82):38-51.  
21. Shamin YeA, Novikova GV, Belova MV, Mikaylova OV.  
Designing and Underpinning Parameters of UHF Plant with  
Toroidal Resonators for Separating Hair Coat from Conies  
While Pulverizing Brine Solution in Continuous Mode  
Radiotekhnika. 2006.  
Drobakhin OOM, Plaxin SV, Ryabchiy VD, Saltykov DYu.  
UHF Equipment and Semiconductor Electronics: E-Manual  
[Tekhnika i poluprovodnikovaya elektronika SVCH: Uchebnoye  
posobiye [Elektronnoye izdaniye]]. Sevastopol: Weber. 2013.  
0. Zhdankin GV, Strorchevoy VF, Novikova GV. Procedure of  
Designing UHF Plants for Thermal Treatment of Non-  
[Razrabotka i obosnovaniye parametrov SVCH ustanovki s  
toroidal’nymi rezonatorami dlya otdeleniya volosyanogo  
Alimentary  
proyektirovaniya SVCH ustanovki dlya termoobrabotki  
nepishchevykh otkhodov uboya zhivotnykh]. Innovatsii  
sel’skom khozyaystve (Innovations in Agriculture).  
017;1(22):76-82.  
Waste  
of  
Animal  
Slaughter  
[Metodika  
pokrova ot kozhi shkur krolikov v protsesse raspyleniya rassola  
v
nepreryvnom  
rezhime].  
universiteta  
Vestnik  
inzhenernykh  
Voronezhskogo  
tekhnologiy  
v
gosudarstvennogo  
(Bulletin of Voronezh State University of Engineering  
Technologies). 2018;1:43-49.  
2
1
1
1. Drogaytseva OV. Increasing Level of Heating Dielectric  
Materials in Waveguide and Resonator UHF Systems  
22. Shamin YeA, Novikova GV, Belova MV, Mikaylova OV.  
Underpinning Parameters of UHF Plant for Disinfecting and  
Separating Wool from Conies [Obosnovaniye parametrov SVCH  
ustanovki dlya obezzarazhivaniya i otdeleniya pukha ot shkur  
[Povysheniye urovnya ravnomernosti nagreva dielektricheskikh  
materialov v SVCH-ustroystvakh volnovodnogo i rezonatornogo  
tipov]. Thesis for a Candidate of Engineering Sciences, Saratov:  
SSTU. 2011.  
krolikov].  
Vestnik  
Voronezhskogo  
gosudarstvennogo  
universiteta inzhenernykh tekhnologiy (Bulletin of Voronezh  
State University of Engineering Technologies). 2018;1:70-80.  
23. Shamin YeA, Belova MV, Vieru TP. Analyzing Parameters of  
UHF Plant for Separating Hair Coat from Conies [Issledovaniye  
parametrov SVCH ustanovki dlya otdeleniya volosyanogo  
pokrova so shkur krolikov]. Vestnik Ul’yanovskoy GAU  
(Vestnik of Ulyanovsk State Agricultural Academy).  
2018;2(42):23-32.  
2. Zhdankin GV, Belova MV, Mikhaylova OV, Novikova GV.  
Radiowave Plants for Thermal Treatment of Inedible Waste of  
Animal Origin [Radiovolnovyye ustanovki dlya termoobrabotki  
nepishchevykh  
Izvestiya Orenburgskogo GAU (Bulletin of Orenburg SAU).  
018;4(72):198-202.  
3. Kolomeytsev VA. Komarov VV. Microwave Plants for Even  
Volumetric Heating. Part [Mikrovolnovyye ustanovki  
ravnomernym ob”yemnym nagrevom. Chast’ 2.] Saratov SSTU.  
006.  
otkhodov  
zhivotnogo  
proiskhozhdeniya].  
2
1
1
2
s
24. Shamin YeA, Belova MV. Analyzing Possibilities for  
Weakening Wool Holdability in Rabbit Body Skin on Exposure  
2
to the UHFEMF  
[Analiz vozmozhnosti  
oslableniya  
4. Novikova GV, Zhdankin GV, Mikhaylova OV, Belov AA.  
Analyzing Designed Ultrahigh Frequency Plants for Thermal  
Treatment of Raw Materials [Analiz razrabotannykh  
sverkhvysokochastotnykh ustanovok dlya termoobrabotki  
syr’ya]. Vestnik Kazanskogo GAU (Bulletin of Kazan SAU).  
uderzhivayemosti pukha v kozhe tushki krolikov vozdeystviyem  
EMPSVCH]. Proceedings of research-to-practice conference  
“Innovative Developmental Trends in Power Engineering for  
AIC”. Izhevsk: Izhevsk SACA. 2017:100-104.  
2
016;4(42):89-93.  
889