Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 935-938  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Legal Support of Environmental Safety with  
Targeted and Non-Targeted Changes in the  
Genome of Living Organisms  
Elena V. Luneva  
Faculty of law, Kazan Federal University, Kremlevskaya str, 18, 420008, Kazan, Russia  
Received: 05/08/2019  
Accepted: 20/11/2019  
Published: 20/12/2019  
Abstract  
the paper explores social relations for targeted and non-targeted changes in the genome of living organisms based on the  
analysis of the work of Russian and foreign geneticists, biochemists, biotechnologists, bioecologists, molecular biologists and  
microbiologists. Ecological risks from targeted (genetic research, biotechnology, genetic engineering, experimental mutagenesis,  
genomic selection, etc.) and non-targeted (under the influence of the consequences of the negative impact on the environment)  
genome changes that are subject to an account upon environmental regulation of corresponding public relations are identified. It  
is advisable to provide in the legal support of genomic research the incentives (tax incentives, credit incentives, public-private  
partnerships, etc.) of targeted change in the genome, which allows solving social, economic, food and environmental problems.  
To prevent environmental risks, it is worthwhile to provide a system of legal prohibitions and restrictions when conducting any  
genomic research, as well as legal measures, means and methods aimed at protecting the natural environment, ensuring human  
environmental safety and rational nature management. The expediency of organizing an ecological genetic monitoring and  
cytogenetic monitoring service to determine the mutagenic potential of the environment has been proved. The analysis of genetic  
data is recommended to be used when making managerial decisions in the area under consideration.  
Keywords: Environmental and legal regulation, Genomic research, Environmental safety, Targeted change in the genome, Non-  
targeted change in the genome  
1
the period until 2030, approved by the Government of the  
1
Introduction  
Russian Federation, indicates that the prospects for the  
development of biotechnologies determine such challenges  
as preventing biodiversity loss; climate change and scarcity  
of agricultural land; urbanization and increasing pressure  
on the environment; distribution of genetically modified  
foods.  
In the Strategy for Scientific and Technological  
Development of the Russian Federation approved by  
Decree of the President of the Russian Federation No. 642  
dated December 1, 2016, the following are among the  
biggest challenges for society, the state and science:  
-
An increase in anthropogenic pressures on the  
The above Forecast also draws attention to the  
dependence of the intensive development of genomic,  
proteomic and postgenomic technologies on the need to  
ensure food security; preservation of resource potential;  
countering the spread of various types of diseases of  
humans and animals; obtaining biomaterials from  
renewable raw materials to replace traditional industries  
and the emergence of new products with unique properties;  
restoration of rare and endangered species of flora and  
fauna; conservation of biological resources of the oceans  
and many other circumstances. Recently, research has been  
actively conducted in the field of high-performance genome  
analysis methods, bioinformatics methods for processing  
genomic analysis data, regulating genome expression,  
genomic biomarkers, etc.  
environment to a scale that threatens the reproduction of  
natural resources, and the associated increase in risks to the  
life and health of citizens associated with their inefficient  
use;  
-
The need to ensure food security and food  
independence of Russia, the competitiveness of domestic  
products on world food markets, reduction of technological  
risks in the agricultural sector.  
Genomic research is capable of partially solving the  
identified major problems of social, economic, food, and  
environmental nature. The forecast of scientific and  
technological development of the Russian Federation for  
Corresponding author: Elena V. Luneva, Kazan Federal  
University, Kremlevskaya str, 18, 420008, Kazan, Russian  
Federation. E-mail: vilisa_vilisa@mail.ru. Tel.: 8 (843)  
The purpose of this work: to identify the features of the  
legal support of environmental safety with a targeted and  
233-72-13.  
935  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 935-938  
non-targeted change in the genome of living organisms.  
organism  
(biotechnology,  
genetic  
engineering,  
experimental mutagenesis, genomic selection, etc.) can  
affect natural patterns, processes, and phenomena,  
especially when it comes to environmental genomics  
2
Materials and Methods  
(
population ecogenomics, community genomics, landscape  
The identification of the peculiarity’s characteristic to  
genomics, etc.). Manipulations with the genomes of viruses  
and phages can pose an even greater danger to biota. These  
circumstances should be the basis for the environmental  
and legal regulation of genomic research.  
It is necessary to take into account the constant rapid  
development of molecular biology. New interconnected  
disciplines appear, including genomics, proteomics,  
transcriptomics, etc. New relations are emerging that  
require independent legal interpretation, especially from the  
standpoint of natural resource, agricultural and  
the legal provision of environmental safety with targeted  
and non-targeted changes in the genome of living  
organisms was based on an analysis of Russian political  
and legal documents and the works of various geneticists,  
biochemists, biotechnologists, bioecologists, molecular  
biologists and microbiologists (M. Asad, J.C. Avise, K.  
Dearfield, H.M. Kim, P. Nymark, N.J. Ouborg, C.S.  
Riesenfeld, J. Robinson, Stepanauskas R., et al.). Our  
studies devoted to the developments of scientists of natural  
sciences in genomic research made it possible for us to  
formulate proposals for the legal support of the  
corresponding block of public relations.  
environmental legislation as  
environmental and food security.  
a legal framework for  
Thus, a rather large block of diverse relations arises,  
covering the field of genomic research, which require their  
legalisation. At the same time, it should be thought out and  
taken into account that there are many environmental risks  
in addition to the significant advantages of biotechnologies  
for various segments of the economy, human social  
security, and environmental safety.  
The development of a legal concept for the impact on  
participants in relations in the field of genomic research  
should be based on a legal assessment of the occurrence of  
adverse environmental consequences. Legal measures,  
means and methods of biological and physical protection  
during genomic research need a separate study, as well as  
the ability of the latter to serve for an assessment of the  
genetic consequences of environmental pollution.  
The methodological basis of the study was the  
dialectical method which made it possible to learn in  
indissoluble unity and in  
a general connection the  
peculiarities of the legal provision of environmental safety  
with a targeted and non-targeted change in the genome of  
living organisms. The achievement of the goal set in the  
introduction was also promoted by logical methods in the  
form of analysis and synthesis, induction and deduction,  
comparison and generalization, analogy and typology. The  
formal legal technique helped to clarify the significance of  
the proposed new laws aimed at ensuring environmental  
safety in conducting relevant genomic research.  
3
Results  
We believe that the legal provision of environmental  
safety in carrying out genomic research should be based on  
the separation of relations concerning genomic research  
depending on targeted and non-targeted changes in the  
genome. The specified classification basis takes into  
account the specifics of the object and the subject of  
environmental legal relations in the field of genomic  
research.  
4
Discussion  
The most neighbouring area of genomics and ecology is  
environmental genomics, which includes a whole range of  
environmental genetic disciplines: landscape genomics,  
population ecogenomics, community genomics, nature  
protection  
genomics,  
toxicogenomics,  
ecological  
epigenomics, symbiogenetics, speciation ecogenomics, etc.  
Beyond the environmental genomics there are only applied  
disciplines exploring the ecological aspects of biomedical  
and agricultural genomics, with the area of intersection  
with the considered relations.  
Ecological genomics is aimed at studying the structure  
and functioning of the genome in order to gain an  
understanding of the relationship between the body and its  
biotic and abiotic environment (6). Landscape genomics  
studies the effect of landscape variables on genomic and  
genic flows and other microevolutionary processes that  
determine the genetic coherence and variability of  
populations (7, 8, 28). The focus of population  
ecogenomics is the gene pool of populations and its change  
both in space and in time (9). Community genomics is  
focused on genomics and genetics of species interactions  
and their environmental and evolutionary consequences  
Non-targeted genome change does not depend directly  
on the will of people but occurs under the influence of the  
consequences of  
a negative impact on the natural  
environment. So, it has been proved by applied scientists  
that environmental pollution poses a threat to the stability  
of the biota genome and the human genome. This  
circumstance necessitates studying the mechanisms of  
mutagenicity of various pollutants and conducting  
population-genetic studies to assess their real risk to the  
population and ecological systems (1, 2) with subsequent  
legal “registration” of the relevant relations.  
Of no less importance are the genotoxic contaminant  
bioindication capacities and the study of the effects from  
contaminants at the genomic level. For example,  
cytogenetic disorders (the frequency of hypo- and  
hyperdiploid cells and chromosomal aberrations) can be  
used as a bioindicator of environmental pollution (3-5).  
Subsequently, such bioindication can be recognized as a  
legal criterion for the “favourableness” of the natural  
environment or ecological safety of humans.  
(
10). Nature protection genomics studies small isolated  
populations that are threatened by a decrease in genetic  
diversity resulting from genetic drift and inbreeding (11,  
12, 26, 27). The given scientific directions of ecogenomics  
A purposeful change in the genome of a living  
partially demonstrate a wide range of relations on genomic  
936  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 935-938  
research in the field of environmental protection, ensuring  
human environmental safety and rational nature  
management.  
E.Ya. Tetushkin developed approaches and software  
tools for the joint analysis of genomic and landscape  
variables, allowing those genomic regions to detect that  
affect adaptation, which facilitates the planning of  
environmental measures and the prediction of the fate of  
biological species with the predicted changes in the  
especially as a result of varying the dose volume of  
mutagens.  
Metagenomics is recognised as one of the areas of  
ecological genomics. It involves DNA analysis of the  
studied microbial community (19,21,22). The advantage of  
metagenomics is its universal applicability to the analysis  
of any community from which the necessary amount of  
DNA can be isolated. The method of genome sequencing of  
a single cell genome, which allows analysing the genome  
of an individual strain of a microorganism, is recognized as  
a certain “antipode” to metagenomics methods (20,23,24).  
Therefore, the legal regulation of metagenomic research  
should be based on the sustainability of communities of  
living organisms.  
environment. For  
a
joint analysis of genomic,  
environmental, and landscape variables as such, a special  
network platform was created as part of the GEOME  
project, the purpose of which is to facilitate research in the  
field of landscape genomics (8). These circumstances serve  
as evidence of the need for analysis of genomic data to  
make managerial decisions in the field of nature  
conservation, ensuring human environmental safety and  
rational nature management.  
5
Summary  
Legal support of environmental safety during genomic  
research should be carried out along the delineation of  
social relations associated with targeted and non-targeted  
changes in the genome of living organisms. The  
distinguished public relations are characterized by a  
significant specificity, which should be taken into account  
when developing environmental and legal regulation.  
In the legal support of genomic research, it is advisable  
to provide legal incentives (tax incentives, credit incentives,  
public-private partnerships, etc.) of all the positive and  
useful characteristics of the relevant relationships identified  
above. For environmental risks already identified, as well  
as those discovered later, it is worthwhile to provide for a  
system of legal prohibitions and restrictions, as well as  
legal measures, means and methods aimed at protecting the  
natural environment, maintaining human environmental  
safety and rational nature management. In addition, the  
analysis of genetic data must be used when making  
managerial decisions in this area.  
Scientists from the Republic of Kazakhstan studied the  
patterns of accumulation and migration of oil products and  
heavy metals in the environment and in the body of test  
objects, as well as the induction of mutagenic changes at  
the subcellular level (chromosomal abnormalities), and  
their effect on the stability of the genome of natural  
populations (13,29,30). The results of this study are  
theoretically significant for the mechanisms of formation of  
chromosomal mutations induced by environmental factors  
(
as the basis for preserving the gene pools of natural  
populations for the sustainable development of  
ecosystems), and practically for the legal organization of  
the natural environment genetic monitoring and cytogenetic  
monitoring service to determine environmental mutagenic  
potential.  
Environmental  
geneticists  
associate  
genomic  
manipulation with the ecological plasticity of crops. Thus, a  
study of the molecular structure of genes that control the  
synthesis of storage proteins and their organization on the  
chromosomes, as well as the structure of the common  
wheat genome have revealed the molecular mechanisms of  
the genome's variability and its reorganization in response  
to a sharp change in living conditions and cultivation  
technologies (14,31). Therefore, the change in the state of  
the natural genomes of various types of agricultural plants  
after the introduction of foreign genes is aimed at  
improving the quality and quantity of the resulting crops.  
However, legal regulation should take into account that  
changes in the genomes of agricultural species in order to  
increase biodiversity can adversely affect the development  
of plant and animal communities.  
6
Conclusion  
The development of genomic, proteomic and  
postgenomic technologies is necessary to solve social,  
economic, food and environmental problems. At the same  
time, it is important by legal means to ensure the optimal  
balance between the positive effect of genomic  
achievements and the possible negative impact of genetic  
modifications on humans and the natural environment.  
Conflict Of Interest  
The author confirms that the data presented do not  
contain a conflict of interest.  
In the field of experimental mutagenesis, a number of  
foreign scientists have proved that small doses of mutagen  
concentrations are more effective and efficient in causing  
polygenic variability (15-17). The effect of small doses of  
mutagens is also one of the components involved in the  
problem of the mutagenic hazard of environmental  
pollution since the effects of the exposure to micro amounts  
of chemical compounds on the microbial population, higher  
plants, animals, and humans remain unknown (18,25).  
Therefore, the right regulation of experimental mutagenesis  
should be based on a balance of socially beneficial effect  
and possible adverse environmental consequences,  
Acknowledgements  
The work is performed according to the Russian  
Government Program of Competitive Growth of Kazan  
Federal University  
References  
[
1] Nymark P, Kohonen P, Hongisto V, Grafström RC. Toxic and  
genomic influences of inhaled nanomaterials as a basis for  
predicting adverse outcome. Annals of the American Thoracic  
Society. 2018 Apr;15(Supplement 2):S91-7.  
[2] Dearfield KL, Gollapudi BB, Bemis JC, Benz RD, Douglas  
937  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 935-938  
GR, Elespuru RK, Johnson GE, Kirkland DJ, LeBaron MJ, Li  
AP, Marchetti F. Next generation testing strategy for  
assessment of genomic damage: A conceptual framework and  
considerations. Environmental and molecular mutagenesis.  
[20] Stepanauskas R. Single cell genomics: an individual look at  
microbes. Current opinion in microbiology. 2012 Oct  
1;15(5):613-20.  
[21] Javahershenas R, Khalafy J, Prager RH. The Application of  
Arylglyoxals in the Synthesis of Pyrrolo [2, 3-d] pyrimidines  
via Multicomponent Reactions. Journal of Chemical Reviews.  
2019 Jul 1;1(3. pp. 154-251):233-42.  
[22] Khan Muluh E, Odokpe Ugbede A, Tor-Anyin TA.  
SCREENING OF Cassia sieberiana (FABACEAE) LEAF  
EXTRACT FOR IN-VITRO ANTI MICROBIAL AND  
ANTI-ULCER ACTIVITIES. Progress in Chemical and  
Biochemical Research. 2019 Sep 15;2(3):143-9.  
2
017 Jun;58(5):264-83.  
[
[
3] Kim HM, Kim DS, Chung YH. Environmental genomics  
related to environmental health biomarker. Molecular  
Cellular Toxicology. 2006;2(2):75-80.  
&
4] Robinson JF, Gormley MJ, Fisher SJ. A genomics-based  
framework for identifying biomarkers of human  
neurodevelopmental toxicity. Reproductive Toxicology. 2016  
Apr 1;60:1-0.  
[
5] Asad MA, Lavoie M, Song H, Jin Y, Fu Z, Qian H. Interaction  
of chiral herbicides with soil microorganisms, algae and  
vascular plants. Science of the Total Environment. 2017 Feb  
[23] Amar IA, Alshibani ZM, AbdulQadir MA, Abdalsamed IA,  
Altohami FA. Oil Spill Removal from Water by Absorption on  
Zinc-Doped Cobalt Ferrite Magnetic Nanoparticles. Advanced  
Journal of Chemistry-Section A (Theoretical, Engineering and  
Applied Chemistry). 2019 Sep 1;2(4, pp. 266-385):365-76.  
1
5;580:1287-99.  
[6] Van Straalen NM, Roelofs D. An introduction to ecological  
genomics. OUP Oxford; 2011 Oct 27.  
[24] Chopra B,  
K
Dhingra A, Dhar KL. Synthesis and  
of Piperine Analogs as Potent  
[
7] Zamora-Campos E, Carlos I. CYTOGENETIC EFFECTS OF  
THE SEDIMENTS FROM THE ZAHUAPAN RIVER.  
InEnvironmental Engineering and Health Sciences:  
Characterization  
Staphylococcus aureus NorA Efflux Pump Inhibitors.  
Chemical Methodologies. 2019 Jan 1;3(1. pp. 1-144):104-14.  
[25] Andayesh R, Elhami S. Application of modified sawdust for  
solid phase extraction, preconcentration and determination of  
trace lead in water samples. Asian Journal of Green  
Chemistry. 2019 Oct 1;3(4, pp. 418-549):536-49.  
[26] Powar N, Pandav R. Overview of Borophene as a Potential  
Candidate in 2D Materials Science for the Energy  
Applications. Journal of Chemical Reviews. 2019 Oct 1;1(4,  
pp. 252-350.):271-81.  
Proceedings of the International  
Symposium on  
Environmental Engineering and Health Sciences: a Joint Effort  
for the XXI Century, Cholula, Puebla, Mexico, October 26-30,  
1
2
998, Organized by Universidad de Las Americas-Puebla  
000 (p. 175). Water Resources Publication.  
[8] Tetushkin EYa. Landscape and environmental genomics.  
Genetics. 2013; 49(10): 1133-1148.  
[9] Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape  
genetics: combining landscape ecology and population  
[27] Foda A, Mosallam H, El-Khateeb A, Fakih M. Cinnamomum  
zeylanicum Extract as Green Corrosion Inhibitor for Carbon  
Steel in Hydrochloric Acid Solutions. Progress in Chemical  
and Biochemical Research. 2019 Aug 1;2(3, pp. 83-120.):120-  
33.  
[28] Walea A, Mulanib K, Dondeb K, Ponrathnama S, Chavana N.  
In Situ Generation of Ammonia: an Efficient Catalyst for the  
Synthesis of Phenol-Aniline-Formaldehyde Resol Resins.  
Advanced Journal of Chemistry, Section A: Theoretical,  
Engineering and Applied Chemistry. 2019 Aug 21.  
[29] Islam MJ, Kumer A, Paul S, Sarker M. The Activity of Alkyl  
Groups in Morpholinium Cation on Chemical Reactivity, and  
Biological Properties of Morpholinium Tetrafluroborate Ionic  
Liquid Using the DFT Method. Chemical Methodologies.  
2019 Jul 4.  
[30] Haq Bhat IU, Yi YS. Green synthesis and antibacterial  
activity of cadmium sulfide nanoparticles (CdSNPs) using  
Panicum sarmentosum. Asian Journal of Green Chemistry.  
2019 Oct 1;3(4, pp. 418-549):455-69.  
genetics. Trends in ecology  
;18(4):189-97.  
& evolution. 2003 Apr  
1
[
10] Fritz RS, Simms EL, editors. Plant resistance to herbivores  
and pathogens: ecology, evolution, and genetics. University of  
Chicago Press; 1992 Aug 15.  
11] Avise JC. Perspective: conservation genetics enters the  
genomics era. Conservation genetics. 2010 Apr 1;11(2):665-9.  
12] Ouborg NJ, Angeloni F, Vergeer P. An essay on the necessity  
and feasibility of conservation genomics. Conservation  
genetics. 2010 Apr 1;11(2):643-53.  
13] Bigaliev AB, Kobegenova SS, Kozhakhmetova AN,  
Dzhienbekov AK. Ecological and genetic assessment of the  
impact of environmental pollution by heavy metals and  
radionuclides in biota and humans. Ecological monitoring of  
the environment: materials of the international school of  
young scientists. Novosibirsk State Agrarian University. 2016;  
[
[
[
6
1-75.  
[
14] Novoselskaya-Dragovich AYu. Genetics and genomics of  
wheat: spare proteins, ecological plasticity and immunit.  
Genetics. 2015; 51(5): 568-583.  
15] Arulbalachandran D, Mullainathan L, Velu S. Screening of  
mutants in black gram (Vigna mungo (L.) Hepper) with effect  
of DES and COH in M2 generation. Journal of Phytology.  
[31] Nurhayati DR. Growth of sesame (Sesamum indicum L.)  
plants with mediated compost biochar on coastal sandy land  
area in Bantul Regency Indonesia. EurAsian Journal of  
BioSciences. 2019 Jul 3;13(2):673-9.  
[
2
009 Sep 27.  
[
16] Dhanavel D, Pavadai P, Mullainathan L, Mohana D, Raju G,  
Girija M, Thilagavathi C. Effectiveness and efficiency of  
chemical mutagens in cowpea (Vigna unguiculata (L.) Walp).  
African Journal of Biotechnology. 2008;7(22).  
[
17] Ganapathy S, Nirmalakumari A, Senthil N, Souframanien J,  
Raveendran TS. Isolation of macromutations and mutagenic  
effectiveness and efficiency in little millet varieties. World J  
Agric Sci. 2008;4(4):483-6.  
[
18] Krotova LA, Chibis SP. Ecological and genetic effects of  
chemical compounds on plant adaptation. Modern problems of  
science and education. 2017; (6): 250.  
[
19] Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics:  
genomic analysis of microbial communities. Annu. Rev.  
Genet.. 2004 Dec 15;38:525-52.  
938