Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1224-1233  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Economic and Mathematical Models for Assessing  
and Forecasting the Dynamics of Labour Potential  
of the Border Regions of Siberia and Far East  
1
,2  
3,4  
Vadim A. Bezverbny , Sergey V. Pronichkin  
1Institute for Socio-Political Research, Russian Academy of Science, Moscow, Russia  
Department of Demographic and Migration Policy, MGIMO-University, Moscow, Russia  
2
3
Federal Research Center «Computer Science and Control», Russian Academy of Science, Moscow, Russia  
4
Institute for Socio-Political Research, Russian Academy of Science, Moscow, Russia  
Received: 13/09/2019  
Accepted: 22/11/2019  
Published: 20/12/2019  
Abstract  
The article is dedicated to assessment and forecasting of Gross Regional Product, employment, labour force and unemployment by  
sectors of the economy in the border regions of Siberia and Far East until 2025. For this purpose, there are developed economic and  
mathematical models considering the parameters of social and economic development. The social component is based on systematic  
approach to forecasting employment depending on the anthropogenic burden index, which takes into account duration and standard of  
living, population literacy, crime rate, environmental status and other indicators of the border regions of Siberia. The economic  
component uses econometric analysis of the types of economic activity in the border regions of Siberia and Far East, as well as time  
series analysis to forecast employment both in the medium and short term. In the labour market part, the labour force is projected  
considering the socio-economic effect of hidden unemployment.  
Keywords: Anthropogenic burden, Economic and mathematical models, Value added, Labour force participation rate, Unemployment,  
Employment  
1
Federal District economy for qualified personnel can be fully  
met at the expense of scientific, educational and technical  
potential of the regions, included in the district.  
1
Introduction  
The Siberian Federal District is the region with one of the  
highest unemployment rates (4). At the same time, Siberia is  
the region with the lowest rate of employment growth. Over  
the past 10 years, employment has increased at a compound  
annual rate of 1%. Over the same period, the unemployment  
rate fell from 8.7% to 7.3%. All that is caused by the very slow  
growth of labour force due to the demographic factors. The  
level women participation in the labour force is not high  
enough as well, comparing to the average values of  
participation in the regions, since its growth is constrained by  
the negative effect of financial and economic crisis in Russia  
The Siberian Federal District can be described as a  
territory with uneven regional development. Within the  
district, subsidized regions border on regions with a high  
potential for innovative development (5). Thus, there are  
demographic differences within the Siberian region. In  
particular, the subsidized Republic of Tuva is the border region  
with the highest unemployment rate of 18.3%. Krasnoyarsk -  
the inland region, is economically developed; the employment  
rate and economically active population there grow faster than  
in the rest of Siberian Federal District.  
(
8). The recovery process that has begun in recent years (1)  
The birth rate in Siberia is higher than the national average.  
According to this indicator, the Siberian Federal District is in  
third place after the North Caucasus and Ural Federal Districts.  
The Omsk Region demonstrates the highest level of labour  
force participation (about 69.5%). In 2005, the figure was  
does not provide an increase in labour force participation of  
previously disillusioned people, especially women.  
It is important to note the significant innovative potential  
of Siberian Federal District and the innovative infrastructure  
created in it. All that leads to significant opportunities for  
sustainable and long-term development. The need of Siberian  
64.9%. As a result of job placement (18) the level of labour  
force participation in the following years increased by almost  
Corresponding author: Vadim A. Bezverbny, (a) Institute for  
Socio-Political Research, Russian Academy of Science,  
Moscow, Russia. (b) Department of Demographic and  
Migration Policy, MGIMO-University, Moscow, Russia. E-  
mail: vadim_ispr@mail.ru.  
1
224  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1224-1233  
5
%, with high sensitivity to economic cycles (17). As a  
manufacturing and services. The value added block (1)  
consists of industry demand equations that explain the  
corresponding value added using economic indicators at the  
Federal and regional levels.  
consequence of this change, the unemployment rate continued  
to fall despite lower employment growth. The border region  
with the lowest number of unemployed is the Altai Republic.  
This figure in the Altai Republic is six times less than in the  
Omsk Region. However, since 2005, the labour force  
participation rate for the region has hovered at around 67%,  
and as employment continues to grow, the unemployment rate  
has fallen from 9.4% to 2.5%.  
V 0i  
1i NP 2i NV 3iVit1  
it it  
,
it  
(1)  
Vit is added value of the sector i in the region in the period t;  
The border regions today are largely less developed and  
economically less prosperous than the deep territories, which  
are similar in terms of development (3, 7, 9, 12). The  
hypothesis of the study formulated in this article is as follows:  
the actual conditions in the labour market of Siberia and Far  
East contribute to the reduction of unemployment in the short  
and medium term. Thus, this article is devoted to forecasting  
the Gross Regional Product, employment, labour force and  
unemployment rates in the border regions of Siberia until  
NPit is the price level of the sector i in the Federal District in  
the period t; NVit is added value of the sector i in the Federal  
District in the period t; and Vit-1- added value of the sector i in  
the region in the period t-1. Employment block (2) consists of  
dynamic sectoral demand equations that relate value added,  
socio-economic factors and employment in previous periods.  
Cobb-Douglas production functions are used as well.  
LnE  0i  
 1i LnV  2i LnNR  3i LnS  11i LnEit1  
it it t  
2)  
it is average annual number of employees in the period t by  
it  
2025. The article is structured as follows: first of all, there are  
(
considered some economic and mathematical models, then the  
results of assessment and forecasts. After all, there follow  
conclusions.  
E
type of economic activity i; Vit is added value of the sector i in  
the region in the period t; NRit is the level of wages by type of  
economic activity in the region i in the period t; S is index of  
t
2
Research Methodology  
Economic and mathematical models consist of two basic  
anthropogenic load in the period t; and Eit-1 is the average  
annual number of employees in the period t-1 by type of  
economic activity i. The developed models make it possible to  
predict the labour force, depending on demographic and socio-  
economic factors, taking into account fluctuations in demand  
for labour.  
The level of labour force participation (3) depends on two  
variables representing demographic and socio-economic  
factors. The demographic variable is those aged 15 to 72 years.  
The variable representing socio-economic factors is labour  
demand (gross employment). The latter is measured in natural  
logarithms to account for the disproportionate effect of  
exogenous variables. Using the partial adjustment approach, it  
is possible to formalize the level of labour force participation  
as the following dynamic equation.  
sub-models that take into account both social and economic  
factors. The social sub-model follows cohort-based  
a
forecasting method. They investigate the relationships  
between demographic indicators and the index of  
anthropogenic load (13, 14, 15, 16), which takes into account  
life expectancy, standard of living, literacy, health and culture  
of the population. It also takes into account the level of crime  
and the state of environment.  
Thus, the labour market is explained by socio-  
demographic factors when modelling the relevant trends. Any  
attempts to predict the employment level using social factors  
cause difficulties because the adequate forms of equations are  
not defined. The accuracy of existing models, based solely on  
demographic indicators, is low (2, 10, 11), so we propose a  
systematic approach that links socio-demographic and  
economic variables.  
The economic sub-model uses econometric analysis and  
time series analysis to predict value added and employment in  
the short to medium term. In addition, the socio-demographic  
unit provides forecasts depending on the cyclical factors of the  
region's economic sectors. Unemployment is then defined as  
the balance between employment and economically active  
population. The stimulating and restraining influence of short  
and medium-term economic fluctuations on employees is  
taken into account as well: the labour force is explained  
considering both demographic growth and the sensitivity of  
labour force participation rates to cyclical fluctuations in  
labour demand.  
The developed models consist of four recursive equations  
that explain the following groups of variables: population  
structure of the Siberian regions, value added, employment and  
labour force. Value added and employment are projected in the  
medium term using regional econometric models. These  
models predict value added and employment for the larger  
regional sectors of the economy, namely agriculture,  
PL   PO  LnTE  PL   
t
,
t
1
t
2
t
3
t1  
(3)  
is  
PL  
t
is level of labour force participation in the period t; PO  
t
persons aged 15 to 72 years; 푇퐸 = ∑ 퐸 is gross number  
푖ꢀ1  
of employees in the period t; and ɛ  
t
is correction factor. As a  
complement to the medium-term forecasts based on the  
developed econometric models, we use multidimensional time  
series models for short-term quarterly employment forecasts  
and exogenous variables in models (1) and (2). For this  
purpose, they use autoregressive modelling on the basis of  
moving averages (6), which allows the use of regional series  
of indicators as predictive variables of short-term employment  
in the border regions of Siberia and Far East. Time series  
models are more efficient for short-term forecasting than  
cause-and-effect econometric models. They meet or even  
exceed the accuracy of short-term forecasting with the help of  
econometric models. When we forecast short-term regional  
employment using econometric models, hypotheses are  
1
225  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1224-1233  
introduced in the process of model specification and selection.  
This is a source of predictive inaccuracy that is difficult to  
assess and control. Confidence intervals and various scenarios  
for short-term forecasting are ineffective as well. Our short -  
and medium-term employment models provide a forecasting  
horizon for testing the sensitivity of labour force participation  
and unemployment forecasts to different data sources and  
hypotheses.  
Federation. They need the data from 2004 to 2018 to work with  
the value added and employment blocks. The labour force unit  
and the short-term model were estimated from quarterly data.  
For the short-term model, the sampling period is 2004-2019.2  
(2019, the second quarter). Table 1 presents the results of  
i
evaluation of econometric models of the added value V of the  
i economic sector, where i = {1-agriculture; 2-manufactured  
goods and services}, for seven border regions of Siberia. Table  
2
1
also presents the advising determination coefficient R of  
econometric models. Table 2 presents the results of evaluation  
of the dynamic sectoral equations of the employed number in  
the period t by the i type of economic activity, where i = {1-  
agriculture; 2-manufactured goods and services}, for seven  
border regions of Siberia and Far East. Table 2 also presents  
the advising coefficient of determination.  
3
Results and Discussion  
3
.1 Estimates of Economic and Mathematical Models  
The main data sources used to evaluate the models in this  
article are the reports of the Federal State Statistics Service and  
the Governmental Analytical Center of the Russian  
Table 1: Estimates of Econometric Added Value Models of Border Regions of Siberia.  
2
Equations  
R
The Republic of Altai  
V  0,29NP  0,53NV  0,57V 0,27V2t  
0,79  
0,96  
1t  
1t  
1t  
1t1  
V  0,23NP 0,47NV 0,2V  0,56V  
2t1  
2
t
2t  
2t  
1t  
The Republic of Buryatia  
V  0,23NP 0,05NV  0,82V 0,08V2t  
0,95  
0,8  
1t  
1t  
1t  
1t1  
V  0,53NP 1,11NV  0,14V  0,15V  
2t1  
2
t
2t  
2t  
1t  
The Republic of Tuva  
V  0,2NP  0,23NV  0,83V  0,06V  
0,93  
0,94  
1t  
1t  
1t  
1t1  
2t  
V  0,62NP  0,02NV 0,36V  0,65V  
2
t
2t  
2t  
1t  
2t1  
The Altai Territory (Krai)  
V  0,07NP  0,66NV  0,43V 0,73V  
0,86  
0,97  
1t  
1t  
1t  
1t1  
2t  
V  0,07NP  0,73NV  0,32V  0,42V  
2t1  
2
t
2t  
2t  
1t  
The Zabaikalye Territory (Krai)  
V  0,57NP  0,13NV  0,26V  0,02V2t  
0,93  
0,95  
1t  
1t  
1t  
1t1  
V  0,48NP  0,98NV  0,59V 0,13V  
2
t
2t  
2t  
1t  
2t1  
2t1  
2t1  
The Novosibirsk Region  
V  0,27NP  0,35NV  0,73V 0,06V  
2t  
0,96  
0,79  
1t  
1t  
1t  
1t1  
V  0,14NP  0,06NV  0,27V 1,06V  
2
t
2t  
2t  
1t  
The Omsk Region  
V  0,32NP  0,85NV  0,06V  0,17V  
2t  
0,61  
0,9  
1t  
1t  
1t  
1t1  
V  0,26NP  0,43NV 0,03V 1,05V  
2
t
2t  
2t  
1t  
1
226  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1224-1233  
Table 2: Estimates of Forecasting Models for the Number of Employed in the Border Regions of Siberia and Far East.  
2
Equations  
R
The Republic of Altai  
LnE  0,37LnV 1,51LnNR 1,6LnS  0,93LnE  
1t1  
0,9  
1t  
1t  
1t  
t
LnE  0,87LnV  2,27LnNR 1,79LnS 0,11LnE  
2t1  
0,92  
2
t
2t  
2t  
t
The Republic of Buryatia  
LnE  0,78LnV 0,95LnNR 0,25LnS 1,17LnE  
1t1  
0,96  
0,92  
1t  
1t  
1t  
t
LnE  0,34LnV  0,24LnNR 0,35LnS  0,78LnE  
2t1  
2
t
2t  
2t  
t
The Republic of Tuva  
LnE  1,03LnV 1,44LnNR  0,08LnS 0,01LnE  
1t1  
0,73  
0,66  
1t  
1t  
1t  
t
LnE  0,73LnV  0,41LnNR 0,26LnS  0,25LnE  
2t1  
2
t
2t  
2t  
t
The Altai Territory (Krai)  
LnE  0,26LnV 0,69LnNR  0,2LnS  0,32LnE  
1t1  
0,95  
0,96  
1t  
1t  
1t  
t
LnE  0,79LnV 0,03LnNR  0,25LnS  0,36LnE  
2t1  
2
t
2t  
2t  
t
The Zabaikalye Territory (Krai)  
LnE  0,57LnV  LnNR  0,15LnS  0,62LnE  
1t1  
0,95  
0,92  
1t  
1t  
1t  
t
LnE  0,1LnV 0,91LnNR  0,67LnS  0,81LnE  
2t1  
2
t
2t  
2t  
t
The Novosibirsk Region  
LnE  0,45LnV  0,15LnNR 0,35LnS  0,75LnE  
0,98  
0,96  
1t  
1t  
1t  
t
1t1  
LnE  0,04LnV  0,35LnNR 0,15LnS  0,75LnE  
2
t
2t  
2t  
t
2t1  
The Omsk Region  
LnE  0,11LnV  0,16LnNR  0,43LnS  0,84LnE  
0,94  
0,97  
1t  
1t  
1t  
t
1t1  
LnE  0,64LnV 1,02LnNR 0,38LnS  0,41LnE  
2
t
2t  
2t  
t
2t1  
Table 3: Estimates of Forecasting Models for the Level of Labour Force Participation in the Border Regions of Siberia and Far East.  
2
Equations  
R
The Republic of Altai  
PL  0,57PO  0,64LnTE  0,2PL  
0,91  
t
t
t
t1  
The Republic of Buryatia  
PL  0,09PO  0,41LnTE  0,59PL  
0,87  
0,41  
0,55  
0,91  
0,83  
0,95  
t
t
t
t1  
The Republic of Tuva  
PL  0,35PO 0,38LnTE  0,22PL  
t1  
t
t
t
The Altai Territory (Krai)  
PL  0,3PO  0,01LnTE  0,41PL  
t1  
t
t
t
The Zabaikalye Territory (Krai)  
PL  0,32PO 0,17LnTE  0,62PL  
t
t
t
t1  
The Novosibirsk Region  
PL  0,18PO  0,42LnTE  0,65PL  
t
t
t
t1  
The Omsk Region  
PL  0,35PO  0,32LnTE  0,81PL  
t1  
t
t
t
Table 3 presents the results of assessment and forecasting  
of the level of participation in the labour force depending on  
the population from 15 to 72 years and employment in  
agriculture and the sector of production of manufactured goods  
1
227  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1224-1233  
and services. It can be seen from the estimates that the models  
have high prognostic properties. The accuracy of the  
constructed models, calculated on the basis of determination  
coefficient averages 0.87. The labour force participation  
equations include high-coefficient employment as an  
explanatory variable (see Table 3). This means that labour  
force participation in the border regions of Siberia depends  
significantly on the economic cycle and social factors, but the  
main effect on the labour force is produced by the demographic  
factors in the Border Regions of Siberia and Far East.  
in agriculture is expected to grow until 2022, but employment  
in this sector of economy will decline. The manufactured  
goods and services sector is growing in production by 2023,  
there takes place expected employment growth. Figures 5 and  
6 demonstrate the short-term projections of total employment  
for the next four quarters. Compared to the results presented  
by the econometric model (see Figure 3 and Figure 4), the most  
significant discrepancy is observed in the manufactured goods  
and services sector. Between 2020 and 2021, the econometric  
model predicts a decline in employment of about 1%, as  
opposed to the short-term model, which predicts an increase of  
about 1.2%. As for agriculture, the short-term forecast is  
higher than the medium-term one. The forecast of total  
employment in agriculture, presented by the econometric  
model, is 0.8% lower than the short-term forecast in 2020.  
Figures 7 and 8 present, respectively, the medium-term  
and short-term labour potential forecasts of the border regions  
of Siberia and Far East. In the period of 2020-2021, the  
econometric model predicts a 1.25% decrease in labour force  
participation, as opposed to the short-term model, which  
predicts an increase of about 1.35%.  
3.2 Long-Term and Short-term Forecasts  
Projections of value added (Gross Regional Product) differ  
from sector to sector (see Figure 1 and Figure 2). While  
agriculture is expected to grow up to 5% by 2022, production  
of manufactured goods and provision of services will not  
increase. Moderate growth in agriculture will give way to a fall  
by 2023, while the manufactured goods and services sector  
will see modest growth.  
If we look at employment by sectors of the economy of the  
border regions of Siberia (see Figure 3 and Figure 4), the  
forecasts differ from the results on value added. Value added  
Figure 1: Value Added of Agriculture, in Current Basic Prices; Percentage of the Total  
1
228  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1224-1233  
Figure 2: Value Added of the Manufactured Goods and Services Sector, in Current Basic Prices; Percentage of the Total  
Figure 3: Average Annual Number of People Employed in Agriculture (Thousands of People)  
1
229  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1224-1233  
Figure 4: Average Annual Number of Employees in the Sector of Manufactured Goods and Services (Thousands of People)  
Figure 5: Quarterly Number of People Employed in Agriculture (Thousands of People)  
1
230  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1224-1233  
Figure 6: Quarterly Number of Employees in the Sector of Production of Manufactured Goods and Services (Thousands of People)  
Figure 7: Labour Force Participation Rate, Percentage  
1
231  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1224-1233  
Figure 8: Quarterly Labour Force Participation Forecast, Percentage.  
creation of new jobs in accordance with national socio-  
economic prospects. Thus, there should be emphasized the  
importance of using some tools to support strategic decision -  
related to promotion of employment in the region.  
4
Conclusion  
In this article, we have developed and applied economic  
and mathematical models to predict the Gross Regional  
Product, employment and labour force rates in the border  
regions of Siberia in the Border Regions of Siberia and Far  
East. According to the results of the study, there can be drawn  
two main conclusions.  
First, unemployment, defined as the difference between  
labour and employment, depends on socio-economic factors in  
two ways. The sensitivity of unemployment to employment  
forecasts is lower than might be expected. Thus, despite the  
difference between the two short-term and medium-term  
employment forecasts, the hypothesis formulated in  
Introduction can be answered as follows: both the short-term  
and medium-term models predict an increase in  
unemployment.  
As a result of the expected reduction in labour force, the  
unemployment rate will remain close to the current level in the  
short term, despite the projected reduction in 2020  
unemployment rate. In the medium term, however, we should  
expect a slight increase in the unemployment rate in the border  
regions of Siberia.  
Secondly, taking into account the estimates of labour force  
equations, they can conclude that the labour force is sensitive  
to employment and socio-economic factors, but is mainly  
determined by demographic determinants. Unemployment is  
expected to remain a social problem for Siberia and in the  
Border Regions of Siberia and Far East in the short term,  
despite the expected significant increase in labour demand by  
5 Acknowledgments  
The reported study was funded by RFBR, project № 17-  
06-00699 and the Grants Council of the President of the  
Russian Federation, project № MK-5872.2018.6.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission,  
manipulation of figures, competing interests and compliance  
with policies on research ethics. Authors adhere to publication  
requirements that submitted work is original and has not been  
published elsewhere in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
2022. The unemployment rate and its level can be reduced by  
1
232  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1224-1233  
References  
1
2
3
.
.
.
Aganbegyan AG. Employment Problems in Modern Russia: Five  
Urgent  
Cases.  
Jeffektivnoe  
antikrizisnoe  
upravlenie.  
2
017;2(101):10-20.  
Aliyev AS, Popkov AYu, Popkov YuS. Structure of Probabilistic  
Macro-system Demo-economic model. Proceedings of ISA RAS.  
2
012;62:72-78.  
Angapova OB, Dondokov ZD. The Nature and Characteristics of  
the Border Territories of the Russian Federation. Vestnik  
VSGUTU. 2013;6:164-170.  
4
5
.
.
Egorenko SN. Regions of Russia. Socio-economic Indicators.  
Moscow: Rosstat. 2018.  
Ivanter VV. Structural and Investment Policy in order to Ensure  
Economic Growth in Russia. Moscow: Nauchnyj konsul'tant.  
2
017.  
6
7
.
.
Kantorovich GG. Time Series Analysis. Jekonomicheskij zhurnal  
VShJe. 2002;2:251-273.  
Mishchenko VV, Vorobyeva IN. Geo-Economic Features of  
Development of the Siberian Federal District Border Regions.  
Izvestija AltGU. 2013;2(78):294-300.  
8
9
.
.
Plotnikov VA, Vertakova YuV. Consequences of Modern  
Economic Transformations and Ways of Overcoming the  
Financial Crisis in Russia. Izvestiya BGU. 2010;6:71-78.  
Plotnikova SYa. Comparison of Dynamics of Economic  
Development of Border and Internal Regions of the Russian  
Federation. Regional'noe i otraslevoe razvitie. Izvestija BGU.  
2
007;5:50-53.  
1
1
0. Popkov YS. Entropy Models of Demo-economic Dynamics.  
Trudy ISA RAN. 2006a;28:7-47.  
1. Popkov YuS. Fundamentals of the Theory of Dynamic Systems  
with Entropy Operator and its Applications. Avtomatika  
telemehanika. 2006b;6:95-105.  
i
1
1
2. Popkov YuS, Posokhin MV, Gutnov AE, Shmulyan BL. System  
Analysis and Problems of Urban Development. Moscow: Nauka.  
1
983.  
3. Pronichkin SV. Information System for Determining the  
Anthropogenic Load on Megalopolis Ecosystem. Proceedings of  
the XVII all-Russian conference of young scientists on  
mathematical modelling and information technologies.  
Novosibirsk: IVT SO RAN. 2016;101.  
1
1
1
4. Pronichkin SV. Problems and Prospects of State Regulation of  
Anthropogenic Load on Megalopolis Ecosystem: Load Factors  
and Regulation. Nacional'nye interesy: prioritety i bezopasnost'.  
2
017a;1(13):177-191.  
5. Pronichkin SV. Problems and Prospects of State Regulation of  
Anthropogenic Load on Megalopolis Ecosystem: Establishment  
of Limits and Sanitary Protection Zones. Nacional'nye interesy:  
prioritety i bezopasnost'. 2017b;2(13):341-352.  
6. Pronichkin SV. Problems and Prospects of State Regulation of  
Anthropogenic Load on Megalopolis Ecosystem: Establishment  
of Payment for Negative Impact. Nacional'nye interesy: prioritety  
i bezopasnost'. 2017c;6(13):1140-1149.  
1
1
7. Staursky ES. Analysis of Labour Market Parameters of Omsk  
Region. Omskij nauchnyj vestnik. 2012;3:55-57.  
8. Staursky ES, Staursky SS. Study of Unemployment in the Labour  
Market of the Omsk Region. Omskij nauchnyj vestnik.  
2
014;5(132):46-49.  
1
233