Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1093-1098  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Robust Optimization of the Investment Portfolio  
under Uncertainty Conditions  
*
Alexey G. Isavnin, Damir R. Galiev, Anton N. Karamyshev , Ilnur I. Makhmutov  
Kazan Federal University, Naberezhnye Chelny Branch, Naberezhnye Chelny, Russia  
Received: 13/09/2019  
Accepted: 22/11/2019  
Published: 20/12/2019  
Abstract  
Of the goal of this study is to investigate the assessment of expected return parameters µ and return covariance matrices Σ in modern  
portfolio investment tasks. These parameters are used in almost all modern portfolio investment models, including the classic mean-  
variance Markowitz model, Black-Litterman model, smart models. In practice, they are difficult to evaluate correctly, since the  
parameter values change every day. However, the quality of investment portfolio depends precisely on these parameters. The quality  
of investment portfolio is understood as a combination of risk and profitability parameters. Number of methodologies are used in this  
article to reduce the uncertainty of these parameters. The main idea of these methods is to reduce the sensitivity of resulting optimal  
portfolios to uncertain input parameters. In other words, if the parameter values µ and Σ change slightly, the final portfolio shall not  
radically change its structure. According the results gained in this article, one asset will not be able to dominate the final portfolio.  
Chopra offers using the James-Stein estimate for the expected averages, while Black and Litterman use the Bayesian estimate µ and Σ  
(
taking into account the expert opinions). There are also selection methods and scenarios that are described in detail, for example, in.  
Of all these methods, the Black-Litterman model is most often used in practice.  
Keywords: Black-Litterman model, Portfolio investment, Analysis, Uncertainty, Risk  
1
1
Introduction  
SOCP is a class of tasks that lies between linear  
programming (LP) and semi-definite programming (SDP).  
Quadratic programming problems, problems with hyperbolic  
constraints, etc. are examples of SOCP class. SOCP can be  
solved more efficiently than SDP. There are suitable numerical  
methods for solving SOCP, which are implemented in some  
software packages. In this work, we used the SEDUMI library  
Robust optimization principles reduce the impact of the  
problems described above. To do this, one shall first determine  
the interval of possible parameter values µ and Σ. The value  
interval is called an indefinite set of these parameters. The final  
task will be solved for the "worst" case. As a result, the  
investor will be able to see the guaranteed level of portfolio  
income with the worst development of events. Quite often,  
VaR (Value at Risk) indicator is used as a criterion for the  
-
an addition to the MATLAB complex for solving the  
problems of SOCP and SDP class.  
"
worst" case (1). Similar approaches are proposed in (2, 3, 4,  
In this work, to give the model the robustness property, the  
worst case optimization method will be used, and the risk of  
capital loss will be introduced by defining VaR restrictions and  
restrictions on the investment portfolio structure. The idea of  
making models robust by optimizing the worst case is  
described in (7, 8, 9). To optimize the worst case scenario, one  
5
, 6).  
2
Text of Article  
To solve the problem of constructing optimal portfolios  
(
without taking into account the uncertainty of parameters), the  
Lagrange method or the Kuhn-Tucker theorem are used (if  
there are restrictions on the portfolio structure). When solving  
a robust optimization problem for the worst case from an  
indefinite set, the use of these methods is inefficient. Instead,  
the task can be reduced to the class of the second order cone  
problems (SOCP):  
m
shall first specify the many possible portfolio returns S and  
covariance matrices S . This set is called the "indefinite set" in  
v
the literature. The scheme for generating indefinite sets for  
returns and covariances is as follows:  
휇 ≤휇 ≤휇 , ∀푖  
(
2)  
ꢂ ≤ꢂꢁ푗 ≤ꢂ , ∀푖,ꢃ  
ꢁ푗 ꢁ푗  
푀푖푛{푓 푥|ꢀ‖퐴푥+푏‖≤푐 푥+푑,ꢀ푖=1,...,푁}.  
(1)  
Corresponding Author: Anton N. Karamyshev, Kazan Federal University, Naberezhnye Chelny Branch, Naberezhnye Chelny,  
Russia. E-mail: antonkar2005@yandex.ru.  
1
093  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1093-1098  
0
=
ꢛ휇 푥 + ꢛ 훽푥 − ꢛ 훽푥  
ꢁ ꢁ  
ꢁ ꢁ  
0
휇 =(휇 +휇 )/2,ꢀ훽 =(휇 −휇 )/2,  
ꢁ::<0  
ꢁ:ꢏꢝ0  
0
ꢛ(휇 푥 −훽|푥|)  
ꢁ ꢁ ꢁ ꢁ  
0
ꢁ푗  
ꢁ푗  
0
ꢂ =(ꢂ +ꢂ )/2,ꢀ훿 =(ꢂ −ꢂ )/2,휇 −  
ꢁ푗  
ꢁ푗  
ꢁ푗  
=
0
훽 ≤휇 ≤휇 +훽, ∀푖  
0
0
ꢁ푗  
ꢂ −훿 ≤ꢂ ≤ꢂ +훿 , ∀푖,ꢃ  
0 푇  
ꢁ푗  
ꢁ푗  
ꢁ푗  
ꢁ푗  
=ꢌ휇 ꢍ 푥−훽 |푥|  
0
0
푆 =ꢄ휇:휇 −훽≤휇≤휇 +훽,훽≥ꢅꢆ  
ꢎ푎푥ꢙ푥 훴푥ꢚ=ꢎ푎푥ꢛꢂ 푥푥  
0
0
ꢁ푗 ꢁ 푗  
푆 =ꢄ훴:훴 −훥≤훴≤훴 +훥,훥≥ꢅꢆ.  
,푗  
0
=
ꢛ (ꢂ −훿 )푥푥  
The formed worst-case optimization problem shall be  
reduced to SOCP form, after which a robust statement of the  
original problem will be obtained. Until recently, modern  
portfolio theory formed by G. Markowitz as far back as 1952  
remained almost the only quantitative method for solving the  
portfolio analysis problem. The main idea of this theory is as  
follows. Let there be n types of assets from which the investor  
can form a portfolio. Capital is distributed between assets in  
ꢁ푗  
ꢁ푗 ꢁ 푗  
ꢁ,푗:ꢏ<0  
0
+
ꢛ (ꢂ +훿 )푥푥  
ꢁ푗 ꢁ 푗  
,푗:ꢏꢝ0  
0
=ꢛꢂꢁ푗+ꢛ훿ꢁ푗ꢟ푥ꢟ  
ꢁ,푗  
ꢁ,푗  
0
ꢛꢂ 푥푥 +ꢛ훿 |푥|ꢟ푥ꢟ  
ꢁ푗 ꢁ 푗 ꢁ푗 ꢁ 푗  
=
shares 푥,ꢀꢅ≤ ≤1,ꢀ∑ 푥 =1. Assets are characterized  
ꢁꢈꢉ ꢁ  
,푗  
ꢁ,푗  
by efficiencies R  
i
, which are random variables with known  
푇 0  
=
푥 훴 푥+|푥| 훥|푥|  
i i  
mathematical expectations MR =, and covariance matrix  
훴=ꢊ푐표ꢋꢌ푅,푅ꢍꢊ. Markowitz problem is formulated as  
follows:  
0 푇  
푀푎푥ꢠꢌ휇 ꢍ 푥−훽 |푥|− 훾푥 훴푥−  
훾|푥| 훥|푥||퐼 푥=퐶ꢡ.  
0
퐼 푥=1  
ꢎ푎푥ꢐꢑ휇 푥− 푥 훴푥ꢓꢔ  
.  
(3)  
푥∈푅  
As a result, the robust task will take the following form:  
Although the Harry Markowitz model may seem attractive  
and well-grounded from a theoretical point of view, a number  
of problems arise in its practical application. Application of the  
Markowitz model in the Russian market also showed its  
inconsistency (9). Main disadvantages of the Markowitz  
model:  
0 푇  
푀푎푥ꢣꢌ휇 ꢍ 푥−훽 |푥|− 훾ꢤ−  
ꢏ,ꢢ,휏  
(5)  
푥=퐶  
0
푇 0  
훾ꢥꢦꢤ≥푥 훴 푥 ꢧ.  
The model does not take into account the fundamental  
and other factors of profitability;  
The model does not allow for taking into account the  
uncertainty levels for individual assets;  
With a slight change in the input parameters, one can  
get a result that is very different from the previous one  
instability);  
In the absence of restrictions on the assets structure,  
ꢥ≥|푥| 훥|푥|  
The Telser model is a logical continuation of the  
Markowitz model. The main difference and advantage of this  
model in contrast to the classical statement of the problem of  
choosing the optimal portfolio is to control the risk of capital  
loss using the VaR indicator. The model itself has the  
following formulation:  
(
there is a large number of negative weights in the final  
portfolio.  
Let us compose a robust model, having previously  
performed a number of transformations:  
푉푎푅=−휇−푧푝  
휇 =휇 푥  
ꢎ푎푥 휇 ꢂ =푥 훴푥  
.
(6)  
푝 푝  
ꢩ ꢫ  
푥=퐶0  
ꢇ  
1
푀푎푥ꢐꢎ푖푛[휇 푥− 훾푥 훴푥]|퐼 푥=퐶 ꢖ  
0
ꢗ,ꢘ  
2
1
(
4)  
푀푎푥ꢐꢎ푖푛ꢙ휇 푥ꢚ− 훾ꢎ푎푥ꢙ푥 훴푥ꢚ|퐼 푥=퐶 ꢖ  
0
However, this model also inherits the main drawback of  
the classical approach - a strong instability to the input  
parameters. We compose a robust model according to the  
above definitions and prerequisites by performing preliminary  
transformations:  
2
푥=퐶  
0
푀푎푥ꢯꢎ푖푛ꢙ휇 푥ꢚꢀꢰ  
,푥ꢙ푃(≤−푉푎)ꢚ≤ꢲ  
(
7)  
0 푇  
ꢎ푖푛ꢙ휇 푥ꢚ=ꢌ휇 ꢍ 푥−훽 |푥|  
1
094  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1093-1098  
ꢎ푎푥ꢙ푃(푅 ≤−푉푎푅 )ꢚ≤ꢲꢀ  
subjective opinion, (퐾×퐾);  equilibrium return vector,  
ꢗ,ꢘ  
(푁×1); Q vector of subjective views, (퐾×1).  
푉푎푅 −휇 푥  
Uncertainty of subjective views is reflected in the error  
vector , whose elements are normally distributed with an  
average of 0 and a matrix . Thus, the final values of  
subjective opinions have the form of 푄+휀.  
ꢀꢎ푎푥  
≤푧 ⇔  
ꢗ,ꢘ  
푥 훴푥  
푉푎푅 −ꢎ푖푛휇 푥  
푧 ꢀ  
ꢎ푎푥√푥 훴푥  
ꢉ  
ꢉ  
ꢀ−ꢎ푖푛휇 푥−푧 ꢎ푎푥ꢴ푥 훴푥  
푄+휀=ꣀ ⋮ ꣁ+ꣀ ꣁ.  
푘  
(12)  
푉푎푅 ⇔  
0 푇 푇  
푇 0 푇  
ꢌ휇 ꢍ 푥+훽 |푥|−푧 ꢴ푥 훴 푥+|푥| 훥|푥|≤푉푎푅  
훼 ꢱ  
Error vector elements , usually nonzero. Variations of  
the error vector elements form a diagonal covariance matrix  
 and demonstrate the uncertainty measure of subjective  
views. The matrix is diagonal, because subjective opinions are  
independent of each other according to the model assumptions.  
0
0,5  
ꢌ훴 ꢍ 푥‖  
0 푇 푇  
ꢷꢵ≤ꢌ휇 ꢍ 푥+훽 |푥|+푉푎푅 .  
−푧ꢵꢶ  
0,5  
훥 |푥|‖  
As a result, the robust task will take the following form:  
1  
0
0
0   
0
푀푎푥ꢣꢌ휇 ꢍ 푥−  
  0  
0
(
13)  
(
8)  
푥=퐶  
0
0  
k  
00,5푥‖  
.
훽 |푥|ꢀꢦ  
.  
ꢷꢵ≤ꢌ휇 ꢍ 푥+훽 |푥|+푉푎푅  
0
ꢵꢶ  
0,5|푥|‖  
There are several methods for determining matrix elements  
The Black-Litterman model was first published by Fisher  
Black and Robert Litterman from Goldman Sachs  
The values of returns for subjective views, located in the  
column vector Q, are introduced into the model using the  
matrix P. The presence of the influence of each subjective  
opinion is reflected in the line vector of dimension 1×푁.  
Thus, we get the matrix P of dimension 퐾×푁for K views:  
(2,18,19,20). They proposed a theory of "equilibrium  
approach". Moreover, equilibrium is understood as an  
idealized state in which demand is equivalent to supply.  
According to the authors, natural forces, the functioning of  
which eliminates the deviation from equilibrium, function in  
the economic system. Equilibrium returns are calculated by the  
formula:  
ꢉ,ꢉ  ꣂ,ꢇ  
푃=ꣀ ⋮ ⋱ ⋮ ꣁ.  
(14)  
⋯ ꣂ  
푘,ꢉ  
푘,ꢇ  
훱=ꢸ훴푡  
,
(9)  
The final formula is as follows:  
where  - equilibrium return vector;  - risk aversion  
coefficient; - covariance matrix of historical returns; 푡  
푤=휇ꢌꢸ훴ꢍꢉ  
.
(15)  
-
market capitalization vector of each asset relative to the  
capitalization amount of assets in the portfolio. The coefficient  
Let us make a robust model. In this case, due to the vector  
formation features for estimating future returns, the use of the  
previous schemes is unacceptable. To give robustness, we  
introduce restrictions on the portfolio structure, as well as  
introduce VaR restrictions to control the risk of capital loss:  
characterizes the investors willingness to sacrifice the value  
of expected portfolio return in order to reduce its risk:  
퐸ꢌ푟ꢍꢹꢺ  
=
,
(10)  
ꢼ  
푥=1  
where ꢽꢌꢾꢍ- expected market return, - risk-free interest  
퐴푋≤푏  
푥 훴푥≤푠  
rate,  =푤 훴푤  
- market portfolio dispersion. Let us  
푚푘푡  
푚푘푡  
ꢎ푎푥 휇 푥ꢀ  
.
(16)  
consider the Black-Litterman formula for the posterior return  
vector (7). It is a key point before calculating the final portfolio  
푃ꢑ푌≤푉푎푅 ꢌ푌ꢍꢓ>ꣂ  
푌∈푅  
(
6). Let K is the number of subjective opinions, N - the number  
푥∈푅ꢇ  
of assets.  
We preliminary carry out a series of transformations  
according to the method proposed in (11):  
ꢹꢉ  
ꢹꢉ ꢹꢉ  
ꢹꢉ  
ꢹꢉ  
휇=ꢙꢌꢥ훴ꢍ +푃 푃ꢚ ꢙꢌꢥ훴ꢍ 훱+푃 푄ꢚ  
(11)  
Where µ new (posterior) mixed return vector (푁×1); ꢥ  
scaling factor;  return covariance matrix with dimension  
푃ꢑ푌≤푉푎푅 ꢌ푌ꢍꢓ>ꣂ⇔푃ꢌ휉 푥≥−훽ꢍ≥ꣂ  
(17)  
(푁×푁); P dimension matrix (퐾×푁), which identifies  
assets for which the investor has a subjective opinion;  –  
diagonal covariance matrix with confidence levels for each  
1
095  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1093-1098  
휉 푥−휇 푥 −훽−휇 푥  
consider the results of experiments with a flat trend. It can be  
seen that profitability increases for all models, with an increase  
in risk (Fig. 1, 2). However, robust models have higher returns  
at approximately the same risk levels. Consequently, the  
quality of models is increased.  
Similarly, let us consider the results of experiments in the  
Russian market with a ascending trend. It can be seen that  
profitability increases for all models, with an increase in risk  
(Fig. 3, 4). However, in case of ascending trend, there is a high  
return on portfolios both with standard and robust formulations  
of the problem. The quality of robust models is slightly higher  
than the quality of models in a standard setting. Again, we can  
see that the Black-Litterman model dominates, while the  
classical mean-variance model and the Telser model behave  
roughly the same. It depends on several reasons.  
Similarly, Sharp coefficients were calculated for  
ascending trend for various risk levels (Fig. 6). Firstly,  
forecasts from analytical departments with adequate  
forecasting ability were used (12, 13, 16, 17). Secondly, in the  
robust formulation of the problem, additional restrictions were  
introduced on the portfolio structure, which made it possible  
to maintain the diversification level at higher risks. We draw  
attention to the behavior of the Sharpe coefficient at various  
risk levels. Sharp values for lateral trend are shown below (Fig.  
푃ꢌ휉 푥≥−훽ꢍ=푃ꣃ  
푥 훴푥  
푥 훴푥  
훽−휇 푥  
=
1−퐹 ꣃ  
ꢌꢏꢍ  
푥 훴푥  
−훽−휇 푥  
꣄≥ꢅ.9ꣅ⇔퐹 ꣃ ꣄  
ꢌꢏꢍ  
훽−휇 푥  
1
−퐹 ꣃ  
ꢌꢏꢍ  
√푥 훴푥  
푥 훴푥  
ꢅ.ꢅꣅ  
꣆ꢹꢗ ꢏ  
=
≤퐹 ꢌꢅ.ꢅꣅꢍ=휇 푥+  
ꢘꢏ  
ꢌꢏꢍ  
퐹 ꢌꢅ.ꢅꣅꢍ√푥 훴푥≥−훽.  
ꢌꢏꢍ  
As a result, the robust task will take the following form:  
=1  
퐴푋≤푏  
푇  
푥 훴푥≤푠  
ꢎ푎푥 휇 푥ꢀ  
.
(18)  
ꢹꢉ  
ꢌꢏꢍ  
휇 푥+퐹 ꢌꢅ.ꢅꣅꢍ√푥 훴푥≥−훽  
푌∈푅  
푥∈푅  
Profitability is one of the most important indicators of  
portfolio management efficiency, indicating management  
efficiency. But it is impossible to judge the quality of  
management strategy using only profitability. In addition to  
profitability, there is a downside - risk, neglect of it in  
assessing effectiveness can distort the real state of things. In  
this work, Sharpe and Schwager coefficients were used to  
assess the effectiveness of investment portfolio.  
In total, several experiments were carried out as part of the  
work. Time interval: 01.07.2010  
conducting experiments on constructing optimal portfolios  
using the described models, we used data on daily stock quotes  
traded on the MICEX. The experiments were conducted on the  
Russian market with ascending and flat trends. Let us first  
5).  
3
Methods  
In the course of the study, the authors applied the following  
methods:  
1. Selective analysis of specialized literature with a high  
citation index on the topics indicated in the article title. In  
particular, we considered the Lagrange method, Kuhn-Tucker  
theorem, modern portfolio theory of G. Markowitz, Telser  
model, and Black-Litterman model.  
01.02.2011. When  
Figure 1: Risks and returns of portfolios with a flat trend  
Figure 2: Risks and returns of portfolios with a flat trend  
1
096