Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1006-1015  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
The Monitoring of Nizhniy Kaban Lake by 16s  
Rrna Gene Amplicon Data Set-Based Bacterial  
Diversity  
Ludmila L. Frolova*, Anthony Elias Sverdrup  
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia  
Received: 05/08/2019  
Accepted: 20/11/2019  
Published: 20/12/2019  
Abstract  
The paper presents the results of research of bacterial diversity of Nizhniy Kaban Lake (Kazan, Russia) for 2016-2017, using  
the marker gene 16S rRNA of hydrobionts, based on the method of next-generation sequencing. Nizhniy Kaban, Verhniy Kaban  
and Sredniy Kaban are included in the system of Kaban Lakes. They are located in the center of a large industrial city, and suffer  
anthropogenic load. According to ecological studies, Kaban Lakes are polluted. The sequences of 16S rRNA Bacteria gene  
fragment of the freshwater lake Nizhniy Kaban were submitted to the international database in fastq format on the website NCBI  
with the numbers SRR7510984 and SRR7516469. The comparative analysis of metagenomic data showed a significant change in  
bacterial diversity over the years. A total of 103030 (2016) and 90402 (2017) high-quality reads were obtained; 76% (2016) and  
70% (2017) of the bacterial population was classified to the genus level, while 0.25% (2017) was classified to the species level.  
In total, 18 species of Bacteria were identified. Among them, bacteria occurring in the human gastrointestinal tract, were found  
the most often. These types of bacteria can be a threat to human health. Therefore, the species composition of Bacteria  
community should be taken into account when assessing the ecological state of water reservoirs.  
Keywords: Gene 16S rRNA, Next-generation sequencing, Freshwater lake, Bacteria  
1
phytoplankton by rbcL gene, in order to assess the  
1
Introduction  
ecological state of the freshwater Nizhniy Kaban lake (6-7).  
The work presents the results of research of bacterial  
diversity of Nizhniy Kaban lake (Kazan, Russia) for 2016-  
Currently, the assessment of water quality is carried out  
using various physicochemical and biological methods.  
One of them is the method of isolation and identification of  
microorganisms. The presence of bacterial pathogens in the  
water reservoirs adversely affects human health. They can  
be the agents of such diseases as cholera, diarrhea,  
dysentery, hepatitis A, typhoid fever and poliomyelitis (1).  
To assess the diversity of microorganisms in various  
environments, for example, in human intestine, bottom  
sediments of Lake Baikal or in the hot springs of  
Kamchatka, the methods of next-generation sequencing are  
used (2). This technology allows to accelerate the process  
of determining the sequences of organisms' genomes (3).  
The sequencing of 16S rRNA gene is a universal and  
effective approach for taxonomic characterization, as this  
gene is present in the genomes of all prokaryotes, and has  
relatively low variability (4).  
2017, using the marker gene 16S rRNA of hydrobionts,  
based on the method of next-generation sequencing.  
Nizhniy Kaban, Verhniy Kaban and Sredniy Kaban are  
included in the system of Kaban Lakes. They are located in  
the center of  
a large industrial city, and suffer  
anthropogenic load. According to ecological studies, Kaban  
Lakes are polluted.  
2
Methods  
The sampling from Nizhniy Kaban Lake (Kazan,  
Russia) was carried out during 2016-2017, in accordance  
with the standard hydrobiological methods (8).  
DNA was isolated from the pellet, using FAST DNA  
Kit (MP biomedicals), according to the manufacturer's  
protocol. The pellet was obtained by centrifuging of 50 ml  
of the sample, at a speed of 10,000 g for 15 minutes. The  
amplification of the isolated DNA was carried out using  
PhusionHigh-Fidelity DNA polemerase (ThermoFisher),  
and primers (Table 1). After this, the second PCR cycle  
was performed in order to index the samples (Nextera XT  
indices). Purification of PCR products was performed using  
Metagenomics can provide valuable information on the  
functional ecology of environmental communities (5). We  
previously used metagenomic DNA sequencing for the  
identification of zooplankton by СО1 gene, and  
Corresponding author: Ludmila L. Frolova, Kazan  
Federal University. Email: Lucie.Frolova@gmail.com.  
1006  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1006-1015  
Agencourt AMPure XP beads (Beckman Coulter). The  
obtained DNA libraries were sequenced on the device  
Illumina MiSeq (MiSeq Reagent kit v3).  
The software Krona chart (10) and GraphPad (11) were  
used to build charts.  
3
Results and Discussion  
In 2016-2017, the next-generation sequencing method  
Table 1: Primers for PCR of 16S rRNA gene  
Primers  
6SF_I  
Sequences  
'-  
was applied with the aim to identify Bacteria from Nizhniy  
Kaban Lake.  
5
1
tcgtcggcagcgtcagatgtgtataagagacagcctacggg  
nggcwgcag-3'  
3.1 Krona chart of the bacteria represented by 16S rRNA  
(
forward)  
gene amplicon-based bacterial diversity  
5
'-  
16SR_I  
The percentage distribution of Bacteria of Nizhniy  
Kaban Lake by species diversity and reads for 2016 is  
shown in Fig. 1-2. The percentage distribution of Bacteria  
of Nizhniy Kaban Lake by species diversity and reads for  
gtctcgtgggctcggagatgtgtataagagacaggactach  
vgggtatctaatcc-3'  
(
reverse)  
Metagenomic data were entered into the international  
2017 is shown in Fig. 3-4. Each circle represents the  
SRA database on the website NCBI with numbers:  
SRR7510984 and SRR7516469 (9). After filtering the  
reads by quality, trimming of sequences and removing of  
chimeric sequences, the obtained nucleotide sequences of  
phylum, class, order, family, genus, and species from the  
inside to the outside of the circle, respectively, indicated by  
the percent diversity, based on the absolute number of  
representative bacteria.  
1
6S rRNA Bacteria gene were aligned, using the software  
BLAST, in order to establish the taxonomic composition.  
Figure 1: The percentage of species diversity of 16S rRNA Bacteria of Nizhniy Kaban Lake (2016)  
1007  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1006-1015  
Figure 2: The percentage of 16S rRNA Bacteria reads of Nizhniy Kaban Lake (2016)  
Figure 3: The percentage of species diversity of 16S rRNA Bacteria of Nizhniy Kaban Lake (2017)  
1008  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1006-1015  
Figure 4: The percentage of 16S rRNA Bacteria reads of Nizhniy Kaban Lake (2017)  
3.2 The percentage of 16S rRNA Bacteria of Nizhniy  
Kaban Lake by phylum  
The percentage of species diversity of 16S rRNA  
Bacteria of Nizhniy Kaban Lake by phylum (2016-2017) is  
shown in Figure 5. As can be seen from Fig. 5,  
Proteobacteria Bacteroidetes  
(56.7%/38.57%),  
(
28.57%/9.28%) and Actinobacteria (14.29%/9.79%) are  
the most numerous by species diversity at the level of  
phylum, respectively by years.  
Figure 6: The percentage of 16S rRNA Bacteria reads of Nizhniy  
Kaban Lake by phylum (2016-2017)  
3.3 The percentage of 16S rRNA Bacteria of Nizhniy  
Kaban Lake by class  
The percentage of species diversity of 16S rRNA  
Bacteria of Nizhniy Kaban Lake by class (2016-2017) is  
shown in Fig. 7, parts 1-2. As can be seen from Fig. 7,  
Alphaproteobacteria (14.3%/21.1%), Betaproteobacteria  
Figure 5: The percentage of species diversity of 16S rRNA  
Bacteria of Nizhniy Kaban Lake by phylum (2016-2017)  
(15.71%/16.49%) Gammaproteobacteria  
and  
(
5.71%/14.43%) are the most numerous by species  
The percentage of 16S rRNA Bacteria reads of Nizhniy  
Kaban Lake by phylum (2016-2017) is shown in Figure 6.  
As can be seen from Fig. 6, Cyanobacteria  
diversity. The percentage of 16S rRNA Bacteria reads of  
Nizhniy Kaban Lake by class (2016-2017) is shown in Fig.  
8
Oscillatoriophycideae (75.60%/68.15%) is the most  
numerous by reads among Bacteria.  
, parts 1-2. As can be seen from Fig. 8, the species  
(
75.63%/75.19%) and Proteobacteria (3.68%/19%) are the  
most numerous by reads.  
1009  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1006-1015  
Figure 8: part 2. The percentage of 16S rRNA Bacteria reads of  
Nizhniy Kaban Lake by class (2016-2017)  
3
.4 The percentage of 16S rRNA Bacteria of Nizhniy  
Figure 7: part 1. The percentage of species diversity of 16S rRNA  
Bacteria of Nizhniy Kaban Lake by class (2016-2017)  
Kaban Lake by order  
The percentage of species diversity and reads of 16S  
rRNA Bacteria of Nizhniy Kaban Lake by order (2016-  
2017) is shown in Fig. 9-11. As can be seen from Fig. 9-11,  
the following orders were of the greatest importance in  
terms of species diversity and/or reads, in 2016:  
Oscillatoriales  
17.14%/3.79%),  
(1.43%/75.60%),  
Sphingobacteriales  
(14.29%/2.05%),  
(
Burkholderiales  
Flavobacteriales (11.43%/2.69%); in 2017: Oscillatoriales  
1.03%/67.63%), Burkholderiales (10.31%/4.08%),  
Actinomycetales (8.25%/0.47%).  
(
Figure 7: part 2. The percentage of species diversity of 16S rRNA  
Bacteria of Nizhniy Kaban Lake by class (2016-2017)  
Figure 10: The percentage of species diversity and reads of 16S  
rRNA Bacteria of Nizhniy Kaban Lake by order (2016)  
1
Oscillatoriales (1.43%/75.60%), 2 Frankiales  
7.14%/6.25%),  
Sphingobacteriales (17.14%/3.80%)  
(
3
Figure 8: part 1. The percentage of 16S rRNA Bacteria reads of  
Nizhniy Kaban Lake by class (2016-2017)  
1010  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1006-1015  
Figure 9: The percentage of species diversity and reads of 16S rRNA Bacteria of Nizhniy Kaban Lake by order (2016-2017)  
1011  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1006-1015  
genera were unique for 2016, 19.4% genera were common  
for 2016-2017, and 68.2% genera were unique for bacterial  
community of 2017. Flavobacterium (1.4%/0.65%),  
Fluviicola (0.32%/0.42%), Lewinella (0.4%/0.3%),  
Limnobacter  
(0.03%/0.15%),  
Limnohabitans  
(
(
0.11%/0.02%), Mycobacterium (0.11%/0.04%), Opitutus  
0.19%/0.08%),  
Phenylobacterium  
(0.05%/0.01%),  
Polynucleobacter  
(0.03%/0.02%),  
Planktothrix  
Planctomyces  
69.82%/42.40%),  
(
(0.40%/0.06%),  
Prosthecobacter (0.16%/0.03%), Rickettsia (0.08%/0.01%),  
Sediminibacterium (0.22%/0.63%), Zymomonas  
0.22%/0.02%) were the common genera for 2016-2017.  
(
Figure 11: The percentage of species diversity and reads of 16S  
rRNA Bacteria of Nizhniy Kaban Lake by order (2017)  
1
Oscillatoriales  
Pseudoanabaenales (1.54%/6.95%),  
Enterobacteriales (2.06%/5.6%),  
Burkholderiales (10.31%/4.08%)  
(1.03%/67.63%),  
2
4
3
3.5 The percentage of 16S rRNA Bacteria of Nizhniy  
Kaban Lake by family  
The total number of identified Bacteria by family is  
2
6/93 families, respectively for 2016/2017. The families by  
reads are shown in Fig. 12, among them 11% (2016), and  
7% (2017) are not classified. The following families are  
the most represented: Microcoleaceae - 38% (2016), 42.5%  
2017), Sporichthyaceae 5.78% (2016);  
Enterobacteriaceae - 9.85% (2017), Comamonadaceae -  
1
(
-
5.54% (2017).  
Figure 13: The percentage of 16S rRNA Bacteria of Nizhniy Kaban  
3.6 The percentage of 16S rRNA Bacteria of Nizhniy  
Lake by genus (2016-2017)  
Kaban Lake by genus  
The percentage of 16S rRNA Bacteria of Nizhniy  
Kaban Lake by genus (2016-2017) is shown in Fig.13. As  
can be seen from Fig. 13 - 12.4% of identified Bacteria  
Figure 12: The percentage of 16S rRNA Bacteria reads of Nizhniy Kaban Lake by family (2016-2017)  
1012  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1006-1015  
Table 2: Summary of Bacteria identified to the species level from 16S rRNA gene-based metagenomic study of freshwater from  
Nizhniy Kaban Lake (2017)  
Phylum  
Class  
Order  
Family  
Species  
%
Agromyces mediolanus1  
Candidatus Aquiluna rubra2  
Micrococcus luteus3  
Propionibacterium acnes4  
Collinsella aerofaciens5  
Bacteroides uniformis6  
0.0379  
0.0263  
0.0032  
0.0042  
0.0221  
0.0126  
0.0074  
0.0021  
0.0042  
0.0274  
0.0011  
0.0358  
0.0158  
0.0021  
0.0116  
0.0074  
0.0011  
0.0284  
Microbacteriaceae  
Actinobacteria  
Actinomycetales  
Actinobacteria  
Micrococcaceae  
Propionibacteriaceae  
Coriobacteriaceae  
Bacteroidaceae  
Coriobacteriia  
Bacteroidia  
Bacilli  
Coriobacteriales  
Bacteroidales  
Bacillales  
Bacteroidetes  
Porphyromonadaceae Parabacteroides distasonis7  
Staphylococcaceae  
Peptococcaceae  
Staphylococcus epidermidis8  
Desulfosporosinus meridiei9  
Faecalibacterium prausnitzii10  
Cetobacterium somerae11  
Brevundimonas diminuta12  
Variovorax paradoxus13  
Firmicutes  
Clostridia  
Clostridiales  
Ruminococcaceae  
Fusobacteriaceae  
Caulobacteraceae  
Comamonadaceae  
Moraxellaceae  
Fusobacteria  
Fusobacteriia  
Fusobacteriales  
Caulobacterales  
Burkholderiales  
Alphaproteobacteria  
Betaproteobacteria  
Acinetobacter rhizosphaerae14  
Pseudomonas veronii15  
Proteobacteria  
Pseudomonadales  
Gammaproteobacteria  
Pseudomonadaceae  
Xanthomonadaceae  
Helicobacteraceae  
Xanthomonadales  
Campylobacterales  
Pseudoxanthomonas mexicana16  
Sulfuricurvum kujiense17  
Epsilonproteobacteria  
Verrucomicrobia Verrucomicrobiae  
Verrucomicrobiales Verrucomicrobiaceae Prosthecobacter debontii18  
1
Aniline-assimilating bacteria. They occur in the soil; there are cases of human infection (12).  
It can be found in fresh and salt water (13).  
It is an obligate aerobe, widely distributed in the environment. It can be found in soils, dust, water and air. It is also a part of the normal  
microflora of the skin surface of humans and mammals (14).  
It occurs on the skin and in the gastrointestinal tract of humans and animals. It can cause the skin diseases in humans (15).  
Collinsella aerofaciens, a rod-shaped nonmotile obligate anaerobe, is the most abundant actinobacterium in the gastrointestinal tract of  
healthy humans. An altered abundance of C. aerofaciens may be linked with several health disorders, including irritable bowel  
syndrome (16).  
Bacteroides spp are the non-spore forming gram-negative bacilli, which are the part of the human resident flora (17).  
Parabacteroides distasonis belong to the main intestinal microbiota of healthy people. At the same time, these bacteria can cause some  
infections (18).  
2
3
4
5
6
7
8
It is a gram-positive bacteria, one of more than 40 species of the genus Staphylococcus (19). It is a part of the normal microflora of human  
skin, and mucous membranes (less often) (20).  
9
1
1
Desulfosporosinus meridiei sp. nov., is a spore-forming sulfate-reducing bacterium, isolated from gasolene-contaminated groundwater (21).  
0
It is one of the most common and important commensal bacteria of human intestinal microbiota (22).  
1
Cetobacterium somerae is  
a gram-negative, microaerotolerant, non-spore-forming and rod-shaped bacterium from the genus  
Cetobacterium, which has been isolated from human feces (23).  
It was isolated from clinical samples of patients with mucoviscidosis. It is used as a potential bioremediator of marine oil pollution (24).  
It can be found everywhere. It is abundantly present in environments, which are contaminated with organic compounds or heavy metals  
1
1
2
3
(25).  
1
4
Gram-negative bacteria; they are chemorganotrophs with oxidative metabolism. They are saprophytes, and universal in occurrence. They  
may be the cause of many infectious processes, including meningitis, septic disease in humans, and septicemia, abortion in animals. In  
February 2017, WHO ranked acinetobacteria among the most dangerous bacteria, due to their resistance to existing antibacterial drugs  
(
26, 38, 39).  
1
1
1
1
5
6
7
8
Pseudomonas veronii is a gram-negative, rod-shaped, fluorescent, motile bacterium, isolated from natural springs in France. It may be used  
for bioremediation of contaminated soils, as it has been shown to degrade a variety of simple aromatic organic compounds (27, 37).  
Pseudoxanthomonas mexicana is a species of mesophilic, motile, strictly aerobic, gram-negative, non-spore-forming, rod-shaped bacteria  
with one polar flagellum, first isolated from human urine, riverside urban soil and anaerobic digester (28, 31, 35, 36).  
It is a facultative anaerobe, chemolithoautotrophic sulfur-oxidizing bacterium, typical representative of the genus. The cells have the shape  
of curved rods, they are mobile, and have a single polar flagellum (29, 33, 34).  
It was isolated from fresh water (30, 32).  
1013  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1006-1015  
3
.7 The percentage of 16S rRNA Bacteria of Nizhniy  
S.Malanin and E.Boulygina, the scientists of Kazan Federal  
University, for their assistance in experimental work.  
Kaban Lake by species  
The species diversity of Bacteria in 2017 was 0.25% of  
the total number of organisms by reads. Table 2 shows the  
classification of bacterial organisms in Nizhniy Kaban  
Lake. The percentage of species diversity by reads of 16S  
rRNA Bacteria of Nizhniy Kaban Lake for 2017 is shown  
in Fig.14.  
References  
1. World Health Organization  
http://www.who.int/ru/news-  
room/fact-sheets/detail/drinking-water  
2. Biomolecule - http://biomolecula.ru  
3
. Ansorge WJ. Next-generation DNA sequencing techniques.  
New biotechnology. 2009 Apr 1;25(4):195-203.  
4
. Zhang J, Ding X, Guan R, Zhu C, Xu C, Zhu B, Zhang H, Xiong  
Z, Xue Y, Tu J, Lu Z. Evaluation of different 16S rRNA gene  
V regions for exploring bacterial diversity in a eutrophic  
freshwater lake. Science of the Total Environment. 2018 Mar  
1
5;618:1254-67.  
5
6
. Raes J, Letunic I, Yamada T, Jensen LJ, Bork P. Toward  
molecular traitbased ecology through integration of  
biogeochemical, geographical and metagenomic data.  
Molecular systems biology. 2011 Jan 1;7(1).  
. Frolova LL, Sverdrup AE. The Monitoring of Nizhniy Kaban  
Lake by Rbcl Gene of Fresh Water Ater Organisms Using  
Next-Generation Sequencing. RESEARCH JOURNAL OF  
PHARMACEUTICAL BIOLOGICAL AND CHEMICAL  
SCIENCES. 2018 Nov 1;9(6):262-71.  
7
. Khusainov AM, Frolova LL. The Evaluation Of Water Quality  
Of Nizhniy Kaban Lakeusing Next-Generation Sequencing.  
Figure 14: The percentage of species diversity by reads of 16S  
rRNA Bacteria of Nizhniy Kaban Lake (2017)  
RESEARCH  
BIOLOGICAL AND CHEMICAL SCIENCES. 2018 Nov  
;9(6):272-9.  
JOURNAL  
OF  
PHARMACEUTICAL  
1
4
Summary  
8
.
Bul’on V.V. “Methodological recommendations for the  
collection and processing of materials in the process of  
hydrobiological studies of the freshwater bodies.  
Phytoplankton and its products”, L.: State Research Institute  
on Lake and River Fisheries. 1981; 32.  
According to the results of the study, using the modern  
method of next-generation sequencing, the bacterial profile  
of Nizhniy Kaban Lake for 2016-2017 was characterized.  
The comparative analysis of metagenomic data showed a  
significant change in bacterial diversity over the years. A  
total of 103030 (2016) and 90402 (2017) high-quality reads  
were obtained; 97.8% (2016) and 98.4% (2017) of the  
bacterial population were classified to the phylum, while  
9. National Center for Biotechnology Information  
http://www.ncbi.nlm.nih.gov/  
1
1
1
0. Krona homepage  http://github.com/marbl/Krona/wiki  
1. GraphPad Software  https://www.graphpad.com/  
2. Sridhar S, Wang AY, Chan JF, Yip CC, Lau SK, Woo PC,  
Yuen KY. First report of human infection by Agromyces  
mediolanus, a gram-positive organism found in soil. Journal of  
clinical microbiology. 2015 Oct 1;53(10):3377-9.  
9
7.5% (2016) and 95.9% (2017) were classified to the class  
level, 92.4% (2016) and 95.4% (2017) were classified to  
the order level, 89.2% (2016) and 87.1% (2017) were  
classified to the family level, 76.4% (2016) and 70.1%  
13. Hahn MW. Description of seven candidate species affiliated  
with the phylum Actinobacteria, representing planktonic  
freshwater bacteria. International journal of systematic and  
evolutionary microbiology. 2009 Jan;59(0 1):112.  
1
1
(
2017) were classified to the genus level, and 0.25% (2017)  
was classified to the species level. In total, 18 species of  
Bacteria were identified. Among them, bacteria occurring  
in the human gastrointestinal tract, were found the most  
often. These types of bacteria can be a threat to human  
health. Therefore, the species composition of Bacterial  
community should be taken into account when assessing  
the ecological state of water reservoirs.  
4. Micrococcus luteus - www.gastroscan.ru/handbook/118/7095  
5. Bhatia A, Maisonneuve JF, Persing DH. Propionibacterium  
acnes and chronic diseases. InThe Infectious Etiology of  
Chronic Diseases: Defining the Relationship, Enhancing the  
Research, and Mitigating the Effects: Workshop Summary.,  
Knobler, SL et al.(eds.) 2004 Jun 16 (pp. 74-80).  
1
1
6. Bag S, Ghosh TS, Das B. Complete genome sequence of  
Collinsella aerofaciens Isolated from the gut of a healthy  
5
Conclusions  
Indian  
subject.  
Genome  
Announc..  
2017  
Nov  
The results obtained are of great practical interest in the  
2
2;5(47):e01361-17.  
field of monitoring of water reservoirs. The method of  
next-generation sequencing can be successfully used for the  
control of water reservoirs, in particular, and for the  
assessment of ecological state of water reservoirs, in  
general.  
7. Finegold SM, Sutter VL, Mathisen GE. Normal indigenous  
intestinal flora. Human intestinal microflora in health and  
disease. 1983 Jan 1;1:3-1.  
18.  
Parabacteroides  
distasonis  
-
http://www.gastroscan.ru/handbook/118/8882  
9. Schleifer KH, Kloos WE. Isolation and characterization of  
Staphylococci from human skin I. Amended descriptions of  
1
Acknowledgements  
The work is performed according to the Russian  
Government Program of Competitive Growth of Kazan  
Federal University. The authors would like to thank Dr.  
Staphylococcus  
epidermidis  
and  
Staphylococcus  
saprophyticus and descriptions of three new species:  
Staphylococcus cohnii, Staphylococcus haemolyticus, and  
Staphylococcus xylosus. International Journal of Systematic  
1014  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1006-1015  
and Evolutionary Microbiology. 1975 Jan 1;25(1):50-61.  
Nano-Formulation: A Review. Journal of Chemical Reviews.  
2019 Mar 1;1(2. pp. 78-153):130-8.  
2
2
0. Fey PD, Olson ME. Current concepts in biofilm formation of  
Staphylococcus epidermidis. Future microbiology. 2010  
Jun;5(6):917-33.  
36. Nabati M, Bodaghi-Namileh V, Sarshar S. Molecular Modeling  
of the antagonist compound esketamine and its molecular  
docking study with non-competitive N-methyl-D-aspartate  
(NMDA) receptors NR1, NR2A, NR2B and NR2D. Progress  
in Chemical and Biochemical Research. 2019 Sep 1;2(3):108-  
19.  
37. Noorizadeh H, Farmany A. Adsorptive Removal of Arsenic  
from Aqueous Solutions Using Amino Functionalized Super  
paramagnetic Iron Oxide Nanoparticle/SiO2.  
38. Nabati M, Kermanian MA, Mohammadnejad-Mehrabani H,  
Rahbar Kafshboran H, Mehmannavaz M, Sarshar S.  
Theoretical Investigation on the Antitumor Drug: ThioTEPA  
and its Interaction with S-donor Biomolecules and DNA  
Purine Bases. Chemical Methodologies. 2018 Apr 1;2(2. pp.  
83-180):128-40.  
39. Shafiekhani H, Barjoizadeh R. Modification of activated  
carbon by ZnCl2, CaCl2, MgCl2 and their applications in  
removal of nitrate ion from drinking water. Asian Journal of  
Green Chemistry. 2019 Jan 1;3(1. pp. 1-124):1-2.  
1. Robertson WJ, Bowman JP, Franzmann PD, Mee BJ.  
Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-  
reducing bacterium isolated from gasolene-contaminated  
groundwater. International Journal of Systematic and  
Evolutionary Microbiology. 2001 Jan 1;51(1):133-40.  
2. Bag S, Ghosh TS, Das B. Complete genome sequence of  
Faecalibacterium prausnitzii isolated from the gut of a healthy  
Indian adult. Genome Announc.. 2017 Nov 16;5(46):e01286-  
2
2
1
7.  
3. Finegold SM, Vaisanen ML, Molitoris DR, Tomzynski TJ,  
Song Y, Liu C, Collins MD, Lawson PA. Cetobacterium  
somerae sp. nov. from human feces and emended description  
of the genus Cetobacterium. Systematic and applied  
microbiology. 2003 Jan 1;26(2):177-81.  
4. Ryan MP, Pembroke JT. Brevundimonas spp: emerging global  
opportunistic pathogens. Virulence. 2018 Dec 31;9(1):480-93.  
5. Satola B, Wübbeler JH, Steinbüchel A. Metabolic  
characteristics of the species Variovorax paradoxus. Applied  
microbiology and biotechnology. 2013 Jan 1;97(2):541-60.  
6. World Health Organization http://www.who.int/en/news-  
room/detail/27-02-2017-who-publishes-list-of-bacteria-for-  
which-new-antibiotics-are-urgently-needed  
2
2
2
2
7. Onaca C, Kieninger M, Engesser KH, Altenbuchner J.  
Degradation of alkyl methyl ketones by Pseudomonas veronii  
MEK700.  
Journal  
of  
bacteriology.  
2007  
May  
1
5;189(10):3759-67.  
2
8. Thierry S, Macarie H, Iizuka T, Geißdörfer W, Assih EA,  
Spanevello M, Verhe F, Thomas P, Fudou R, Monroy O,  
Labat M. Pseudoxanthomonas mexicana sp. nov. and  
Pseudoxanthomonas japonensis sp. nov., isolated from diverse  
environments, and emended descriptions of the genus  
Pseudoxanthomonas Finkmann et al. 2000 and of its type  
species. International journal of systematic and evolutionary  
microbiology. 2004 Nov 1;54(6):2245-55.  
2
3
9. Kodama Y, Watanabe K. Sulfuricurvum kujiense gen. nov., sp.  
nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-  
oxidizing bacterium isolated from an underground crude-oil  
storage cavity. International journal of systematic and  
evolutionary microbiology. 2004 Nov 1;54(6):2297-300.  
0. Whitman WB. Bergey's Manual of Systematic Bacteriology,  
Volume 4: The Bacteroidetes, Spirochaetes, Tenericutes  
(Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria,  
Dictyoglomi, Gemmatimonadetes, Lentisphaerae,  
Verrucomicrobia, Chlamydiae, and Planctomycetes.  
1. Moghimi A, Yari M. Review of procedures involving  
separation and Solid Phase Extraction for the determination of  
cadmium using spectrometric techniques. Journal of Chemical  
Reviews. 2019 Jan 1;1(1, pp. 1-77.):1-8.  
3
3
2. Gomaa EG, Berghout MA, Moustafa MR, El Taweel FM, Farid  
HM. Thermodynamic and Theoretical solvation parameters for  
2
-amino-4, 5-dimethylthiophene-3-carboxamide (ADTC) in  
Ethanol and Mixed EtOH-H2O solvents. Progress in Chemical  
and Biochemical Research. 2018 Oct 1;1(1, pp. 1-80):19-28.  
3. Mohammadi F, Yousefi M, Ghahremanzadeh R. Green  
synthesis, characterization and antimicrobial activity of silver  
nanoparticles (AgNPs) using leaves and stems extract of some  
3
plants. Advanced Journal of Chemistry-Section  
Theoretical, Engineering and Applied Chemistry). 2019 Apr  
;2(4, pp. 266-385):266-75.  
A
(
1
3
3
4. Gomaa EA, Mahmoud MH, Mousa MG, El-Dahshan EM.  
Cyclic Voltammetry for the Interaction between Bismuth  
Nitrate and Methyl Red in Potassium Nitrate Solutions.  
Chemical Methodologies. 2019 Jan 1;3(1. pp. 1-144):1-1.  
5. Ugbede Itodo H. Controlled Release of Herbicides Using  
1015