Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1215-1223  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Development of Microwave Devices with Toroidal  
Resonators for Treatment of Raw Materials  
1
1
1
1
Maryana V. Belova , Olga V. Mihajlova , Galina V. Novikova , Alexander I. Kotin ,  
1
2
2
Dmitry A. Tarakanov , Sergey P. Zaitsev , Evgeny L. Belov  
1Chuvash State Agricultural Academy, 29 K. Marx Street, 428000 Cheboksary, Russia  
Nizhny Novgorod State University of Engineering and Economics, 22 Oktyabrskaya Street, 606340 Knyaginino, Nizhny Novgorod  
Oblast, Russia  
2
Received: 13/09/2019  
Accepted: 22/11/2019  
Published: 20/12/2019  
Abstract  
Three ultra-high frequency devices with toroidal resonators were developed on the basis of the principle of construction of quasi-  
stationary resonators. Two of these devices are designed for elimination of a number of pests feeding on raw material and for activation  
of cells of potato tubers and onion sets. The first device with toroidal resonator is designed for preplant treatment of potato tubers by  
the effect of electrophysical factors. A dielectric wire belt is placed inside the torus of circular cross section. In the central part of the  
resonator, represented as a capacitor space, there are rotating disk and spreader. Microwave emitters are directed through the surface  
of the torus, and gas-discharge lamps are directed into the capacitor space. A filling funnel is installed at the center of the resonator.  
An induction heater is placed under the torus; the segment of the bottom of the torus surface serves as its secondary winding. The  
second device is designed for preplant treatment of onion sets. It consists of a quasi-stationary toroidal resonator with a rectangular  
cross section. Inside the annular space, there are a cylinder, an air duct and an annular gas-discharge lamp. In the capacitor part of the  
resonator, a dispenser with dielectric scrapers is placed. On the base of the cylinder, there is a sector-shaped discharge opening  
connected to the evanescent waveguide. The emitters from the magnetrons are directed to the capacitor part of the resonator. The third  
device is designed to defrost cow colostrum. It contains vertical quasi-stationary toroidal resonator with a rectangular cross section of  
torus and a capacitor part with a gap from the lower edge of the base of the inner cylinder smaller than the distance between the side  
surfaces of the cylinders. The torus is formed between coaxially located cylinders of different heights and an annular non-ferromagnetic  
surface at the top. The disk moves inside the cylinder of small diameter. The emitters are directed to the capacitor part. The average  
perimeter of the annular space and the diameter of the disk should be equal to multiple half of the wavelength, and the slot should be  
less than one-fourth of the wavelength.  
Keywords: Toroidal resonators, Preplant treatment, Gas-discharge lamp, Potato tubers, Onion sets, Cow colostrum  
1
the task remains unsolved. Therefore, the authors developed  
1
Introduction  
technologies that can be applied on small and medium  
agricultural enterprises for preplant treatment of potato tubers  
and onion sets by ultra-high frequency electromagnetic field  
According to the Federal Scientific and Technical  
Program, which implies the task of ensuring the substitution of  
import products by increasing national production and rising  
the efficiency of raw materials processing technology  
(
UHFEMF) in order to increase productive values at reduce  
operating costs. The importance of developing studies on the  
effects of microwave heating in Russia is confirmed by the  
adoption (on December 17, 2012) of the strategic research  
program “Microwave Technology”, which determines the  
development of industrial equipment for technological  
heating.  
(
approved at August 25, 2017, No. 996), it is an urgent task to  
develop methods and technical means for preplant seed  
treatment of vegetable crops and for defrosting cow colostrum.  
The authors of the paper analyzed the results of the studies  
of different scientists, which were aimed at improving the  
technology of preplant treatment of potato tubers and onion  
sets without chemical preparations. The analysis shows that  
The aim of this work is to develop and substantiate the  
Corresponding author: Galina V. Novikova, Chuvash State  
Agricultural Academy, 29 K. Marx Street, 428000  
Cheboksary, Russia. Email zapevl@mail.ru.  
1
215  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1215-1223  
parameters of the devices with toroidal resonators, providing  
the effect of UHFEMF on raw materials in a continuous mode  
at high electric field strength. Objectives of the research: (1) to  
study the existing technologies and technical means used for  
preplant treatment of vegetable seeds and for defrosting of cow  
colostrum; (2) to develop criteria for designing microwave  
equipment for treatment of raw materials in farms. (3) to  
develop design schemes for multi-generator microwave  
devices with toroidal resonators that implement microwave  
technologies for preplant treatment of potato tubers and onion  
sets and for defrosting of cow colostrum.  
The object of the research includes technological  
processes that provide increased protection of potato tubers  
and onion sets from pests and defrosting of cow colostrum, as  
well as experimental samples of the devices with toroidal  
resonators, implementing the complex effect of physical  
factors on raw materials in a continuous mode.  
conditions for the implementation of the technological process  
of the effect of UHFEMF on raw materials (Table 1). For farm  
enterprises, it is necessary to design radio-hermetic equipment  
for continuous operation, which is possible with the use of  
low-power air-cooled magnetrons.  
Table 1: Conditions for the implementation of the technological  
process of the effect of UHFEMF on raw materials  
Conditions  
Provided by  
-
-
Perforations of resonator;  
Slot resonators;  
1
. Continuous operation  
- Movement of resonators;  
-
-
Use of dielectric wire belt;  
Use of screw conveyor.  
Use of:  
2. Keeping the off-duty  
factor of the process lower  
than 0.5  
- Many magnetrons;  
- Auger resonator;  
-
Resonator divided into zones  
of heating and pause.  
use of:  
2
Material and Methods  
By application of UHFEMF and appropriate selection of  
3. Uniform heating of raw  
materials  
-
-
Rotating mechanisms;  
Vibrators.  
the parameters for the resonator chambers, where the  
conversion of microwave energy into heat occurs, it is possible  
to obtain a uniform heat release in the volume, if the movement  
of raw materials within it is provided. The heating efficiency  
is directly proportional to the square of the EF strength and the  
loss factor of raw material at a frequency of 2450 MHz.  
Therefore, the studies were carried out on the basis of the  
analysis of the effect of electrophysical factors on agricultural  
raw materials, the theory of the electromagnetic field of  
ultrahigh frequency, induction heating, and darsonvalization.  
The unloaded Q-factor of the resonators was estimated using  
the software CST Studio Suite 2017 and its subroutines CST  
Microwave Studio for three-dimensional computer simulation  
of electric field; it was also calculated using the construction  
parameters of the resonators as the ratio of capacitance to  
surface area, taking into account the skin layer. A three-  
dimensional simulation of the structural designs of the  
microwave devices with toroidal resonators were conducted  
using Compass-3D V17 software. The studied raw materials  
were potato tubers of the “White Rose” variety (weighing 50-  
use of:  
-
-
Biconical resonator;  
Toroidal resonator;  
4
field  
. High strength of electric  
- Quasi-stationary resonator;  
- Interference of waves in the  
resonator;  
-
Small volume.  
Implementation of:  
- Evanescent waveguides;  
5
. Compliance with  
-
Slots less than a quarter of the  
wavelength in width;  
Non-ferromagnetic flexible  
grids;  
electromagnetic safety  
(radiation density should  
-
2
not exceed 0.01 mW/cm )  
-
Remote control.  
reduced power of  
- Drive of transporting units;  
6
. Reduced energy costs for  
the process  
-
Fan for cooling magnetrons.  
-
Use of resonators with high  
7
. Increased efficiency of  
unloaded Q-factor;  
- Radio-hermetic design.  
the device  
5
5 g and of 53x30 mm in size), onion-seedlings of  
Bessonovsky” variety (of 15-25 mm in size) and cow  
colostrum.  
Taking into account the elaborated conditions for the  
implementation of the technological process of the effect of  
UHFEMF on the raw materials, three devices with toroidal  
resonators were developed. Two of them are designed for the  
preplant treatment of vegetable seeds; the purpose of the third  
one is defrosting cow colostrum. A feature of the toroidal  
resonator is a pronounced spatial separation of the electric and  
magnetic fields. The gap, where the electric field is uniform,  
can be considered as a flat capacitor (1). The two developed  
devices with different constructional designs of the toroidal  
resonator provide a complex effect of UHFEMF and corona  
discharge for preplant treatment of potato tubers and onion  
sets. The third device also has a toroidal resonator; it is  
designed for defrosting cow colostrum. The implementation of  
a complex effect of electrophysical factors is possible in a  
microwave device with a toroidal resonator containing  
evanescent waveguides, ensuring compliance with  
Figure 1: Potato tuber and onion set  
3
Results  
The authors analyzed the results of many years of research  
on the development of microwave equipment and elaborated  
1216  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1215-1223  
electromagnetic safety when row material moves through the  
resonator. A gas-discharge lamp connected to a source of  
kilohertz frequency provides a corona discharge and radiation  
of a bactericidal flux of ultraviolet rays.  
circular plane, a loading funnel 14 is installed. Microwave  
energy emitters 2 from magnetrons are located along the torus  
with a shift of 120 degrees and directed through its surface.  
There are the wire belt 4 and the scrapers 9 inside the torus;  
they are moved by the driven pulley 8 and the drive gear  
mounted on the shaft. An unloading dielectric limiter 11 is  
rigidly fixed above the wire belt; the limiter directs the potato  
tubers to the opening 10 with the evanescent waveguide.  
Fluoropolymer scrapers 9 installed under the wire belt and  
move with it; they are designed to remove waste from the torus  
through the opening 15 and the evanescent waveguide. An  
induction heater 3 is placed under the torus, and the torus  
segment above it serves as the secondary winding of the  
inductor (10).  
Selective heating of seeds under the effect of UHFEMF is  
caused by losses due to dipole polarization. The depth of  
penetration of standing waves into potato tubers is 1.5-2 cm,  
and the heating is usually heterogeneous. Therefore, uniform  
heating is achieved due to the thermal conductivity of the raw  
material and by its movement inside the resonator. Multi-  
generator devices were developed, where the working  
chambers provide a multiple impact of the UHFEMF on the  
raw material during its movement. Moreover, the magnetrons  
are evenly distributed over the volume of the resonator with a  
shift of 120 degrees to prevent their knocking out by the  
reflected waves.  
Thus, the device contains three different sources of  
electromagnetic radiation:  
-
microwave generators (main units: magnetron, emitter);  
3
.1 Device for preplant treatment of potato tubers by the  
- induction heater (primary winding and torus segment);  
- sources of kilohertz frequency (generator and gas-  
discharge lamps) generating high-frequency alternating pulsed  
current with high voltage, the value of which lies within the  
range of 2-15 kV, the current frequency is 110 kHz.  
effect of electrophysical factors  
Nowadays, chemicals are used for preplant processing of  
potatoes. Tubers are treated with agricultural preparations for  
prevention of diseases, protection from pests and for  
stimulation of growth. Among the preparations that are used  
for disinfection the most popular ones are such products as  
Maxim or Fitosporin-M combined with other fungicides and  
growth stimulants. They protect the crop from diseases at all  
stages of growth, but do not exclude occurring of side effects  
in humans (2).  
The positive effects of electrophysical methods of treating  
food products are known (3-6). However, the known methods  
of preplant treatment of potato tubers with low-frequency (8-  
1
2
9 Hz) magnetic fields (7) (patents No. 2415536, No.  
435349, No. 2483513 No. 2407264) are difficult for  
implementation on farms. There are medical sources of  
kilohertz frequency radiation, such as “Darsonval” and  
Ultraton” (8). The research conducted by the authors of the  
Figure 2: Device for preplant treatment of potato tubers by the effect  
of electrophysical factors: 1  toroidal resonator; 2  microwave  
energy emitters; 3  induction heater; 4  dielectric wire belt; 5 –  
rotating disk; 6  dielectric spreader of tubers; 7  drive pulley of the  
disk; 8 driven pulley of the wire belt drive; 9 dielectric scrapers for  
removal of wastes; 10  unloading opening for tubers; 11 unloading  
dielectric limiter; 12  sources of kilohertz frequency; 13  capacitor  
space; 14  loading funnel; 15  opening for removal of wastes  
paper shows that the effect of the effect of such sources could  
be increased by placing electro-discharge lamps connected to  
sources of a kilohertz frequency into UHFEMF (9).  
The purpose of treating potato tubers before planting by  
complex effects of electrophysical factors is elimination of a  
number of pests and activation of potato tuber cells in order to  
accelerate their germination and increase productive  
characteristics with the exclusion of side effects on the  
physicochemical composition of grown potatoes.  
The device for preplant treatment of potato tubers (Fig. 2)  
consists of a toroidal resonator 1 made in the form of a torus  
of circular cross section. The average perimeter of the torus is  
equal to multiple half of the wavelength. The middle part of  
the resonator is made of two plane-parallel circular planes  
forming a capacitor space 13. In this space, a disk 5 driven by  
an electric motor is installed coaxially with the resonator. A  
dielectric spreader of tubers 6 in the form of a streamlined  
surface is rigidly mounted above the disk. Detachable gas-  
discharge lamps powered by the sources of kilohertz frequency  
The technological process of preplant treatment of potato  
tubers is as follows. Load the potato tubers into the funnel 14.  
Turn on the electric drive of the disk 5; the drive pulley will  
rotate the driven pulley 8, which will move the wire belt 4.  
Turn on the sources of kilohertz frequency 12 and the  
induction heater 3; then turn on the microwave generators.  
Their emitters 2 will excite UHFEMF within the toroidal  
resonator. A traveling wave with a frequency of 2450 MHz is  
excited (11) within the toroidal resonator. Under the influence  
of the UHFEMF, the potato tubers are endogenously heated to  
35 °C, which accelerates the enzymatic activity of the tubers.  
In the capacitor space 13, the electric field intensity is quite  
high (more than 2 kV/cm), which protects the tubers from  
diseases and pests.  
Gas-discharge lamps 12 are located at a distance of several  
millimeters (3-5 mm) from potato tubers. In this case, small  
12 are installed uniformly along the perimeter and directed  
through the upper circular plane into the capacitor space.  
Protective net surround the gas-discharge lamps preventing  
them from being hit by tubers. In the center of the same  
1217  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1215-1223  
electrical discharges arise between the lamps and tubers,  
which accelerates biochemical reactions, saturates tubers with  
oxygen, increases elasticity and permeability of tubers (8). The  
electric discharge has a bactericidal and bacteriostatic action  
(
delays multiplication of bacteria). Discharges produce ozone  
with a disinfecting effect. Gas-discharge lamps provide the  
conversion of high-voltage to the corona discharge of the  
required strength. Complex physical and electrochemical  
processes involving inert gases in the lamps enable obtaining  
of several factors. Inert gas acquires the properties of an  
electrical conductor, which is closed to the ground through a  
layer of air between the lamp and potato tubers and through  
the tubers and the disk 5. As a result, a corona discharge occurs  
releasing ozone, heat and ultraviolet radiation in the capacitor  
space 13. This whole complex of factors contributes to the  
activation of cells of potato tubers, which provides increased  
and accelerated germination.  
Due to the fact that induction heaters are installed under  
the segment of torus bottom, the electromagnetic coil (primary  
winding) generates magnetic field, and the torus bottom  
segment (which is at least 70% of the surface of the induction  
hob in size and made of a ferromagnetic material) is heated by  
eddy currents. The wire belt 4 with the use of mobile  
fluoropolymer scrapers 9 separates pests from raw material;  
when the pests reach the heated segment of the torus, they are  
destroyed by thermal burn and removed through the opening  
Figure 3: Dielectric characteristics of potatoes depending on  
temperature at humidity of 78% and frequency of 2450 MHz  
The authors also studied the dependence of dielectric  
characteristics of potato tubers from moisture content (Fig. 4).  
With an increase in the content of moisture in potato tubers  
from 70 to 85%, the absorption coefficient increased from 10.8  
to 20.4. On the basis of these data, it is possible to calculate  
the power of dielectric losses at electric field strength of 1.5-2  
kV/cm. The technical characteristics of the device for preplant  
treatment of potato tubers by the complex effect of  
electrophysical factors are given in Table 2.  
15 and the evanescent waveguide.  
The choice of modes for the effect of the factors depends  
on the variety and maturity of potatoes. The use of the  
developed device with different electrophysical factors  
enables obtaining of environmentally friendly products that  
meet all the requirements of the standards. This device is  
recommended for preplant treatment of potato tubers no larger  
than 6 cm in size. This is conditioned by the design providing  
high strength of electric field in the capacitor space and the  
depth of penetration of centimeter wave into the potato tubers,  
as well as by the simplified design of the evanescent  
waveguides that are placed in unloading openings. Uniform  
heating of potato tubers and continuous operation of the device  
is provided by the use of wire belt for transportation of the  
tubers within the torus.  
Figure 4: Dielectric characteristics of potato tubers depending on  
humidity content at frequency of 2450 MHz  
Table 2: Device specifications  
Productivity, kg/h  
250-300  
Power of microwave generators, kW  
Power of sources of kilohertz frequency, kW  
Power of induction heater  
3.6  
0.225  
1.0  
To determine the value of dielectric loss, the dielectric  
characteristics of potatoes were analyzed depending on the  
temperature at humidity of 78% and frequency of 2450 MHz  
at a heating temperature of 150 °C, kW  
Power of motor-reduction drive МEO-6.3/12.5  
moving the wire belt, 2.4/4.8 rpm  
Power of device, kW  
0.043  
(
Fig. 3) (6).  
Analysis of the data shows that in the temperature range of  
040 °C, the value of the dielectric permittivity decreases by  
% (Fig. 3). The absorption coefficient in this temperature  
4.9  
Specific energy costs, kW∙h/kg  
0.015-0.2  
2
5
3.2 Microwave device for preplant treatment of onion sets in  
range increases; it is explained by the fact that, at a temperature  
of 30 °C, the denaturation of proteins begins accompanied by  
the release of moisture. The decrease in the loss factor at  
temperatures above 60 °C is conditioned by evaporation of  
moisture, as well as by thermal movement of polar molecules,  
which prevents their dipole orientation in the electromagnetic  
field.  
continuous mode  
It is known that treatment of onion sets before planting is  
carried out in order to avoid bacterial infections, intensive  
formation of inflorescences and low germination. Immediately  
before planting, onions are heated at a temperature of 3540  
°C for 1012 hours. Then, phytosporin is used to suppress  
development of pathogenic soil microflora (12). There is a way  
to heat onion sets in hot water (4550 °C) for 1012 minutes,  
then it is held in cold water for another 1012 minutes and then  
treated with pesticides and nutrient solutions (13). At the same  
1218  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1215-1223  
time, for uniform heating and cooling of onion sets on farms it  
is necessary to have water heaters and additional mixing  
mechanisms.  
adjuster 12. The strength of electric field is regulated by  
change of the distance between the bases of non-ferromagnetic  
cylinders.  
There is a method of preplant treatment of onion sets by a  
high-frequency electromagnetic field (14). High-frequency  
devices with fixed frequencies (27.12 MHz, 40.68 MHz) and  
periodic action are used for the treatment. The working  
chamber of these devices is a capacitor made of two parallel-  
arranged plates. According to the data of long-term laboratory  
and field studies on the application of high-frequency  
electromagnetic fields for preplant treatment of onion sets, an  
increase in sowing and productive indicators was observed, as  
well as improvement of product quality.  
The technological process of preplant treatment of onion  
sets is as follows. Turn on the electric drives of the air duct and  
dispenser with dielectric scrapers. Set a certain distance  
between the bases of the cylinders, calibrated to the required  
value of the electric field strength sufficient for disinfecting  
onion sets or potato tubers. Turn on the kilohertz frequency  
source providing the occurrence of a corona discharge between  
the side surface of the inner cylinder and a gas-discharge lamp.  
Due to the discharge, air ionization, ozone formation occur.  
The lamp will be a source of ultraviolet rays of “C” region.  
Then turn on the conveyor for loading the raw material into the  
dielectric cylinder through the evanescent waveguide. Turn on  
ultra-high frequency generators 4. Raw material getting into  
the capacitor part of a quasi-stationary resonator is moved by  
the dispenser with scrapers, heated to 3540 °C by the effect  
of UHFEMF and decontaminated due to the effects of ozone,  
electric field of high strength (above 1.5 kV/cm) and  
bactericidal action of ultraviolet rays. Strength of the electric  
field is regulated by changing the distance between the bases  
of non-ferromagnetic cylinders with the help of a threaded  
height adjuster of the inner cylinder. After one turn of the shaft  
of the electric drive of the spreader, the processed raw material  
is poured out through the unloading opening and the  
evanescent waveguide, which has a shape of triangular prism.  
The air duct provides the removal of dust, husks, etc. The  
technological process implies continuous mode of preplant  
treatment of onion sets or potato tubers.  
During the operation of the kilohertz frequency source,  
raw material affected by pulsed currents of high voltage and  
low power. The current passes through the gas-discharge lamp.  
A corona discharge of different intensity appears between the  
lamp and the side surface of the inner cylinder, depending on  
the size of the gap between them (0.52 cm). This process is  
accompanied by release of ozone, ionization of air, and  
formation of ultraviolet rays (16). The amperage on the gas-  
discharge lamp is not more than 0.2 mA, the voltage is 12-15  
kV, the pulse frequency is 110 kHz. Released ozone and  
ultraviolet rays of “C” region provide bactericidal effect.  
Bacteria and microorganisms present in the treated seed  
material are eliminated. The complex effect of various  
electrophysical factors activates the cells of potato tubers and  
onion sets, which increases the germination ratio and energy,  
growth rate and yield. When designing a quasi-stationary  
toroidal resonator for continuous operation, it is necessary to  
strive to reduce the equivalent capacitance at a given resonant  
frequency and to increase the equivalent inductance (toroidal  
surface). Due to these factors, the loss of microwave energy in  
a toroidal resonator can be reduced and its efficiency  
increased. Low radiation losses due to the presence of  
evanescent waveguides and losses in the walls of a quasi-  
stationary toroidal resonator made of aluminum lead to the fact  
that this resonator in the microwave range has a high value of  
unloaded Q-factor.  
The scientists of Stavropol State Agrarian University  
received positive results of scientific research on the preplant  
treatment of onion with a pulsed electric field aimed at  
improvement of sowing qualities (15).  
The microwave device (Fig. 5) for preplant treatment of  
vegetable crops (onion sets and potato tubers) consists of a  
vertically located quasi-stationary toroidal resonator 1 with a  
rectangular cross section. Quasi-stationary toroidal resonator 1  
is designed as coaxially located cylinders of non-  
ferromagnetic material, forming an annular space. The lower  
bases of the cylinders form a capacitor part 3 (the inner part)  
of a quasi-stationary toroidal resonator, where the distance  
between the walls is no less than a quarter of the wavelength,  
but it is also smaller than the distance between the walls of the  
torus of rectangular cross section.  
It is known that the shape of the profile of a toroidal  
resonator determines the structure of the excited  
electromagnetic fields. The electric field is mainly  
concentrated in the capacitor part (the inner part) of the  
resonator, where the distance between the walls is small, i.e.  
this part of the resonator has a capacitive character. The energy  
of magnetic field is concentrated in the peripheral part of the  
quasi-stationary toroidal resonator (in the torus) (1). The  
annular space between the side walls of the cylinders is closed  
on top by a flat surface, which has openings for the dielectric  
air duct 11 and for evanescent waveguide of circular section  
13 connected to the dielectric cylinder 2. Inside the annular  
space, there are a dielectric cylinder 2, a dielectric air duct and  
an annular gas-discharge lamp 9. The lamp is placed around  
the inner cylinder (at the level of its base) with a gap between  
them. The gas-discharge lamp 9 is connected to a source of  
kilohertz frequency 10 located on the inside surface of the  
inner cylinder. In the capacitor part 3, a dispenser 5 with  
radially located scrapers is placed. It is mounted on the shaft 7  
of the electric motor coaxially with the base of the outer  
cylinder, where an unloading opening 6 in the form of a sector  
was made. An evanescent waveguide in the form of a regular  
triangular prism is docked to the unloading opening. The  
emitters from magnetrons 4 located on the side surface of the  
outer cylinder with a shift of 120 degrees are directed to the  
capacitor part of the quasi-stationary toroidal resonator loaded  
with raw material 8. The capacitance of the capacitor part of  
the toroidal resonator is regulated by changing the vertical  
position of the inner cylinder with the help of a threaded height  
1219  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1215-1223  
Figure 5: Microwave device for preplant treatment of vegetable seeds in continuous mode: a) technological scheme; b) spatial image; 1 quasi-stationary  
toroidal resonator; 2  dielectric cylinder for loading raw material; 3  capacitor part of the quasi-stationary toroidal resonator; 4  magnetrons with  
emitters; 5  dispenser with radially located dielectric scrapers; 6  unloading opening with evanescent waveguide in the form of a regular triangular  
prism; 7  shaft of electric drive rotating dispenser with scrapers; 8  raw material; 9  annular gas-discharge lamp; 10  source of kilohertz frequency;  
1
1  dielectric air duct; 12  threaded height adjuster of the inner cylinder; 13  evanescent waveguide of circular cross section  
An experimental study of the dynamics of heating of onion  
colostrum is not rational due to the low content of  
sets in the UHFEMF at a specific power of 3.5 W/g was carried  
out. The results of the study show that the increase of  
temperature of the onion sets within the period of 40 s was 21  
immunoglobulins.  
Colostrum is taken in the first two days after calving and  
stored frozen (16). It differs from milk both by composition  
and by appearance: it is fatter, more viscous and thick; it has  
yellow tinge, sallow taste and different odor. Colostrum may  
vary by calorie, mineral and vitamin composition. It contains  
(17):  
°C. The expected productivity of the device is 250-300 kg/h.  
Description of the device, which also contains a quasi-  
stationary toroidal resonator but designed for defrosting of  
viscous raw materials, namely cow colostrum, is given below.  
-
Immunoglobulins;  
3
.3 Microwave device for defrosting cow colostrum  
A calf on the intake receives 47 liters of colostrum during  
- Iron-bound protein that inhibits multiplication of  
microorganisms and provides a powerful anti-viral effect;  
- Substances that stimulate tissue growth, strengthen the  
immune system, normalize the work of the gastrointestinal  
tract, protect cells from the action of viruses;  
the first days. The average daily milk yield for cows in the first  
days after calving is 1520 kg. Newborn calves can consume  
3050% of the total colostrum of cows. The remaining amount  
of colostrum should be frozen. The use of subsequent yields of  
- lysozymes  natural antibiotics, etc.  
1220  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1215-1223  
a torus of rectangular cross section and a capacitor part. The  
toroidal part is presented as coaxially arranged non-  
ferromagnetic cylinders 2, 3 of different heights without upper  
bases. The annular space between the cylinders is closed on  
top by an annular surface 5 made of non-ferromagnetic  
material. The upper base of the inner cylinder 2 is missing, and  
its lower base is a movable non-ferromagnetic disk 4. The  
height of the inner cylinder 2 is lower than the height of the  
outer cylinder 3. The gap between the edge of the lower base  
of the inner cylinder 2 and the lower perforated base of the  
outer cylinder 3 is less than the distance between the side  
surfaces of the cylinders 2, 3. Thus, the toroidal part of the  
quasi-stationary resonator is formed between coaxially located  
non-ferromagnetic cylinders 2, 3 of different heights and non-  
ferromagnetic surface 5 above them. The capacitor part of the  
resonator is represented by the gap between the movable non-  
ferromagnetic base-disk 4 and the perforated lower base of the  
outer cylinder 3.  
Figure 6: Dynamics of heating of onion sets in UHFEMF with a  
specific power of 3.5 W/g  
Colostrum that is taken for freezing has a density of 1.06–  
3
1
.045 g/cm . It is frozen in plastic bags of 1.01.5 liters and  
stored for 34 months at a temperature of -20 °C. For a farm  
with a livestock of 1000 heads of a dairy herd, it is sufficient  
to have a freezer compartment with a volume of 250300 liters  
to maintain the temperature -1823 °C. Colostrum is stored  
under these conditions for up to 8 months, and it is defrosted  
in batches at a temperature of 3538 °C. The raw material is  
defrosted before feeding, and this process takes long time. For  
example, it takes 1.5-2 hours for a 1.5-liter bottle of colostrum  
to defrost at room temperature.  
Different methods and devices are used in order to defrost  
colostrum for newborn calves, including the defrosting  
machine PM-3, which enables defrosting of colostrum within  
4
0 minutes. However, these methods apply uneven heating,  
which leads to destruction of the structure of immunoglobulins  
18, 22, 23). There is also defrosting machine Iglus-2 (19) and  
Figure 7: Microwave device for defrosting cow colostrum: 1 –  
magnetrons; 2  internal non-ferromagnetic cylinder without bases; 3  
(
non-ferromagnetic outer cylinder with a perforated lower base; 4 –  
colostrum bath BM-40 (20, 21). This equipment works on the  
principle of water bath, where a tubular electric heater heats  
the water; bottles with raw material are placed inside a rotating  
device within the water tank; such low productivity equipment  
works in periodic mode with high consumption of hot water  
and high energy costs.  
movable non-ferromagnetic base-disk; 5  upper base of the outer  
cylinder, shaped as an annular surface; 6  perforated round dielectric  
tray with boards; 7  shaft of the electric drive of the tray; 8  drain  
pipe; 9  convex bottom of the device  
The diameter of the movable non-ferromagnetic base-disk  
4 is smaller than the diameter of the inner cylinder 2; therefore,  
it can move freely inside the cylinder 2. The magnetrons 1 of  
the microwave oscillators are located on the outer side of the  
outer cylinder 3; the emitters are directed inside the capacitor  
part of the resonator. There is a slot on the side surface of the  
outer cylinder 3 in the capacitor part of the resonator; a  
perforated round dielectric tray with boards 6 protrudes  
through this slot. The tray 6 is located asymmetrically in  
relation to the axis of the cylinder, parallel to the lower  
perforated base of the outer cylinder 3, and it is rotated by  
electric motor 7. Under the outer cylinder 3, there is a convex  
bottom of the device 9 with a drain pipe 8. The average  
perimeter of the annular space and the diameter of the base  
disk 4 should be equal to a multiple half of the wavelength,  
and the size of the slot should be less than a quarter of the  
wavelength.  
Therefore, the technical task is to develop a device for  
uniform defrosting of cow colostrum at low operating costs by  
applying UHFEMF to frozen raw material in a quasi-stationary  
toroidal resonator with a capacitor part and rectangular cross  
section. It should provide a smooth increase in strength of the  
electric field due to a decrease in the interplate distance. The  
device was developed taking into account the results of studies  
of other authors in the field of application of electromagnetic  
radiation energy for heat treatment of agricultural raw  
materials (24, 25). It was also taken into account that the  
existing methods require long time for defrosting cow  
colostrum. Preliminary studies show that after the slow  
defrosting of colostrum, its quality is noticeably lower than the  
quality of fresh substance. With application of microwave  
technology, it is possible to defrost colostrum in minutes,  
depending on the volume of raw material. This enables to keep  
quality of defrosted cow colostrum almost equal to fresh  
product. It is known that the depth of penetration of UHFEMF  
The technological process of defrosting cow colostrum is  
as follows. Prepare cow colostrum frozen in cylindrical  
silicone containers. Load the frozen raw material without  
silicone container into the inner cylinder 2. Close it from above  
with a non-ferromagnetic base-disk 4. Open the drain pipe 8.  
Turn on the electric drive 7 of the dielectric perforated tray  
(
2450 MHz) into frozen colostrum increases from 1.5 cm to 42  
cm with an increase in temperature from -1 °C to -50 °C (4).  
The device for defrosting cow colostrum (Fig. 7) consists  
of a vertically located quasi-stationary toroidal resonator with  
1221  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1215-1223  
with boards 6. Turn on microwave generators; their  
magnetrons 1 would excite the UHFEMF in a quasi-stationary  
resonator through waveguides and emitters. The quasi-  
stationary resonator is characterized by the fact that the width  
of the capacitor part is smaller than the wavelength and the  
electric and magnetic fields are spatially separated. The  
magnetic component prevails in the toroidal part and the  
electric component of the electromagnetic field is concentrated  
in the capacitor part. The presence of a capacitor (narrowed)  
part in the quasi-stationary resonator provides a high strength  
of electric field for the H10 wave, correlated to an increase in  
capacitance (when the non-ferromagnetic disk 4 moves down  
the internal cylinder).  
This leads to an increase in the critical wavelength. The  
working range of a resonator with a capacitor part can be  
several times larger than the range of a cylindrical resonator of  
the same size. The concentration of the electric field in the  
condenser part of the resonator provides critical intensity of  
the electric field, which makes it possible to stop the  
development of bacterial microflora in thawed raw material.  
Frozen raw material that reached the dielectric perforated tray  
4
Conclusion  
The developed devices contain various sources of  
electromagnetic radiation:  
-
-
-
Microwave generators providing endogenous heating of  
potato tubers and protection from diseases and pests;  
Induction heater for destruction of beetles and other pests by  
thermal burn;  
High-frequency (110 kHz) alternating pulsed current  
generators with high voltage and electro-discharge lamps,  
which accelerate biochemical reactions, saturate tubers  
with oxygen, increase their elasticity and permeability.  
This whole complex of energy sources contributes to  
activation of cells of potato tubers and onion sets, accelerating  
and increasing germination and productive indicators. With  
the use of one device having capacity of 300 kg/h, it is possible  
to carry out preplant treatment of up to 20 tons of potato tubers  
(
no larger than 6 cm in size) with specific energy expenditures  
of 0.2 kW∙h/kg. Application of a new method of preplant  
treatment of potato tubers and onion sets enables one to  
increase crop yields up to 15%, improve product quality,  
increase hygienic product safety requirements, and reduce the  
urgency of the environmental problem of using chemicals.  
Therefore, it is recommended to use the developed installation  
on farms.  
6
with boards becomes partially defrosted by the effect of  
UHFEMF. The liquid fraction percolates through the  
perforations of tray 6. The tray is rotated by the electric motor  
7, and the frozen pieces of raw material drop onto the  
perforated base of the quasi-stationary resonator, where  
complete defrosting occurs. Defrosted raw material in the form  
of a viscous fluid flow through the perforations into the convex  
bottom of the device 9. Large frozen pieces are not carried out  
through the slot in the lateral surface of the outer cylinder 3,  
but due to the impact, they crumble and fall on its perforated  
base. As the raw material thaws, the non-ferromagnetic base-  
disk 4 moves down along the guides (internal grooves in the  
inner cylinder 2). This provides a smooth increase in strength  
of the electric field in the capacitor part of the resonator due to  
a decrease of interplate distance. The base-disk 4 together with  
pieces of frozen raw material fall on the dielectric tray 6, where  
it is taken out from the outer cylinder by the centrifugal force  
and removed. When the frozen raw material moving through  
the inner cylinder 2 reaches about half of its height, a new  
portion of the frozen raw material without silicone containers  
should be loaded, and a new disk-base should be installed on  
the guide grooves. This process is repeated until the entire  
volume of the required raw material is defrosted. The disk-  
base 4 limits the radiation of microwave energy in the process  
of loading new portions of raw material. Therefore, the process  
of loading new portion of raw material with the corresponding  
base-disc should be started before the previous base-disc falls  
onto the dielectric tray 6. Electromagnetic safety is ensured, as  
the waves are closed to the frozen raw material. The number  
of disks depends on the number of portions of raw material.  
After the defrosting of raw material, the device is sanitized,  
including disc-bases and silicone containers for cow  
colostrum. The temperature of the thawed raw material for  
feeding calves should not be lower than 3538 °C.  
Consequently, the effect of UHFRMF should provide a  
temperature increase from -20 °C to +35 °C.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission,  
manipulation of figures, competing interests and compliance  
with policies on research ethics. Authors adhere to publication  
requirements that submitted work is original and has not been  
published elsewhere in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
1. Strekalov AV. Electromagnetic fields and waves. A.V. Strekalov,  
2
3
.
.
Rogov IA. Electrophysical methods of food treatment. Moscow:  
Agropromizdat. 1989.  
4
5
.
.
Rogov IA. Gorbatov A.V. Physical methods of food treatment.  
Moscow: Food industry. 1974.  
Rogov IA. Nekrutman S.V. Microwave heating of food. Moscow:  
Agropromizdat. 1986.  
6. Electrophysical, optical and acoustic characteristics of food:  
handbook. I.A. Rogov (ed.). Moscow: Light and food industries.  
1
981.  
7
.
Titenkova MS, Makarova GV. Estimation of the main parameters  
of electrophysical methods for preplant treatment of potato tubers.  
Innovatsii v sel'skom khozyaystve. 4(14);2015:3437.  
1222  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1215-1223  
9
.
Patent No. 2626156 of the Russian Federation, IPC A 23 N17/00.  
Radio wave equipment for heat treatment of raw materials. А.А.  
Belov, G.V. Zhdankin, G.V. Novikova, O.V. Mikhailova, I.G.  
Ershova; applicant and patent holder NSAA (RU).  
1
1. Belov AA, Zhdankin GV, Novikova GV. Improvement and  
justification of the parameters of the microwave device with a  
toroidal resonator and a cellular rotor, designed for the heat  
4. Ushakova SI. Justification and study of the processes of drying  
and preplant treatment of onion sets in high-frequency  
electromagnetic field: PhD theses. (05.20.02). Chelyabinsk:  
Chelyabinsk Institute of Mechanization and Electrification of  
Agriculture. 1973.  
1
1
1
1
5. Starodubtseva GP. Preplant treatment of onion by pulsed electric  
1
2
2
2
2
2
4. Zhdankin GV. Development of technology and microwave device  
with conical resonators for heat treatment of non-food waste of  
animal origin. G.V. Zhdankin, G.V. Novikova, M.V. Belova.  
Herald NGIEI. 2018;10(89):5564.  
2
5. Shamin EA. Development of a microwave device with cylindrical  
resonators for drying of fur and fur raw material in continuous  
mode. Е.А. Shamin, B.G. Ziganshin, G.V. Novikov. Herald  
NGIEI. 2017;9(76):5764.  
1223