Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1082-1088  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
The Impact of Tax Risk Indicators on the  
Company's Market Capitalization  
*
Regina V. Nagumanova, Tatyana V. Erina, Aigul I. Sabirova  
Kazan Federal University, Institute of Management, Economics and Finance, Kazan, Russia  
Received: 13/09/2019  
Accepted: 22/11/2019  
Published: 20/12/2019  
Abstract  
To date, empirical research is one of the reliable methods of scientific knowledge. It is aimed at collecting and analyzing data on  
the object of study. Its purpose is to identify and establish certain dependencies and patterns. All empirical studies are based on a  
clear scientific base and a rigorous organization process. In this regard, the organization’s tax risk management system, as one of the  
components of the financial management system, also serves as an indicator of the effectiveness of the corporate tax management  
system itself. Financial management is a complex process, which consists in the effective use of all available financial resources in  
the organization. In order for the company or enterprise to be stable, and its market value to increase over time, it is necessary to  
combine the efforts of all structural divisions of the company. These units should work as a single, well-coordinated mechanism, and  
only then the goals of the organization will be fully achieved.  
Keywords: tax risk, tax planning, risk management, company capitalization, risk factors, financial management.  
1
much is its chaotic and unpredictable fluctuation (1, 2, 4, 6,  
1
Introduction  
10). The analysis showed that an increase in the tax burden  
Given the continuity of the activities of many enterprises,  
leads to a decrease in the production activity of economic  
entities both in the industrial sphere and in the Russian  
economy as a whole.  
it is important to eliminate the imbalance of interests of  
process participants, in other words, to harmonize the  
organization’s financial management system, and as a result,  
tax burden management. Harmonizing this system is not  
necessary at one time, but systematically, comparing the  
results of the process with its main goals, setting priorities  
and comparing them with key indicators, monitoring and  
controlling the taxation management process of the company,  
in order to increase the efficiency of company management  
2 Methodology  
In most of the works that we examined, the indicators of  
tax burden act as an effective sign during the regression  
analysis, and as a factor variable - performance of the  
enterprise, presented in Figure 1. According to the results of  
an empirical study, there is a linear relationship between the  
indicators presented in Figure 1. In addition, for the purposes  
of tax planning, it is proposed to conduct a regression  
analysis, where the indicator of the tax burden acts as the  
effective sign, and the indicators included in the denominator  
of the tax burden indicator act as the factor indicator (Figure  
2). The conducted studies examine the impact of the tax  
burden on the volume of production in the regions of the  
Russian Federation, which is characterized by various natural  
resource potentials: rich mineral resources, or knowledge-  
intensive production. In other words, the authors considered  
the influence of the tax burden on the main factor stimulating  
economic growth in a particular region. In their opinion,  
different industries and industries are not at all in the same  
position in terms of fiscal pressure exerted on them (3, 5, 7, 8,  
(
11, 12, 13, 14).  
A business is a complex investment product, the  
consumer usefulness of which is expressed in the ability to  
generate net cash flows, while ensuring the growth of well-  
being of owners. The system of internal corporate taxation  
influences all processes of the organization, the ultimate goal  
of this management is to increase the efficiency of the  
enterprise as a whole.  
In scientific studies, in addition to the influence of the  
total tax burden as the main factor of tax risk on the economic  
growth of a business entity, the influence of the very fact of  
its quick and sharp change is considered, since, according to  
many experts, not only (and not so much) has a detrimental  
effect on the economy the magnitude of the tax burden, how  
9).  
Corresponding Author: Aigul I. Sabirova, Kazan Federal  
University, Institute of Management, Economics and  
Finance, Kazan, Russia. Email: aigylkinyes@mail.ru.  
1
082  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1082-1088  
Fig. 1: Effective and factor signs in the construction of a regression model  
Fig. 2: Effective and factor signs in the construction of a regression model  
Among foreign studies, one can also find works devoted  
taxation, which will be disclosed in more detail in the next  
to studying the effects of corporate tax planning on the  
market value of a company.  
paragraph of the study.  
In the framework of this study, we formulated the  
following hypothesis: “tax risk factors have a significant  
impact on the company's market capitalization, expressed  
through the indicator of economic value added”. In practice,  
serious, key decisions are never taken without taking into  
account tax consequences, since they, being a powerful tool  
of economic regulation, in some cases are capable of forcing  
enterprises to radically change the tactics of their actions. The  
absence of effective tax risk management tools at the  
enterprise can lead not only to heavy financial losses, but also  
to the inability of the organization to continue to exist,  
because due to significant tax burden (in the absence of an  
effective tax planning system), the business entity is in a  
much weaker competitive position market in comparison with  
participants using tax optimization tools of their activities,  
and directs their efforts not at achieved the final goal, and for  
the payment of all necessary taxes, respectively, due to the  
satisfaction of customers' needs, the market value of such an  
entity is lower. The main factor of tax risk is the fluctuation  
3
Results  
The main goal of our study is to determine the impact of  
corporate tax risk indicators on the company's market  
capitalization. Financial management has the main goal of  
ensuring the well-being of shareholders, respectively, tax  
risk, as an object of financial management, can also affect the  
indicator of market capitalization. Our task is to correctly  
determine the main factors of tax risk and conduct a study of  
their impact on market capitalization. Moreover, as the main  
indicator that characterizes the market efficiency of the  
company, we will choose the indicator of economic value  
added or its derivatives (15, 16, 17, 18, 19, 20).  
Thus, the main objective of the study is to study the  
nature, direction and degree of interconnection of indicators  
of corporate risk management and indicators that determine  
the effectiveness of the organization. As independent  
variables, we selected several indicators of corporate  
1
083  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1082-1088  
of the tax burden of the company by more than 10%. In this  
regard, as the main indicator in the model, we will use the tax  
and its individual divisions. EVA reflects various categories  
of organization activity (Fig. 3).  
burden indicator (X  
current legislation, which were able to be calculated using the  
SPARK database, we included other indicators, such as:  
1
) of the organization. According to the  
EVA is an indicator of the quality of management  
decisions: a constant positive value of this indicator indicates  
an increase in the value of the company, while a negative  
value indicates its decrease. The calculation of the dependent  
variable is performed according to the formula:  
-
-
-
2
The ratio of income and expenses of the company (X );  
Fluctuation in the amount of VAT deductions (HZ);  
Fluctuation of the indicator of profitability of sales by  
);  
net profit (X  
5
EVA = (NOPAT  IC) * WACC  
or  
(2)  
At the same time, to improve the quality of the model, we  
used the following variables:  
-
-
-
Financial leverage (X  
Absolute liquidity ratio (X  
Asset mobility ratio (X ).  
4
);  
6
);  
EVA = (ROIC - WACC) * IC  
(3)  
7
Thus, the inclusion of these factors in the overall system  
of factor sampling is considered logical. Table 1 lists all the  
variables used to test the hypothesis. To improve the quality  
of the model and bring it to the form of a linear function,  
absolute indicators are logarithmized. Therefore, the desired  
function in general form will look as follows:  
where EVA is economic value added; IC is invested capital;  
NOPAT is net operating profit after taxes; WACC is  
weighted average cost of capital; and ROIC is return on  
invested capital. We calculated the dependent variable  
according to formula 3; the quantitative data necessary for  
this were taken from the SPARK database. To calculate the  
tax burden, the study uses a technique developed by the  
Ministry of Finance of the Russian Federation. According to  
this methodology, the company's tax burden represents the  
share of all tax payments paid in revenue from the sale of  
goods (work, services) for the reporting period, including  
income from other income:  
1 2 3 4 5 6 7  
LnY(t) = [LnX (t), X (t), LnX (t), X (t), X (t), X (t), X (t)], (1)  
where LnY (t) is the natural logarithm of the economic value  
added of the company; LnX (t) is the natural logarithm of  
the relative tax burden; X (t) is the ratio of income and  
expenses of the company; LnX (t) is value of VAT  
deductions; X (t) is financial leverage; X (t) is net profit  
margin; X (t) is absolute liquidity ratio; X (t) is asset  
mobility ratio; and t is the time period (year).  
1
2
3
4
5
ONN = [NP / (V + VD)] * 100%,  
(4)  
6
7
where ONN is relative tax burden; NP is the sum of all taxes  
paid by the enterprise; In is revenue from sales; and VD is  
revenue from other sales. Indicators of the tax burden by type  
of economic activity were taken from the Appendix to the  
Order of the Federal Tax Service “On Approving the Concept  
of a Planning System for Field Tax Audits” dated 05.30.2007  
No. MM-3-06 / 333.  
As a dependent variable, an indicator of a company's  
market performance, is an indicator of economic value added  
(
EVA). EVA shows the excess of the company's net  
operating profit after taxes and capital expenditures; and  
combines the simplicity of calculation and the ability to  
evaluate the effectiveness of both the enterprise as a whole  
Table 1: List of variables used to build a regression model  
No.  
Variables  
У
n
Economic Value Added (L )  
Relative tax burden  
X
1
Х
2
The ratio of income and expenses of the company  
VAT deduction (L  
Х
З
n
)
Х
4
Financial leverage  
Net profit margin  
Х
5
Х
6
Absolute liquidity ratio  
Asset mobility ratio  
Х
7
1
084  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1082-1088  
Fig. 3: The relationship between economic value added and other characteristics of the company  
The company's income and expense indicators, as well as  
VAT deductions, were taken from the financial statements of  
the studied companies. Financial leverage is defined as the  
ratio of the total liabilities of the organization (both long-term  
and short-term) to the amount of equity:  
According to Figure 4, 36% of the sample (9  
organizations) were enterprises engaged in the field of oil and  
gas production and oil refining, 20% (or 5 organizations) in  
the field of electricity; 16% (4 organizations) - in the  
transport and communications industry; 4% (1 organization) -  
in the field of transportation of petroleum products; 8% (2  
organizations) - in the chemical industry; 4% (1 organization)  
O = (DO + KO) / SK  
(5)  
-
in the engineering industry; 12% (or 3 organizations) are  
where: O is financial leverage; TO is long-term obligations of  
the organization; KO is short-term obligations of the  
organization; and SK is the amount of equity capital of the  
enterprise. Net profit margin is calculated as follows:  
employed in other services. The activities of enterprises were  
analyzed for 2015-2018. The sample is incredible - when  
selecting enterprises, certain conditions were met, such as: (a)  
legal form (public joint stock company) and (b) the presence  
of financial statements compiled in accordance with Russian  
accounting standards for the period under review. The sample  
we have formed can be considered representative of joint-  
stock commercial enterprises of Russia, since: each unit of  
the general population has an equal probability of falling into  
the sample; the selection of variables was made regardless of  
the trait we are studying; the number of units in the sample is  
large enough; the sample is relatively uniform. As a result of  
the Correlation program, we calculated a matrix of paired  
correlation coefficients, which is presented in the Table 2.  
Based on the analysis of the matrix of pair correlation  
coefficients, we can draw the following conclusion: none of  
the variables forms significant relationships with others,  
which means that we can continue the study and build a  
regression model. The results of the regression analysis for  
the first hypothesis are presented in the Table 3.  
ROS = PE / V  
(6)  
where ROS is net profit margin; PE is the net profit of the  
organization; and In is revenue. The absolute liquidity ratio is  
calculated as follows:  
Kabl = (DS + KFV) / TO  
(7)  
where: Kabl is absolute liquidity ratio; DS is cash; KFV is  
short-term financial investments; and THAT is current  
liabilities. The value of this indicator can also be found in the  
SPARK database. Asset mobility ratio was calculated:  
KMobak = (DS + KFV) / OA  
(8)  
where Kmobak is asset mobility ratio; DS is cash; KFV is  
short-term financial investments; and OA is the value of  
current assets. In addition to the financial statements of the  
companies, the study also used industry-specific non-  
diversified risk ratios (leveraged beta) from the website of  
Asfat Damodaran. 25 Russian enterprises were selected as the  
empirical base, most of which are employed in the industrial  
sector of the economy. The industry sample structure is  
shown in Figure 4.  
As is known, in order to obtain the best results from least-  
squares analysis, it is necessary to fulfill the following basic  
assumptions: homoskedasticity (constant variance of  
deviations) and the absence of autocorrelation. The analysis  
showed that in the model under consideration there is no  
autocorrelation of residuals and variances of deviations of  
significant variables are constant. Testing for the absence of  
multicollinearity of factors using the method of inflation  
factors showed that multicollinearity is absent in the model.  
1
085  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1082-1088  
Fig. 4: Sectoral structure of the sample, in percent  
Table 2: Matrix of paired correlation coefficients  
У
X
1
Х
2
Х
З
Х
4
Х
5
Х
6
Х
7
У
1
0,2769  
1
0,3637  
0,3508  
1
0,313  
0,1692  
0,373  
-0,2182  
0,0032  
-0,1519  
-0,1223  
1
0,4014  
0,0165  
-0,0502  
-0,162  
0,0049  
1
-0,3837  
0,0519  
-0,2134  
-0,1286  
-0,0349  
-0,3122  
1
0,2507  
0,0822  
-0,1692  
-0,0445  
0,2023  
0,136  
X
1
0,2769  
0,3637  
0,313  
-0,2182  
0,4014  
-0,3837  
0,2507  
Х
2
0,3508  
0,1692  
0,0032  
0,0165  
0,0519  
0,0822  
Х
3
0,373  
1
Х
4
-0,1519  
-0,0502  
-0,2134  
-0,1692  
-0,1223  
-0,162  
-0,1286  
-0,0445  
Х
5
0,0049  
-0,0349  
0,2023  
Х
6
-0,3122  
0,136  
0,1945  
1
Х
7
0,1945  
Source: compiled by the author  
In general, the results of the analysis are at a fairly high  
level of significance. The multiple correlation coefficient is  
determination, which also indicates a good specification of  
the regression equation. The assessment showed that the  
model is statistically significant at significance levels of 90%.  
The significance of individual parameters is estimated using  
Student's t-test. According to the results of the study, it turned  
out that the empirical free coefficient and all the coefficients  
considered by us for independent variables are statistically  
significant at significance levels of 90%. The regression  
equation takes the following form:  
0.75. It shows the tightness of the combined influence of  
factors on a productive trait. In our case, the multiple  
correlation coefficient indicates a close relationship between  
the indicator of economic value added and the independent  
variables included in the model. The value of the coefficient  
of determination is 66%, which confirms a sufficient degree  
of conditionality of the variation of the result by variation of  
factors, in other words, a fairly close relationship of factors  
with the result. The adjusted coefficient of determination is  
1 2 З 4 5  
Y=-0,65+0,4*Х +0,04*Х +0,01*Х -0,02*Х +0,02*Х -  
64%. In magnitude, it is close to the coefficient of  
0,06*Х +0,65*Х  
6
7
(9)  
1
086  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1082-1088  
value of VAT deductions; X  
4
is financial leverage; X is net  
5
where Y is economic value added; X  
1
is relative tax burden;  
is  
profit margin; X  
mobility ratio.  
6
is absolute liquidity ratio; and X is asset  
7
X
2
is ratio of income and expenses of the company; X  
3
Table 3: Checking the significance of the coefficients of the regression equation  
Determination  
t - statistics  
F- statistics (Fcr =  
2,745)  
Factors  
Coefficients  
coefficient  
Relevance  
tcr = 2,605)  
2
R
У
-0,652167  
0,397116  
-4,67  
3,761  
3,416  
3,673  
-4,646  
5,365  
-5,256  
6,395  
Significant  
Significant  
Significant  
Significant  
Significant  
Significant  
Significant  
Significant  
X
1
Х
2
0,0359225  
0,0129198  
-0,0234624  
0,0234530  
-0,0606797  
0,646146  
X
3
0
,66  
311,3  
Х
4
Х
5
Х
6
Х
7
Source: compiled by the author  
The regression analysis revealed certain relationships  
between the tax risk indicators and the market capitalization  
of the companies included in our sample, thereby confirming  
the main hypothesis posed in the study.  
For the total sample of enterprises, indicators of corporate  
tax risk correlate with company value at an average level  
References  
1. Dedkova EG. Analysis and forecasting of tax costs in industrial  
enterprises: dis. Cand. econ. Sciences: 08.00.10. Dedkova Elena  
Gennadevna Orel. 2010;149:78.  
2
.
Ivanova IA. The development of the accounting and analytical  
system of tax obligations of agricultural organizations: dis.  
Cand. econ. Sciences: 08.00.12. Ivanova Irina Alekseevna. –  
Eagle.201:160 p.  
(
correlation coefficients are 0.3). Of all the independent  
variables included in the model, the indicator of fluctuations  
in profitability - profitability by net profit (the correlation  
coefficient is 0.4) has the greatest influence on the effective  
factor. A negative correlation can be traced between the  
effective variable and indicators of financial leverage and  
absolute liquidity. Asset mobility also positively correlates  
with company value.  
3
.
Novodvorsky VD, Sabanin RL. Assessment of the tax burden  
during the transition to  
Finance.2007;6:24-2782  
a
simplified tax system.  
4. Turgel ID, Bozhko LG, Linshi S. State support for single-  
industry towns’ development of Russia and Kazakhstan.  
Finance: Theory and Practice.2016;2(92):2232. (In Russ)  
5
.
Ismagilov II, Khasanova SF. Algorithms of parametric  
estimation of polynomial trend models of time series on discrete  
transforms. Academy of Strategic Management Journal.  
4
Conclusion  
The obtained result demonstrates the importance and  
2
016;15:20.  
6. Mingazova AI, Khayrullina AD, Garipova EN. Contemporary  
Economic Models: Evidence from Russia. International Journal  
of Economic Perspectives. 2017 Sep 1;11(3):1858-1864  
necessity of corporate tax planning and tax risk management,  
since, regardless of the specific goals of the organization,  
corporate taxation indicators have a significant impact on the  
company's market capitalization, which is a key indicator for  
a potential investor in making investment decisions.  
7
.
Kadochnikova ЕI, Ismigilov II. Measurement of cognitive  
growth factors of regional economy based on panel data.  
Mediterranean Journal of Social Sciences. 2014 Nov  
1
1;5(24):377-382.  
8
9
1
.
.
Cabello OG, Gaio LE, Watrin C. Tax avoidance in management-  
owned firms: evidence from Brazil. International Journal of  
Managerial Finance. 2019 Apr 8.  
Alsadoun N, Naiker V, Navissi F, Sharma DS. Auditor-Provided  
Tax Nonaudit Services and the Implied Cost of Equity Capital.  
Auditing: A Journal of Practice & Theory. 2017 Jul;37(3):1-24.  
5
Acknowledgements  
The work is performed according to the Russian  
Government Program of Competitive Growth of Kazan  
Federal University.  
0. Davis GA, Lund D. Taxation and investment decisions in  
petroleum. Energy J. 2018 Jun 1;39(6):189-208.  
1
087  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1082-1088  
1
1. Rezaei M, Nemati K. The Impact of Purchase Intent, Word of  
Mouth Advertising and Skill Domain of Seller on Quality of  
Customer Relationship to Sale Life and Savings Insurance  
Policies (Case Study: Dana Insurance Co., Bushehr Province).  
Dutch Journal of Finance and Management. 2017;1(2):43.  
2. Peres P, Moreira F, Mesquita A. Are really technologies at the  
fingers of teachers? Results from a Higher Education Institution  
in Portugal.2018;3(1).  
3. Chávez ME, García EM, Kramer CA. Confirmatory Model to  
Measure Attitude towards Mathematics in Higher Education  
Students: Study Case in SLP Mexico. International Electronic  
Journal of Mathematics Education. 2018 Dec 21;14(1):163-8.  
4. Zhatkin D. Russian literary-critical reception of Burns at turning  
of the XIXXX centuries. Opción. 2018;34(85-2):277-300.  
5. Pagar T, Ghotekar S, Pagar K, Pansambal S, Oza R. A review on  
bio-synthesized Co3O4 nanoparticles using plant extracts and  
their diverse applications. Journal of Chemical Reviews. 2019  
Sep 23:260-70.  
1
1
1
1
1
1
6. Moosavi-Zare AR, Zolfigol MA, Khaledian O, Khakyzadeh V,  
Farahani MD, Kruger HG. Tandem KnoevenagelMichael-  
cyclocondensation reactions of malononitrile, various aldehydes  
and dimedone using acetic acid functionalized ionic liquid. New  
Journal of Chemistry. 2014;38(6):2342-7.  
7. Ghanbaria F, Monavarib SM, Sadrc MK, Rahimib R,  
Mirbolookia H. Pesticide in Soil and Rice Crop from North of  
Iran: Concentration and Risk Assessment. Advanced Journal of  
Chemistry, Section A: Theoretical, Engineering and Applied  
Chemistry. 2019 Aug 26.  
1
1
2
8. Arzehgar Z, Sajjadifar S, Fekri MH. Synthesis of 2-Amino-4H-  
chromene Derivatives under Solvent-Free Condition Using  
MOF-5. Chemical Methodologies. 2019 Mar 1;3(2. pp. 145-  
2
75):251-60.  
9. Youseftabar-Miri L, Hosseinjani-Pirdehi H. An efficient  
approach to the synthesis of some novel heterocycles related to  
indoline moiety using [BMIm] Cl catalysis. Asian Journal of  
Green Chemistry. 2017 Oct 1;1(2. pp. 56-141):56-68.  
0. Meles DK, Adnyana DP, Rinaldhi CP, Octaviani RR, Cempaka  
DK. The antidiabetic effect of bitter melon (Momordica  
charantia L.) extracts towards glucose concentration, langerhans  
islets, and leydig cells of hyperglycemic mice (Rattus  
norvegicus). EurAsian Journal of BioSciences. 2019 Jul  
7
;13(2):757-62.  
1
088